Loading...
Towards the automatic detection of efficient computing assets in a heterogeneous cloud environment
Date
2013
Abstract
In a heterogeneous cloud environment, the manual grading of computing assets is the first step in the process of configuring IT infrastructures to ensure optimal utilization of resources. Grading the efficiency of computing assets is however, a difficult, subjective and time consuming manual task. Thus, an automatic efficiency grading algorithm is highly desirable. In this paper, we compare the effectiveness of the different criteria used in the manual grading task for automatically determining the efficiency grading of a computing asset. We report results on a dataset of 1,200 assets from two different data centers in IBM Toronto. Our preliminary results show that electrical costs (associated with power and cooling) appear to be even more informative than hardware and age based criteria as a means of determining the efficiency grade of an asset. Our analysis also indicates that the effectiveness of the various efficiency criteria is dependent on the asset demographic of the data centre under consideration
Supervisor
Description
peer-reviewed
Publisher
IEEE Computer Society
Citation
IEEE 6th International Conference on Cloud Computing;
Files
Funding code
Funding Information
Science Foundation Ireland (SFI)
Sustainable Development Goals
External Link
Type
Meetings and Proceedings
Rights
https://creativecommons.org/licenses/by-nc-sa/1.0/
