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Abstract

The introduction of connected and autonomous ve-

hicles (CAVs) to the road transport ecosystem will

change the manner of collisions. CAVs are expected to

optimize the safety of road users and the wider en-

vironment, while alleviating traffic congestion and

maximizing occupant comfort. The net result is a re-

duction in the frequency of motor vehicle collisions,

and a reduction in the number of injuries currently

seen as “preventable.” A changing risk ecosystem will

introduce new challenges and opportunities for pri-

mary insurers. Prior studies have highlighted the eco-

nomic benefit provided by reductions in the frequency

of hazardous events. This economic benefit, however,

will be offset by the economic detriment incurred by

emerging risks and the increased scrutiny placed on

existing risks. We posit four plausible scenarios de-

tailing how an introduction of these technologies could

result in a larger relative rate of injury claims currently

characterized as tail‐risk events. In such a scenario, the

culmination of these losses will present as a second

“hump” in actuarial loss models. We discuss how CAV

risk factors and traffic dynamics may combine to make

© 2021 The American Risk and Insurance Association

http://orcid.org/0000-0002-7117-5049
https://orcid.org/0000-0003-4796-5355
https://orcid.org/0000-0002-0125-4219
https://orcid.org/0000-0002-1954-2630
https://orcid.org/0000-0002-7463-7923
mailto:Darren.Shannon@ul.ie


a second “hump” a plausible reality, and discuss a

number of opportunities that may arise for primary

insurers from a changing road environment.

1 | INTRODUCTION

The introduction of connected and autonomous vehicles (CAVs)1 is expected to have a pro-
found impact on the landscape of road transport risk. These vehicles are expected to introduce
tiered reductions in the frequency and severity of motor vehicle collisions. Each tiered
reduction represents the additional safety benefits provided by increased levels of vehicle
automation (Table 1). A set of projections for expected availability of CAVs, according to
the vehicles' own manufacturers, detail that highly automated vehicles are expected to be
available by 2030 (Grace & Ping, 2018). Current literature2 on CAV safety detail how tiered
reductions will occur through risk‐mitigating advanced driver assistance systems (ADASs)3 and
wireless communication software. The latter is otherwise known as V2X4 communication. In
contrast to conventional vehicles, which require full navigational input from human drivers,
vehicles equipped with ADAS technologies can improve driving efficiencies and avoid on-
coming safety hazards (Scanlon et al., 2015).

With the availability of a suite of ADAS technologies, navigation software, and V2X com-
munication software, CAVs are expected to reduce collision rates. More importantly, CAVs are
expected to the reduce the frequency of injuries stemming from motor vehicle collisions
(Bareiss et al., 2019). This expectation is due to their ability to predict and react to oncoming
hazards at a level that human drivers cannot attain, while remaining free of human fallibilities
such as distracted or impaired driving behavior (Fagnant & Kockelman, 2015). Furthermore, in
the event that collisions do transpire, safety‐optimized vehicle design and ADAS technologies
will largely mitigate the severity of the incident and reduce the severity of injuries that occur
(Bareiss & Gabler, 2020). These safety advancements will have implications for motor insurers.

As a key stakeholder in the area of road transport, primary insurers must adapt to the
shifting risk landscape that faces vehicle occupants. Motor insurance providers capitalize on
accurate representations of risk using actuarial modeling techniques (Denuit et al., 2007).
These techniques provide a relatively accurate generalization of the number and extent of
realized single‐loss events. This study argues that ADAS and eventual CAV rollouts will require
a more nuanced analysis beyond the expected changes in collision frequency and severity.
Reduced loss frequencies, along with changing risk patterns, will change the distribution of loss
events. We demonstrate how this, along with access to in‐vehicle data and technical expertize,
could pose challenges and opportunities to current business models.

1
CAVs can be defined as the set of vehicles that can facilitate the connection to, and communication with, other vehicles and the surrounding infrastructure, as

well as maintaining the ability to perform autonomous functions.
2
A detailed overview is provided in Litman (2020). Autonomous vehicle implementation predictions: Implications for transport planning.
3
ADASs are vehicle technologies that can monitor and assist driving tasks to ensure the safety of the driver and improve operational efficiency. Examples

include Cruise Control, Automatic Emergency Braking (AEB) and Lane‐Keeping Assistance (LKA).
4
V2X (“vehicle‐to‐everything”) software describes wireless communication software in which vehicles communicate with surrounding vehicles and other

appropriately equipped surrounding infrastructure (traffic lights, cellular towers, etc.), and use this information to navigate the road environment.
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We detail in this study the effect that changes in road traffic and vehicle ownership may
have on single‐loss actuarial models as they pertain to third‐party injuries. We do so through
the use of targeted scenario analyses that assess the safety capabilities and market penetration
of CAVs. Third‐party injuries, in this context, refer to injuries sustained by vehicle occupants as
a result of a negligent or reckless third party's actions. Single‐loss events5, meanwhile, describe
the expected distribution of losses stemming from events that occur in a localized area. We
envision that high‐frequency, low cost single‐loss events that currently dominate actuarial
considerations (Figure 1, left) may change to a loss‐distribution profile driven by an increased
ratio of high‐severity single‐loss events (Figure 1, right). Assuming an “extreme value”
threshold of €100,000, high‐severity loss events currently account for 5% of all injury loss
events6 (Central Bank of Ireland, 2019). High‐severity loss events that occur with a low
frequency are known as “tail‐risk events.” They are so‐called as they occur in the “tail” of the
distribution, that is, away from the main body of claims. However, we reason that this rate may
reach higher levels in years to come. We present four scenarios in which actuarial models may
divert from their current representation. These four scenarios assume a 20%, 40%, 60%, and 80%
reduction in collision frequencies, respectively. Our objective is not to pinpoint the likelihood
of these scenarios occurring. Rather, the objective of this study is to explore how these plausible
scenarios may occur, and the associated implications for primary insurers.

The scenarios presented in this study subsist on ADAS‐enabled and autonomous vehicles
that are adept at avoiding hazardous events. Many minor‐injury or “preventable” collision
events are expected to be avoided (Cicchino, 2017), and a larger proportion of collision events
that remain are expected to be of a higher severity. Given the encroaching costs of the advanced
technology within these vehicles, and the level of liability placed upon the vehicle to ensure
occupant safety, it is plausible that these collision events will incur high losses for primary
insurers. Assuming a drop in hazard events and minor collision frequencies, these scenarios
suggest that a higher relative frequency of large‐loss events will generate an elongated “tail” or
a second “hump” in the general distribution of single‐loss actuarial models.

An increase in large cost events has significant implications for insurers. The objective of
this study is to detail the temporality of this “hump”—how this hump may prevail as road
infrastructures and vehicle ownership patterns evolve. Moreover, the study explains how this
second peak will emerge alongside increasing levels of vehicle automation. We also consider
the optimized safety introduced by CAVs, the market penetration of these vehicles, traffic
patterns, and a shifting liability landscape.

Current attempts by the motor insurance market to capitalize on updated risk metrics do so
by utilizing usage‐based insurance (UBI). In a UBI rate‐making system, the insurance rates are
tied to the use of the insured vehicle. UBI differs from traditional policies in that premiums are
based on driving behavior and vehicle usage, rather than premiums based on the expected risk
profile of the driver. The premium level in UBI is determined based on either the policyholder's
frequency of driving (Pay‐As‐You‐Drive, or PAYD), or the policyholder's quality of driving
(Pay‐How‐You‐Drive, or PHYD) (Baecke & Bocca, 2017; Desyllas & Sako, 2013; Tselentis et al.,
2017). PAYD designates a system that charges the policyholder based on miles driven (Husnjak
et al., 2015). In contrast, PHYD systems calculate premiums based on individual driving

5
Single‐loss events, such as motor vehicle collisions, are distinct from multiple loss events, such as adverse weather leading to multiple hailstorm damage

claims.
6
This ratio represents the proportion of claimants who settled injury claims in Ireland between 2015–2018.

8 | SHANNON ET AL.



FIGURE 1 Loss distribution models (dashed line), as envisioned in four different scenarios where
autonomous vehicles become increasingly prevalent. The scenarios represent a 20%, 40%, 60%, and 80%
reduction in injury claims, respectively, and are overlaying a loss distribution model of current injury claim
losses (solid line). The current loss distribution is of a similar shape to the Gamma Distribution commonly
seen in actuarial literature (Denuit et al., 2007). The distributions in each of the four scenarios are formed
using a mixture of two gamma distributions (detailed in Appendix 1). Currently, taking Ireland as an example,
5% of injury claims results in losses greater than €100,000, that is, tail‐risk events. However, a reduction in
minor collisions, combined with shifting liability frameworks, may result in a claim distribution that features
a higher relative rate of large‐loss eventsSource: data derived from National Highway Traffic Safety
Administration (NHTSA) applied to the methodology of Shannon et al. (2020), using figures provided by the
Central Bank of Ireland (2019).

SHANNON ET AL. | 9



behavior, using parameters that indicate driving speed, harsh acceleration, abnormal braking
and excessively sharp or wide cornering (Tselentis et al., 2017).

Driving within normal or expected limits of acceleration, speed, braking, or cornering is
typically rewarded with discounted insurance rates. In contrast, unusual acceleration, speed-
ing, deceleration, or cornering behaviors suggest a poor pattern of driving behavior or dis-
tracted driving. The driver is subsequently penalized with a loss of discount benefits or
increased baseline rates. Smartphones or telematics devices are used to track these parameters
(Handel et al., 2014), which can be used to assign risk scores to policyholders based on their
driving performance (Ryan et al., 2020). Both policyholders and insurers benefit from this
arrangement. In return for allowing the insurer to monitor their driving behavior, policyholders
receive discounts. Insurers, meanwhile, attain a more accurate risk profile of the policyholder,
leading to lower underwriting, and loss expenses. These savings are compounded on both sides
by positive self‐selection bias—safer drivers move to these policies to secure further discounts,
while insurers incur fewer losses by covering safer drivers (Desyllas & Sako, 2013). In addition,
the use of risk‐scoring has allowed for the most at‐risk drivers to be identified, as the lowest
quintile of performance scores account for 30%–40% of all accidents (Neininger, 2019). Flat
discounts are also available in certain regions if the insured vehicle is equipped with the latest
safety‐optimized technology (Baumann et al., 2019). However, some insurers have been re-
luctant to offer discounts due to a lack of observable safety benefits and higher repair costs
(Bellon, 2019).

Despite these updated methods of determining premiums, the underlying assumptions re-
garding the expected distribution of third‐party injury losses largely goes unquestioned. Relatively
few anticipatory insurance schemes or actuarial model adaptations have been proposed that deviate
from conventional loss frequency7 and loss severity8 models (Denuit et al., 2007). It can be argued
that actuarial models need not be updated until autonomous vehicles, and therefore hazard events
involving autonomous vehicles, are commonplace. For example, Bayesian inferencing can be used
to update actuarial models in line with gradual changes in collision frequencies and severities
(Sheehan et al., 2017). However, reactive assessments rather than proactive assessments introduce
the risk of underestimating the level of exposure, as recently evidenced by large losses in the
natural catastrophe insurance‐linked securities market (Schultz, 2019).

This article is organized as follows. First we outline plausible scenarios in which a second
“hump” may present in loss distributions, as well as outlining the extent of the “hump” in each
scenario. Thereafter, we argue how these scenarios may present by assessing current ex-
pectations on the future of transportation and insurance. We begin by examining the state‐of‐
the‐art proactive risk assessments and policies that are available from insurers. We then detail
the future of CAVs and the additional costs associated with increased vehicle complexity.
Higher vehicle purchase and repair costs will impact insurance premiums as the underwritten
liability limits will increase (Ryan et al., 2019). Thereafter, based on extant industry and aca-
demic research, we explore the likely changes that will occur in accident claims due to own-
ership rates and vehicle usage characteristics (Gatzert & Osterrieder, 2020). Finally, we use this
background research to highlight a number of challenges that may face primary motor insurers
under these assumed scenarios. These challenges may present in terms of their role as actuaries
and underwriters, and in terms of their role as a key stakeholder of the motor vehicle industry.

7
For example, Poisson or Negative Binomial models.
8
For example, lognormal or Gamma models.
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2 | THE ANTICIPATED “HUMP”

We explore scenarios where the underlying distribution of single‐loss events deviates from
conventional right‐skewed distributions with a single cluster of events close to zero (Figure 1,
solid line). The loss distributions that are presented in Figure 1 (dashed line) are scenarios in
which we assume a 20%, 40%, 60%, and 80% reduction in collision frequencies causing injury,
respectively.

As noted previously, tail‐risk injury loss events currently make up 5% of total bodily‐injury
losses (Central Bank of Ireland, 2019). However, the scenarios presented here posit that the
proportion of tail‐risk injury losses could plausibly reach 10%–40% by the time that fully
autonomous vehicles become commonplace. Advances in vehicle safety will significantly re-
duce collision frequencies and severities due to sophisticated technological equipment that can
navigate through oncoming hazards. Vehicle ownership rates, upgraded road infrastructures,
and adapted driving behaviors will change the nature of collisions. At the same time, public
liability paradigms will likely generate high pay‐outs for vehicle at‐fault claims. Initial vehicle‐
at‐fault claims, in particular, may be subject to the “Social Amplification of Risk” phenomenon,
where relatively minor risk events can elicit strong public concerns and have a substantial
impact on policy (Kasperson et al., 1988). Furthermore, latent costs will be introduced by
increased vehicle repair and replacement costs. We also incorporate our expectations on how
loss distribution may transform due to the changing mix of vehicles on the road. We detail how
this coincides with increases in the aforementioned repair and replacement costs, and liability
penalties for “vehicle‐at‐fault” claims.

The scenarios in Figure 1 are based on specific reductions in collision and hazard event
frequencies, ranging from 20% to 80%, with the introduction of CAVs. Further details on the
formation of the loss distributions that make up the scenarios in Figure 1 are provided in
Appendix 1. Table 2 also indicates the cumulative losses that are expected from the distribu-
tions in Figure 1, as a percentage of current losses.

2.1 | 20%–40% reduction in collision rates causing injury

We largely attribute the changing dynamic of claim distributions in our scenarios to the market
share of vehicles that are equipped with a suite of ADAS technologies and capable of auton-
omous functions and wireless communication (V2X). Vehicles that are equipped with these
technologies are referred to as connected or autonomous vehicles, or CAVs. Presently, it is

TABLE 2 Expected cumulative cost of claims in each of the four scenarios outlined in Figure 1 (dashed
line), relative to current values (Figure 1, solid line)

Scenario Cumulative losses (as % of current values)

0% reduction in collisions causing injury (current losses) 100

20% reduction in collisions causing injury 110.4

40% reduction in collisions causing injury 111.4

60% reduction in collisions causing injury 92.8

80% reduction in collisions causing injury 59.9

SHANNON ET AL. | 11



expected that a vehicle equipped with ADAS functions can reduce bodily injuries by up to
60%–80% when given appropriate take‐over control (Bareiss et al., 2019). The same study found
that bodily injuries can be reduced by up to 90% when both vehicles in a “would‐be” incident
are equipped with ADAS technology. However, current automated navigational functionality is
minimal, ADAS market penetration is emergent, and the wireless communication of vehicles
with other vehicles is minimal. Using current rates (a 0% reduction in injuries) as a baseline, we
anticipate that a road environment consisting entirely of connected and autonomous vehicles
will lead to an 80% reduction in injuries.

Based on these expectations, it can be suggested that a 20%–40% realized reduction in
collisions would suggest incremental advancements in road safety rather than a sufficiently
high market share of CAVs. A sizeable but minority share of CAVs equipped with ADAS
technologies and automated navigational software have the potential to prevent or mitigate a
high number of minor‐moderate collisions that would incur injuries. However, conventional
vehicles will still represent the majority of vehicles in the road ecosystem, ensuring that loss
event models will remain similar to current loss distributions in some capacity.

Furthermore, a large number of minor‐moderate loss events that are mitigated will be
replaced by claims for damage repairs on costly safety and navigational equipment (Liberty
Mutual Insurance, 2017; Williams, 2018). Incidents in which CAVs are found to be at‐fault in a
collision while in “automated mode” may incur excessive claim penalties owing to their in-
creased level of liability (Automated and Electric Vehicles Act, 2018; Deutscher Bundesrat,
2017). Therefore, costs saved by preventing injuries may be supplemented both by higher repair
costs (Liberty Mutual Insurance, 2017; Williams, 2018) and higher liability costs (Casualty
Actuarial Society, 2018). This is reflected in the costs outlined in Table 2, which indicates the
expected cumulative losses for insurers for each of these scenarios. Relative to current values,
scenarios in which collisions reduce by 20% and 40% will maintain or increase on current levels
of losses (110.4% and 111.4%, respectively). Despite a reduction in overall collisions, higher
repair and liability costs will result in a higher average pay out. This aligns with the views put
forth by the Casualty Actuarial Society (2018), who suggest that a 75% reduction in incident
rates is required to maintain current premium levels.

As such, we anticipate that incremental advancements on road safety will not significantly
impact on current actuarial models, and injury‐claim changes that do manifest may present as
elongated “tails” rather than distinct humps due to higher liability pay outs. Based on these
assumptions, both the “20% Reduction” and “40% Reduction” loss distributions in Figure 1
(right) may remain largely similar to the current loss distribution (Figure 1, left). Instead, we
only expect CAVs to have a significant impact on actuarial models when they reach a majority
market‐share of newly bought vehicles, such that their full safety capabilities can be realized.

2.2 | 60%–80% reduction in collision rates causing injury

CAVs have the potential to reduce collision and injury rates by greater than 20%–40%, based on
the findings of Bareiss et al. (2019). However, we expect that 60%–80% reductions in collision
and injury rates will only arrive if there are systematic changes made to the road environment.
We anticipate that these reductions will only be observed in an environment where CAVs
represent a significant majority of vehicles on the road. At this stage, CAVs will come equipped
with a suite of ADAS technologies, automated navigational software, and vehicle‐to‐everything
wireless communication (V2X). In addition, it is expected that a majority of CAVs operating in

12 | SHANNON ET AL.



the road environment will do so as part of a ride‐sharing service rather than through private
ownership (Litman, 2020). This will have the effect of contracting the number of insured
vehicles (Henao & Marshall, 2019) and increasing occupancy rates (Lokhandwala & Cai, 2018),
which in turn increases the number of passengers exposed to a single insurance loss event.

Since conventional vehicles will represent a minority share of the on‐road traffic mix,
current loss‐distribution dynamics will no longer hold. Instead, loss‐distribution dynamics will
largely be driven by incidents involving CAVs, whose risks differ from those faced by con-
ventional vehicles. The vast majority of claims currently realized by insurers are of low severity
and are clustered relatively close to zero (Central Bank of Ireland, 2019; Denuit et al., 2007).
However, the sophisticated technological capabilities of CAVs will ensure that a majority of
minor‐moderate injury claim events are avoided. The scenarios underlying the “60% Reduc-
tion” and “80% Reduction” loss distributions (Figure 1, right) assume that collisions that
currently incur minor (superficial) injuries will largely be prevented, and moderate‐severity
collisions (causing non‐superficial injuries) will be mitigated to minor injury events. Table 2
indicates that the expected total loss faced by insurers will fall by up to 40% with an 80%
reduction in collisions. However, there will a relative increase in the number of events that are
“unavoidable” and likely to commit great personal harm—that is, those that can incur a
significant risk to life. Given that occupancy rates are expected to increase over time
(Lokhandwala & Cai, 2018), this may have the effect of concentrating a higher number of
serious‐injury events into fewer collisions.

The implications this has for insurers is that the average size of realized claims may become
larger and costlier, even though the overall cost of liabilities will decrease relative to current
values (Table 2). Although conventional vehicles will remain subject to current claim loss
dynamics, a higher percentage of bodily injury claims resulting from collisions involving CAVs
will stem from “unavoidable” collisions involving a higher number of passengers, on average.
“Unavoidable” collisions, such as vehicles that are traveling at high speeds, or “blind‐spot”
collisions that occur while cornering, will incur significant losses for insurers. Given the nature
of these incidents, it stands to reason that serious injuries may still be suffered in these
incidents. The losses stemming from the injuries will be compounded by extensive repair and
replacement costs, particularly if safety‐critical equipment is damaged. Furthermore, incidents
in which CAVs are found to be at‐fault in a collision while in “automated mode”may also incur
excessive liability penalties owing to their increased level of liability (Automated and Electric
Vehicles Act, 2018; Deutscher Bundesrat, 2017).

Assuming these situations become evident, there is a latent possibility that an increase in
the relative percentage of these “unavoidable” events, given a significant reduction in less
severe events, have the ability to introduce a second “hump” to loss distributions (Figure 1
right). Hence the elongated tail that is expected to appear with a 20%–40% reduction in colli-
sions may progress in to a second “hump” as the overall rate of collisions continue to decrease,
while the relative percentage of high‐severity collisions continues to increase.

Given that traditional loss models do not account for a second “hump,” the remainder of
this study explores the factors that may influence its occurrence, and investigate the oppor-
tunities that may arise as a result. The uptake in CAV ownership is expected to be gradual, with
industry experts proposing widely varying assessments on public acceptance and market pe-
netration rates (Claus et al., 2017). The path to CAV ubiquity remains uncertain due to a
myriad of regulatory, liability and infrastructure roadblocks, despite the feasibility of a rapid
introduction of advanced safety technology (Martínez‐Díaz & Soriguera, 2018).
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The remainder of this study focuses on the feasibility of the scenarios above, based on
current developments in ADAS and V2X. We first detail how nonlife insurers are reacting to a
road environment that contains ADAS‐equipped vehicles. We further expand on how these
vehicles, and future iterations toward full autonomy, may impact motor insurance costs. We
also detail the potential impact of anticipatory and reactive regulations and governance, the
future landscape in terms of vehicle ownership and occupancy rates, and the dynamic effects of
public perception. The latter factors play a particularly influential role in the formation of the
second “hump,” given that we expect sizeable changes to actuarial models only if CAVs achieve
a significant market share.

3 | CURRENT INSURANCE ADAPTATIONS TO ADAS AND
TELEMATICS

The traditional paradigm of motor insurance has evolved over many decades. Risks can be
represented through cost distribution models that combine the frequency of incidents (Negative
Binomial or Poisson distribution) with the severity of those incidents (Log‐normal or Gamma
distribution). The price of insurance premiums reflects the average expected loss per policy,
plus a profit margin. Therefore, insurers operate on the basis of the Law of Large Numbers, that
is, given an increasingly large number of loss events, the average loss amount of realized events
will tend toward the average loss amount that was initially expected. Risk pricing for con-
ventional vehicles has been optimized over time to adequately pool insurers' risk exposure to
both frequent small losses and infrequent large losses. The optimization of risk pricing means
that gains made from the frequent occurrence of small loss events more than offset the large
losses garnered from “tail‐risk” events. Therefore, insurers remain relatively insulated from
threats of capital reserve risks because of a well‐diversified portfolio of policy losses. From a
prudential regulatory perspective, the motor insurance business is seen as offering a degree of
financial stability to insurers.

The risk‐pooling regime has previously updated to changing risk values. This includes ac-
counting for new risks such as changes in driving behavior (distracted driving caused by mobile
phone use) (Mcevoy et al., 2005), and changes to vehicle safety (the standardization of seatbelts
and airbags) (Campbell, 1986). The introduction of autonomous vehicle capabilities is expected to
disrupt traditional insurance premium pricing due to the wealth of data that CAVs generate
(Casualty Actuarial Society, 2018; Weidner et al., 2017). Motor telematics is viewed as promising
way forward in understanding the dynamics of motor vehicle collisions (Weidner et al., 2017).
Telematics records vehicle data including location, acceleration, time of day, and so on. They
therefore provide a window in to the overall health of the vehicle and a policyholder's driving
behavior (Goyal, 2014). As previously outlined, motor insurance companies have used telematics
data to introduce Usage‐Based‐Insurance (UBI) policies such as Pay‐As‐You‐Drive (PAYD) and
Pay‐How‐You‐Drive (PHYD). Smartphones or vehicle monitoring devices are used to track in-
dividual driving behavior (Handel et al., 2014), which can be used to assign risk scores to
policyholders based on their driving performance (Ryan et al., 2020).

In addition to tracking the driving behavior of policyholders, smartphones have proven to
be effective feedback loops to drivers, significantly improving their driving performance (Birrell
et al., 2014; Jiang et al., 2018). UBI has therefore become increasingly popular within the last
decade, partially driven by the scalability, affordability and high penetration rate of smart-
phones (Ptolomeus Consulting Group, 2018), and has resulted in improved profitability for
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insurers (Vaia et al., 2012). Monitoring driving behavior allows for fairer premiums as tradi-
tional homogenized insurance overcharges safer drivers in order subsidize the higher insurance
costs for riskier drivers (Tselentis et al., 2017). As vehicles evolve from level 0 automation to
level 5 automation (Table 1), they will be increasingly equipped with advanced driver assistance
systems (ADASs) as standard. Some insurance providers seem willing to provide discounts on
insurance premiums for vehicles with ADASs (Allianz, 2016), and already make extensive use
of the passive “eCall” assistance system. The “eCall” assistance system places calls to
the emergency services when crash sensors within the vehicle are activated, and have played a
role in saving a number of drivers' lives (Ponte et al., 2016). The proliferation of these discounts
have been slow, however, as insurers have struggled to accurately assess the reduction in risk
provided by ADAS technologies (Bellon, 2019).

4 | EXPECTED SHIFT IN RISK LANDSCAPE

4.1 | Progression of technology and insurer losses

The introduction of the retractable seatbelt in the 1950s and vented airbag restraints in the
1960s sparked a movement toward improving occupant safety. Measures have prioritized the
development of practical safety mechanisms, and encouraged a broader evolutionary move-
ment toward vehicle automation, particularly since the 1990s (Griffin et al., 2018).

Using a suite of sensors (cameras, radar, and lasers) that monitor the dynamic driving
environment, ADAS technology can assess a consistent feed of external information regarding
the vehicle's surroundings (Figure 1). These safety systems are designed to mitigate the leading
causes of collisions, such as distracted driving (George et al., 2018; Hirayama et al., 2012;
Jannusch et al., 2021) and driver fatigue (Jung et al., 2014; Lee & Chung, 2012). If an imminent
danger is detected, the assistance system alerts the driver through tactile, audible or visual
stimuli (Level 0 automation using Sae International (2016) guidelines). However, if no response
from the driver is received, or if the driver's reaction time exceeds established limits, a fall‐back
exists wherein the system activates autonomously (Levels 1 automation) and acts to avoid the
potentially hazardous event (Hajek et al., 2013).

Simulation studies have highlighted the effectiveness of Level 2 ADAS technologies (where
two systems act concurrently to avoid or mitigate an oncoming hazard) in reducing collision
and injury rates relative to vehicles with no intervention systems (Scanlon et al., 2017). A
number of studies have also used collision data to retroactively assess the extent to which Level
1 and 2 ADAS mechanisms would have prevented collisions (Bareiss et al., 2019; Östling et al.,
2019; Spicer et al., 2018). These studies find that Electronic Stability Control (ESC), Automatic
Emergency Braking (AEB), and Lane Departure Prevention (LDP) systems are particularly
adept at reducing collision rates (by up to 90%) and preventing potentially serious injuries.

The increased proliferation of ADAS technology will impact insurer's liabilities with many
minor incidents eliminated (Bareiss et al., 2019; Scanlon et al., 2015). At the same time, there
will be fewer than expected moderate bodily injury loss events. AEB, for example, has been
shown to substantially lower the extent of Third Party Injury claims in the UK (Doyle et al.,
2015), while blind‐spot ADAS technology reduced claim costs by up to 30% in Sweden
(Isaksson‐Hellman & Lindman, 2018). However, a decrease in bodily injuries as a result of
ADAS (Doyle et al., 2015; Isaksson‐Hellman & Lindman, 2018) will be offset by the increased
cost associated with vehicle repair and part replacement (Pütz et al., 2019). According to
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Liberty Mutual, the cost of repairing vehicles equipped with the latest technology will almost
double (Liberty Mutual Insurance, 2017) because of the cost of the damaged parts and addi-
tional labor costs. This higher repair cost has also been confirmed by AXA UK (Williams, 2018).

ADAS technology typically begins providing warnings when a potential hazard is within 5 s
to collision. As automation levels increase, the suite of advanced safety technologies will in-
corporate elements of on‐board navigation and Vehicle‐to‐Vehicle (V2V) communication that
will eventually progress to Vehicle‐to‐Everything (V2X) communication. Level 3 Connected
Autonomous Vehicles (CAVs) have already been shown to perform on par with human drivers
(Pütz et al., 2019), with latest reports suggesting that CAVs encounter fewer hazard events than
humans (State of California Dmv, 2019). This indicates that advanced technological vehicles
rapidly adapt to the nuanced driving behavior of other road users, and can quickly lower the
expected frequency of incidents. The addition of autonomous navigational and communication
elements will allow the vehicle to detect and proactively assess potential hazards rather than
reacting to oncoming dangers, even when the hazard is out of the line‐of‐sight (Ali et al., 2018).

These advancements all contribute to a shift in loss distributions. While conventional vehicles
continue to dominate the make‐up of vehicles in the road environment and ADAS‐enabled vehicles
remain a minority, we expect few changes to occur in traditional actuarial models. However, over
time, vehicles equipped with V2X communication, collision avoidance technologies, and naviga-
tional software will become a growing percentage of vehicles in the road environment. Once CAVs
become the majority, we would expect the proportion of minor‐moderate bodily injury collisions to
significantly reduce and the proportion of serious bodily injury collisions to increase, increasing the
likelihood of a second “hump” in loss distributions.

4.2 | Liability landscape

Motor insurance consists of Motor Third‐Party Liability (MTPL) and Motor Own Damage
(MOD) (Insurance Europe, 2018). MTPL policies generally reimburse third‐party claims for
bodily injury, property damage and subsequent economic losses within a predetermined
compensation limit. MOD policies insure the vehicle (and therefore the owner) up to its
property value. MOD policies also insure the vehicle for fire, theft or accidental damage. The
liability in this sense is therefore placed on the insured driver, and the risks to which they are
exposed through no fault of their own (e.g., theft).

Table 3 demonstrates the stability of MTPL and MOD loss patterns, indicating how insurers
operate because of the Law of Large Numbers. While variation coefficients in Germany are high
for natural catastrophe events (over 50%), the long‐run volatility of claim estimates for the
accident risks are 15% or lower. Both vehicle damage and bodily injury claims are even more
stable with overall industry costs typically varying by 6.9% and 7.5%, respectively. The highest
incidence of tail‐risk events occurs for theft‐coverage and accidents resulting in bodily injuries.
These events have the highest average cost‐per‐policy (€15,603 and €14,305, respectively).
However, in the scenario of a “second hump” presenting in loss curves, the higher relative
frequency9 of tail‐risk events will increase these volatility estimates. Insurers in this scenario
may have to retain higher capital reserves to meet claim losses that reach higher levels of
volatility, a cost that may be passed on to policyholders.

9
That is, as a % of claim frequency, given that overall claim frequencies will decrease.
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The current liability landscape will shift to one that incorporates a product liability element
(Casualty Actuarial Society, 2018). Product liability refers to the onus placed on original
equipment manufacturers (OEMs) to ensure a safe product reaches the consumer. Product
defects that cause injuries to consumers can result in significant liability being placed on the
manufacturer. Given the increasing level of sophisticated technology in vehicles, and their
associated vulnerabilities, the resulting probability of a defective piece of equipment making its
way into a vehicle and leading to a safety‐critical error is greater than zero (Bhavsar et al.,
2017). This means that vehicle and equipment manufacturers will be exposed to elevated levels
of risk from insurers reclaiming losses.

The German Road Traffic Act was updated in 2017 to clarify the liable party when a CAV
collision occurs while the automated mode is activated (Deutscher Bundesrat, 2017). In this case,
the statutory compensation limits in Germany will double from €5 million to €10 million for bodily
injury claims and from €1 million to €2 million for property damages (Deutscher Bundesrat, 2017).
In theory, doubling the statutory compensation limits would increase the maximum possible loss
burden for the insurer, which should be reflected in the insurance pricing. The expected shift to a
focus on product liability will bring with it greater coverage—but that greater coverage would be
accompanied by higher frictional costs. In the context of actuarial modeling, further liability
regulations may increase the level of compensation that is owed to injured claimants, further
contributing to the eventual “hump” appearing in loss distributions.

This German Act is supplemented by the “single insurer” model that introduced as part of
the “Automated and Electric Vehicles Act, 2018” in the UK (Automated and Electric Vehicles
Act, 2018). This act stated that both driver and vehicle are covered under the driver's insurance
policy while the vehicle is in “automated mode,” so that in the event of defective or faulty
vehicle equipment causing an accident while the vehicle is in control of the driving tasks, the
driver would still be able to secure a claim for damage incurred in the accident.

Previously, it could have been argued that since there was no “negligent party” involved in
such an accident, the insurer could withhold compensation on the premise that the event was a
product liability litigation issue to be directly addressed between the claimant and at‐fault
OEM, rather than through the insurer. However, the Automated and Electric Vehicles Act
(2018) clarified that in these situations, the policyholder could still claim from their insurance
(and so the event would still add to their loss distribution), while the insurer could thereafter
recover their losses from the defective equipment's manufacturers. As such, while still re-
maining present in their expected loss distributions, the extent of their compensation pay outs
may increase given the increased liability burden that will be placed on primary insurers. This
further adds to the plausibility of an elongated tail and eventual second “hump.”

As it stands, the expected outcome for this change is that extra costs will be introduced in
the value chain to adequately cover the high penalties caused by product liability issues.
Combining coverage and costs, the shift will plausibly result in one of two scenarios. The
current view is that increased product liability will indirectly affect consumers through in-
creased insurance premiums. A study by the Casualty Actuarial Society (2018) found that CAVs
would need to reduce incident rates by 75% to maintain the level of insurance premiums that
are currently available in the market. This view is based on the additional costs that will be
placed on vehicle repairs, bodily injury estimates, and reserves to cover product liability loss.
An alternative view is that product liability will directly impact consumers by increasing the
costs of vehicles. The burden of product liability placed on OEMs will guarantee that the quality
of the equipment in these vehicles are not comprised, the cost of which is passed on to the
consumers.

18 | SHANNON ET AL.



In sum, the introduction of CAVs to the road environment are expected to significantly
reduce the number of collisions, and mitigate the extent of collisions that do occur. While this is
highly beneficial for those within the vehicle, insurers may not benefit to the same extent. The
complexity of the technologies within these vehicles will increase the repair costs associated
with injury claims in addition to the costs associated with the injuries themselves. Further-
more, in the event of a defective part within these vehicles causing a collision, primary insurers
would be exposed to higher liability costs. These expectations are outlined in Table 4.

5 | TEMPORALITY OF RISK LANDSCAPE

5.1 | Anticipatory regulations and governance

The introduction of safety technology will require amendments to national and international
legislation worldwide. ADAS and CAV technologies will present challenges for regulators in
terms of legal and civil liberty commitments particularly regarding privacy, data use, profiling,
and social access to insurance. Insurance and regulation face a similar task in anticipating a
supportive governance and regulatory environment that will realize the safety benefits of
autonomous vehicle technologies, while maintaining recourse to compensation through
mandatory insurance (Table 5).

The governance response must factor in the need for supportive regulation and stan-
dardization to avail of the potential risk mitigation benefits of autonomous vehicle tech-
nologies, whilst also being cognizant of changes in accident rates and injuries (Mittelstadt
et al., 2015). The speed with which the “second hump” may present in actuarial curves is
dependent on the increased proliferation of CAVs. Historical attempts at introducing
regulation for vehicle safety optimization have been slow. Three‐point seatbelts were first
required to be fitted for all seats as standard in 1969 (Japan), 10 years after their introduction.
Airbags were first introduced for front‐seat passengers in 1973, and were made mandatory
25 years later in the United States. Similarly, anti‐lock braking system (ABS) and electronic
stability control (ESC) were equipped on 80% of newly registered vehicles in Germany after
20 and 15 years, respectively (Pütz et al., 2019). That said, the pace of technological ad-
vancements may be changing with mobile phones and data‐interconnectivity (IoT) being
adopted at an accelerating rate (Davidson & Spinoulas, 2015).

Regulatory bodies have a safety and economic duty to ensure the timely introduction of
ADAS‐enabled vehicles and CAVs. A free market approach to CAV governance could be
suboptimal and fail to realize the safety potential of these technologies, and would result in
fractured transport legislations from lagging municipalities (Cohen et al., 2018). A “laissez‐
faire” governance approach would also result in significantly lower market penetrations of
safety‐ and technologically optimized vehicles for nonaffluent road users. Transport route
efficiency will suffer and traffic congestion will increase (Cohen & Cavoli, 2019), which may
result in an increased frequency of property‐damage loss events.

Initial indicators point to encouraging signs of active anticipatory governance. The
United States Department of Transport have committed to ensure that 20 of the leading
manufacturers10 will employ at least Level 1 Automation capabilities by 2022 (Insurance

10
Representing more than 99% of the automotive market.
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Institute for Highway Safety, 2016). All vehicles manufactured from this point must have
at least one ADAS system that can autonomously stop or correct the vehicle if required.11

Furthermore, the European Commission (2019) have committed to ensure that every ve-
hicle produced in the European Union from 2022 must have Level 2 automation cap-
abilities. This states that each vehicle must have at least two ADAS systems that can work
simultaneously to prevent a hazardous event or correct a vehicle approaching a hazardous
event. However, road infrastructure will require upgrading and the economic cost of these
developments are significant (Kaltenhäuser et al., 2020). Nevertheless, anticipatory reg-
ulations that recognize the safety benefits of CAVs and encourage their introduction, may
further speed up the process by which primary insurers are exposed to shifting loss
distributions.

5.2 | Public perception and acceptance

5.2.1 | Ownership rates and occupancy rates

An increasing rate of ADAS and higher‐level AVs in the road environment will be a catalyst for
change in terms of vehicle ownership and vehicle occupancy rates, particularly in urban areas.
Highly‐automated vehicles (Level 4) or fully automated vehicles (Level 5) are expected to be
available by a majority of vehicle manufacturers by 2030 (Grace & Ping, 2018). These vehicles
will have higher purchase costs and will be costly to maintain, and their introduction to the
traffic mix is expected to be gradual (Kaltenhäuser et al., 2020). However, the cost‐per‐mile‐
traveled is expected to decrease due to longer‐lasting vehicles, their use as a shared vehicle, and
cheaper fuel (through electric charging stations) over time (Airbib & Seba, 2017; Walker &
Johnson, 2016). These high purchase and maintenance costs, combined with the possibility of
lower costs per‐mile‐traveled, will significantly widen the disparity between the utility of
owning a CAV and the utility of mobility services operated by CAVs (Chen et al., 2016; Claus
et al., 2017; Lokhandwala & Cai, 2018; Litman, 2020). Based on this disparity, it is envisioned

TABLE 4 Summation of the shift in risk for primary insurers as automated vehicles become an increasingly
likely feasibility, as it relates to the damages associated with these vehicles

Anticipated shift in risk landscape (insurer's perspective)

Factors to consider

Frequency effects Severity effects

Automation
levels 0–2

Automation
levels 3–5

Automation
levels 0–2

Automation
levels 3–5

Progression of
technology (safety)

↓ ↓↓ ↓ ↓↓

Progression of
technology (repair
costs)

No effect No effect ↑ ↑↑

Liability shift No effect No effect ↑ ↑↑

11
In this case, Automatic Emergency Braking (AEB) is required.
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that “Autonomous Taxis” will become the predominant transport mode of choice by the time
that CAVs are widespread (Kaltenhäuser et al., 2020; Litman, 2020). Ultimately, there
will transition to shared‐mobility services, and a decline in demand for private‐use CAVs.

This shift may have an appreciable impact on occupancy rates. Average occupancy rates
have been found to be low for shared‐mobility services (Henao & Marshall, 2019; Lokhandwala &
Cai, 2018) as current road infrastructure do not provide efficient travel routes for CAVs (Litman,
2020; Papa & Ferreira, 2018). The rate of deadheading12 may therefore increase in the near‐ to
medium‐term as “empty” vehicles travel to ride‐share requests, increasing the relative frequency of
policies that will be subject to Motor Own Damage (MOD) claims and ensuring that insurance loss
distributions will not deviate much from their current state.

As CAVs become more commonplace, however, road environments will become optimized for
shared‐mobility services, possibly through optimal charging‐point placements (Chen et al., 2016)
or designated lanes for CAVs (Litman, 2020). This will have the effect of decreasing deadheading
over time, meaning that the average number of occupants per vehicle may rise (from 1.3 to 3, on
average) in tandem with increased travel efficiency and decreased fleet size (Chen et al., 2016;
Henao & Marshall, 2019; Lokhandwala & Cai, 2018; Litman, 2020). A reduction from a hetero-
geneous mix of CAV and conventional vehicle traffic to a road environment primarily containing
higher levels of autonomous vehicles acting as mobility providers may also have ramifications for
primary insurers. They face business model risks given that the number of policies they under-
write will contract and the risk dynamics of the policies they do underwrite will change.

Currently, loss‐distributions and premium calculation models assume the predominant
coverage of private vehicles, where each covered vehicle is assumed to be owned by a single
driver. However, an expected drop in privately owned vehicles and an increase in shared
“autonomous taxis” will reduce the pool of insured vehicles, and contract the profitability of
insurers, ceteris paribus. Furthermore, a greater concentration of occupants within a small pool
of vehicles has the potential to significantly increase claim sizes in the event of injuries being
suffered and critical safety equipment being damaged. Given that shared‐mobility services may
become the primary mode of transportation, it is a distinct possibility that these events may
become a higher relative percentage of overall claim frequencies, and therefore contribute
further to the “second hump” (Figure 1, right). There is a likelihood of this scenario presenting
as a result of advances in vehicle safety that will reduce collision frequencies and severities.

5.2.2 | Market penetration

The primary driver behind the introduction of CAVs is the public's willingness to buy highly‐
automated vehicles. This will require achieving and maintaining public trust in CAVs (Xu &
Fan, 2019). The path to full ubiquity of CAVs remains unclear. Initial opinions suggested that
75% of new‐vehicle‐purchases will be self‐driving by 2040 (Claus et al., 2017), and that 75%‐95%
of all vehicles on the road would be self‐driving by 2060 (Bierstedt et al., 2014). These pre-
dictions have since tapered to ‘optimistic' scenarios describing a 50% adoption rate and 35%
market share by 2040 (Forsgren, 2018), while research studies have suggested highly‐
automated vehicles to have a market share between 24%‐87% by 2045 (Bansal & Kockelman,
2017). A higher market share of CAVs will result in higher collision reductions and fewer

12“Deadheading” is otherwise known as “vehicle‐miles traveled with no occupants,” as mentioned in Henao, A., Marshall, W.E., 2019. The impact of ride‐
hailing on vehicle miles traveled. Transportation 46 (6), 2173–2194.
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collisions being realized (Bareiss et al., 2019; Scanlon et al., 2017), which we expect in turn to
change to the shifted loss distributions outlined in Section 2. Regardless, a rapid introduction of
these vehicles requires a significant buy‐in from low‐ and middle‐income motorists, who would
need to spend significantly beyond their typical vehicle purchase to secure a vehicle with
self‐driving capabilities (Litman, 2015).

Current market expectations indicate an eagerness to adapt to or use new technologies,
particularly when presented with personal benefits (i.e. enhanced safety, fuel consumption,
liability shift, low‐cost mobility‐as‐a‐service) (Bansal & Kockelman, 2017; Daziano et al., 2017;
Kaltenhäuser et al., 2020; Shabanpour et al., 2018). Bansal and Kockelman (2017) find that
consumers in the US would be willing to pay a significant amount for full automation cap-
abilities. Shabanpour et al. (2018) find that motorists have an increased willingness to purchase
CAVs if they remain covered in the event of a vehicle‐at‐fault incident, similar to the acts
introduced in Germany and the UK (Automated and Electric Vehicles Act, 2018; Deutscher
Bundesrat, 2017). Regulators may take these sentiments in to account if they are reflected in
vehicle sale patterns. The market penetration rate of CAVs is directly related to realized safety
benefits for road users. From this, we can infer that a higher market penetration rate of CAVs
will lead to greater changes to conventional loss distributions, to the extent that a second
“hump” may present in loss distributions in the event that CAVs reach a dominant market
share.

Therefore, current expectations dictate that regulatory bodies look favorably upon the
eventual introduction of CAVs to improve safety, given their willingness to exploit op-
portunities to guide their introduction (European Commission, 2019; Insurance Institute
for Highway Safety, 2016). Ownership rates of privately owned vehicles are expected to
decrease (Litman, 2020), due to a shift in using these vehicles for ride‐sharing purposes
through “autonomous taxis” (Henao & Marshall, 2019; Kaltenhäuser et al., 2020). The net
result of the expected change in ownership/usage rates is a higher occupancy rate, which is
expected to rise from 1.3 to 3 (Lokhandwala & Cai, 2018). Combined with the safety cap-
abilities of CAVs (Bareiss et al., 2019), it can be suggested that a greater concentration of
passengers in to fewer vehicles will lead to a higher proportion of large injury losses payable
by primary insurers in the event of a collision occurring. This has the effect of reducing the
number of minor events that currently exist in loss distributions, and increasing the pro-
portion of “tail‐risk” events, lending further credibility to the likelihood of a second “hump”
presenting in loss distributions.

6 | IMPLICATIONS FOR INSURER PRICING AND
UNDERWRITING

Insurance pricing models derive safety from the Law of Large Numbers. Considering this
theorem, insurers can implement a risk‐pooling strategy to remain insulated from claim
losses that deviate significantly from the average loss. This strategy is effective as long as
average claim sizes, on an ongoing basis, eventually tend toward the initially expected
average. In Section 2, we detailed four scenarios in which total claim losses are expected to
be dynamic, rather than static, as a result of changing collision frequencies. When com-
bined with changing collision severities and changing occupancy rates, these scenarios
suggest that average loss dynamics may transform over time. As such, primary insurers may
need to proactively assess their expectations regarding average claim losses. These
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scenarios, however, rely on an increased proliferation of CAVs, coinciding with knock‐on
effects on public perception, road safety dynamics, and the make‐up of vehicles on road
networks.

The scenarios we present in Section 2 do not envision that single‐loss event models will
drastically change with a gradual introduction of ADAS‐enabled (Level 2) and partially‐
automated (Level 3) vehicles. Although it is difficult to determine the exact mixture of
automated levels on the road, a greater level of safety afforded by ADAS‐enabled vehicles will
ensure that many incidents will be avoided or mitigated (Bareiss et al., 2019; Scanlon et al.,
2015, 2017). In addition, initial forays in to CAV‐sharing mobility services will increase the
number of deadheading vehicles, decreasing occupancy rates on average. Minor collisions
will largely be eliminated, while a large share of moderate‐serious injuries will be reduced to
minor injuries, or property‐damage‐only claims. The largest risk to insurers that are posed by
limited fleets of CAVs, in a single‐loss capacity, is the introduction of a liability shift. In-
creased capital allocations will be required to offset the change from a negligence‐based
liability system, to a strict product liability setting (Casualty Actuarial Society, 2018). As such,
the inevitable (few) incidents that occur amongst the initial fleet of automated vehicles will
be increasingly scrutinized. Manifestations of the social amplification of risk phenomenon
(Kasperson et al., 1988) has the potential to inflate the levels of compensation resulting from
these incidents.

Furthermore, the reduction in compensation due to a decreased frequency of minor
and moderate injuries will be offset by the large increase in the cost to replace or repair
the sophisticated technology present in CAVs. This is due to the high manufacturing and
specialized labor costs associated with these vehicles (Liberty Mutual Insurance, 2017).
Therefore, current actuarial loss models may remain static in the short‐medium term. As
outlined in Section 3 and above, insurers remain adequately hedged from these risks due
to risk‐pooling measures that ensure they are diversified and insulated from tail‐risk
events. A more pressing issue for primary insurers are the spread of Level 4 and Level
5 AVs.

Provided that they reach a sufficient market share, it is plausible that a higher relative
percentage of compensation claims from Level 4 and Level 5 AVs (Table 1) will be loss events
that are currently considered as tail‐risk events. A disproportionate amount of single‐loss
events could therefore exceed “extreme value” estimations that are used to allocate appropriate
capital reserves for high losses. Motor insurance risk assessors and rate‐makers may need to
take proactive measures to ensure they are safeguarded from a shifting loss model and have
priced their exposure to risk correctly.

With an increased dissemination of SAE Level 4 and Level 5 CAVs in the road en-
vironment, there is the potential to shift from the single‐loss actuarial models as they
currently present, to the loss distributions described in Section 2. If these vehicles make up
the majority of vehicles in the road environment, as eventually anticipated, the number of
collisions involving bodily injuries may fall by more than 80% (Bareiss et al., 2019). A high
proportion of collisions that remain will be collisions that are “unavoidable,” such as high‐
speed or blind‐spot collisions. These collisions would result in serious or worse injuries
being incurred. As such, a road environment that is made up of Level 4 or Level 5 CAVs
may result in more losses that are currently characterized as “tail‐risk” events. This has
implications for primary motor insurers, which presents both challenges and opportunities
for their business models.
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7 | EMERGING RISKS AND OPPORTUNITIES FOR
PRIMARY INSURERS

Forecasts on future premium levels have been inconsistent. A report by KPMG (2015) has
pointed to a sharp fall; other institutions have taken more cautious line. The Bank of England
(Claus et al., 2017) predict a fall in premiums of 23% in the UK by 2040. However, the
Casualty Actuarial Society (2018) predict a large increase in premiums, and the loss dis-
tributions we envision indicate a rise in the average premium level until a 60% fall in collision
rates are realized (Table 2). The lack of a clear narrative puts the long term business prospects
of primary insurers into question. We detail in this section alternative risks that may emerge
for primary insurers with the introduction of CAVs, and possible opportunities this provides
for primary insurers.

We envision that the transition across automation levels 1–5 (Table 1) will signal a profound
change for the insurance sector. Changing liability terms, changing occupancy rates, changing
vehicle sophistication, OEMs‐as‐insurers, cyber‐security risk, and changing transport dynamics
all have the potential to transform insurers' risk exposure. Paradoxically, insurance companies
will be able to more‐accurately price individual risk through the use of telematics and other
data information sources gathered by vehicles. At the same time, the human driver will become
progressively less important as a risk. This new dispensation will make it possible to assess
more accurate risk metrics, however it will also prompt regulatory and legal responses around
the concepts of insurability, consumer rights, privacy, and duties to ensure a safety‐optimized
transport environment.

7.1 | OEMs as insurers

Considering the roll‐out of ADAS from an insurance value chain perspective raises a number of
important issues pertaining to the future operation of the market. Current expectations are that
an increasing emphasis will be placed on product liability. As a result, in terms of motor
insurance sales, it is likely that much of the market will be mediated through OEMs, making
joint ventures a more attractive business strategy going forward. This is recently evidenced by
partnerships established between AXA and Tesla (2019), and Ford and Liberty Mutual
Insurance (2020). This may eventually result in in‐house insurance lines being directly offered
by AV manufacturers, who double as OEMs. The utility of this strategy is that manufacturers
are optimally‐positioned to assess the risk of their vehicles, as they have direct knowledge of the
vulnerabilities within the vehicle, direct access to highly‐skilled engineers, and are equipped
with immediate availability of replacement parts. The supply chain advantage of OEMs‐as‐
insurers can therefore significantly reduce the cost of premiums, and the cost of vehicles, for
consumers.

However, there are risks associated with this strategy that may result in higher premiums
and longer waiting times in litigation cases for policyholders. As mentioned previously, the
“single insurer” model that has been drafted in the UK clarifies the relationship between
insurer, policyholder, and vehicle equipment manufacturer. The Automated and Electric
Vehicles Act (2018) states that in the event of defective equipment causing an accident, or the
vehicle being at‐fault in an accident while in “automated mode,” insurers are to first com-
pensate policyholders, then seek recourse from OEMs. This ensures that policyholders are not
left to engage in lengthy litigious cases wherein the exact manner of the fault or faulty
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equipment is determined. Rather, policyholders are expected to expeditiously receive payment
from their primary insurer, who then seek compensation from the OEM of the faulty equip-
ment. However, this process requires additional technical expertize and may lead to un-
expected delays and financial management issues until the insurer's claim for recourse is
completed (Pütz et al., 2019).

A scenario in which OEMs become a sizeable market share of insurers may bring with it
extra risks and costs for policyholders, as OEMs would be responsible for product liability losses
as well as vehicle damage and third‐party injury losses. This may result in higher premiums
being passed on to policyholders. Furthermore, in contrast to the “pay now, seek recourse
later” regulations defining primary insurers in the UK, OEMs may dispute claims in which
their equipment is named as “at‐fault,” and withhold payment until the full circumstances in
which the collision occurred are made clear. This can lead to protracted litigation cases, which
are known to incur higher legal fees for policyholders and decrease their quality of life (Casey
et al., 2015). As a result, we suggest that primary insurers may be well‐advised to support and
promote the terms outlined in the Automated and Electric Vehicles Act (2018), and lobbying
other regulatory bodies to adopt similar directives. This support may be used as a strategic
means of maintaining their role as a key stakeholder in the motor vehicle industry, despite the
extra financial responsibility placed on them as a result of the terms laid out in the act.

7.2 | Reinsurers

A matter that does not receive enough attention in the extant literature on insurance and
ADAS technologies is the position of the reinsurance sector in this market. The “Law of Large
Numbers” argument may hold true given that the number of incidents is expected to decrease
over time. However, there is a distinct possibility that current volatility levels within in-
surance markets (Table 3) will not remain. In a scenario containing an increasing number of
large loss events, the volatility of claim loss sizes would spike and a number of smaller players
may not have the capital requirements that will be needed to cover losses during concurrent
adversarial events. Therefore, we expect that the introduction of CAVs will have a direct
impact on the growth of reinsurers, as product liability and related responsibilities (cyber‐
security, product recall, etc.) make up larger portions of motor insurance risk. When we
consider the pattern of claims costs posited in this study and an increase in the rate of high‐
severity losses, we anticipate that the market will react accordingly. Tail‐risk insurance
products such as policy tranches or syndicate‐underwritten policies may become increasingly
popular in business lines. As such, the reinsurance sector will play a key role in “smoothing
out” the “second hump” that faces primary insurers. Primary insurers may be well‐positioned
to strengthen their relationships with reinsurers to solidify their market share as stakeholders
of the motor vehicle industry, beyond that of the reinsurance cover mandated as part of
Solvency II (European Commission, 2014).

7.3 | Cybersecurity

Cybersecurity risk is another concern for primary insurers and has been identified as the most
prominent emerging issue for motor insurers with the introduction of CAVs (Claus et al., 2017).
Cyber risk, wherein the vehicle is exposed to technological vulnerabilities that can be exploited
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using adversarial “hacking” events, must be considered in two forms. Random, small‐scale
attacks on individual vehicles will require single‐loss compensation considerations, since the
attacks could lead to collisions incurring vehicle damage and bodily injuries. However, large‐
scale attacks could potentially hinder entire companies, localities or municipalities, creating
significant business interruption risks.

This concern appears to be validated with an exponential growth in cybersecurity incidents
since 2016 (Help Net Security, 2020). These emerging cyber‐vulnerabilities are within the
current scope of insurers, indicating that increasingly‐sophisticated CAVs and malign actors
have the potential for large, single loss events. Faulty sensors or vulnerable software may result
in the vehicle causing an injury to non‐fault parties, or being recalled, which would also pose a
greater risk for fleet insurers. While further adding to the liabilities they face, this provides an
opportunity for primary insurers to incorporate these risks into further coverage plans for CAV
owners (both privately‐owned and commercially‐owned), and offering further opportunities for
profitability.

7.4 | Potential departure from “Bonus‐Hunger”

The bonus‐malus system13 is well‐established as an effective system for reducing the number of
claims made against an insurance company. This is substantial evidence that a number of
accidents go unreported in order for policyholders to maintain a high level of discount on their
policy—a phenomenon known as bonus‐hunger (Boucher et al., 2009; Charpentier et al., 2017).
However, bonus‐hunger in a nonviable approach for policyholders with CAVs. The level of
technological complexity in CAVs indicates that owners must report all minor damages, lest
the damage impede on safety‐critical equipment.

This issue has been specifically addressed in both Germany's (Deutscher Bundesrat, 2017)
and the UK's (Automated and Electric Vehicles Act, 2018) approach to the insurability of
CAVs. These regulations state that given the level of sophisticated technology in these vehicles,
all minor damages are required to be reported in the event that safety‐critical functionalities no
longer work. Failure to do so will nullify the policyholder's contract with the primary insurer,
and therefore relinquish any right to claim compensation in the event of an accident
(Automated and Electric Vehicles Act, 2018; Deutscher Bundesrat, 2017). This may benefit
primary insurers; a higher ratio of lower‐cost bodily‐damage claims means a lower ratio of
policy “bonuses” will remain active. If bonus‐hunger remains and minor damages are not
reported, primary insurers would be absolved from compensating subsequent high‐cost bodily
injury incidents.

Insurers may leverage the perception on the safety of technologically advanced vehicles, as
well as their increased protection from “bonus‐hunger” policyholders, to offer an amplified
bonus‐malus system. This system would imply greater discounts for prolonged periods of
safety, and greater penalizations for reported accidents. While safer drivers would benefit from
greater discounts, those involved in collisions would be subject to higher penalties, offsetting
the pay outs associated with the subsequent low‐cost claims. Furthermore, given that un-
reported damages to the equipment contained within CAVs would absolve insurers from

13
The bonus‐malus system decision is a popular rate‐making system where policyholders are rewarded with discounts for continued periods where no claim is

made on their policy, and penalized with higher premiums when a claim is made.
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financial responsibility in the event of a collision, the amplified bonus‐malus system may
represent a further profitability opportunity for primary insurers.

8 | CONCLUSION

Despite being a key stakeholder of the motor industry, primary insurers are seldom considered
when discussing the changing dynamics of risks facing road users. This exploratory study
considers the risk landscape facing primary insurers with the introduction of CAVs from the
perspective of third‐party injury loss distributions. We examine approaches currently used by
primary insurers to capture risk relating to safety‐advanced vehicles, and investigate the
changing dynamics of existing and emerging risks as CAVs become increasingly proliferated.
These factors include advancements in safety technology, shifting terms of liability, the role of
anticipatory governance and regulations, and the changing landscape of vehicle ownership,
use, and occupancy rates. Ultimately, these factors will culminate in a shift away from private
vehicle ownership and toward the use of CAVs as ride‐sharing or “autonomous taxis” that
contain more passengers on average.

An increased presence of CAVs on the road may bring about a change in risk typology that
will affect primary insurers and road users alike. We present four plausible scenarios whereby
the introduction of CAVs can lead to decreased collision rates, and therefore injury rates. These
scenarios outline that decreased collision frequencies, increased product liability, increased
occupancy rates, and increased vehicle repair costs could combine to increase the relative
frequency of tail‐risk events. This has the potential to create a second peak in loss curves. In
this scenario, the volatility of insured single‐loss events may spike, and primary insurers would
no longer benefit from stable year‐on‐year insured losses.

We further outline how primary insurers may insulate themselves from a changing risk
landscape, and profit from the introduction of CAVs. Original equipment manufacturers and
reinsurers have the potential to disrupt the business models of primary insurers, but primary
can seek to consolidate their position by proactively engaging with these parties and lobbying
for “insurer‐friendly” regulations. Furthermore, the emerging risks posed by CAVs can be
leveraged into profit‐making opportunities, such as the proactive assessment of cybersecurity
risk and the adoption of an amplified bonus‐malus system.

There is a paucity of data on the implications that CAVs may have on secondary stake-
holders, such as primary insurers. As such, there will be an increased reliance on expert
judgment to discern the impact these technologies will have on the motor vehicle industry. In
particular, the influence posed by new risks to which motor insurance providers are exposed.
This study is therefore well‐positioned to provide key insights to road safety practitioners and
vehicle engineers, as well as to insurers in terms of the role that insurance providers will have
as stakeholders of the motor vehicle industry over time.
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APPENDIX 1: FORMING LOSS ‐DISTRIBUTION SCENARIOS

Loss‐modeling using Gamma distribution:
The expected injury loss distribution models in Figure 1 (Section 2) are formed using a mixture
of Gamma probability density functions. We detail here how these scenarios are generated. The
Gamma distribution is often used in nonlife insurance pricing to anticipate the severity of
expected claim losses (Denuit et al., 2007; Bahnemann, 2015). The probability density function
of the Gamma distribution is:
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x e θ k( ) =
1

Γ( )
, > 0, > 0

k
k

x
θΘ

−1 −

where θ describes the shape of the distribution, while k describes the scale of the distribution.
kΓ( ) is the Gamma function, where k kΓ( ) = ( − 1)!. Further details are provided in Denuit

et al. (2007). However, this distribution fails to capture the observed 5% of injury claim losses
that occur above €100,000 (Central Bank of Ireland, 2019). Hence, a mixture of Gamma
distributions, where one distribution captures low‐severity events, and the other captures
high‐severity events, is required.

Loss‐modeling using a mixed Gamma distribution:
Given the proposition that a second “hump” may become a reality, we extend the Gamma
distribution to form a flexible, heavy‐tailed distribution. To incorporate extra flexibility in to
our loss distribution, we combine two Gamma distributions and scale the resulting equally‐
weighted mixture to one (“1”). The first Gamma distribution is intended to capture the extent
of low‐severity claims (“Low‐Severity Gamma”), while the second Gamma distribution is in-
tended to capture the extra risk posed by high‐severity claims (“High‐Severity Gamma”). These
distributions are summated to form the “Gamma Mixture.” This Gamma‐distribution mixture
is represented as:
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where θ1 and θ2 describes the shape of the low‐severity and high‐severity distribution, re-
spectively, while k1 and k2 describes the scale of each distribution. These are represented in
Figure A1 as dotted and dashed lines, respectively. The summation of these distributions, the
“Gamma Mixture” distribution, is represented in Figure A1 as a solid line (“Anticipated
Rates”). Setting the shape parameters θ1 and θ2 to be 0.70 and 4.25 respectively, and the scale
parameters k1 and k2 to be 3 and 0.9 results in the baselines scenario; the “Current Rates: 0%
Reduction” distribution in Figure A1. Although the “Gamma Mixture” distribution largely
tracks the conventional “Gamma” distribution, the mixture allows for the consistently high
minor loss‐events (<€30,000) to be captured as well as the 5% of claims that exceed €100,000.

How loss‐events may change:
The “20% Reduction” scenario is formed by setting the shape parameters to be
θ θ= 1.25, = 2.51 2 and the scale parameter to be k k= 1.25, = 2.51 2 . The fall in collisions in
this scenario is primarily due to the assumed effectiveness of CAVs. These vehicles are expected
to be equipped with ADAS technologies, have the ability function autonomously, and have
the ability to wirelessly communicate with their surrounding environment (V2X). These ve-
hicles are therefore effective at reducing or mitigating the frequency of “would‐be” collisions
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(Bareiss et al., 2019). However, the ‘20% Reduction' scenario assumes that these vehicles have
not achieved a high market penetration rate. In this scenario, conventional vehicles represent
the majority of vehicles in the road environment, and as such, the current loss distribution
remains a largely in place “Low‐Severity Gamma.” The “High‐Severity Gamma” captures the
high number of moderate loss‐events and few severe loss‐events due to the increased vehicle
repair costs and liability costs associated with these vehicles.

The “40% Reduction” scenario is formed by setting the shape parameters to be
θ θ= 1.25, = 31 2 and the scale parameter to be k k= 1.25, = 31 2 . Much like the “20% Reduc-
tion” scenario, the “40% Reduction” scenario subsists on the expectation that CAVs are

FIGURE A1 The formation of a current claim loss distribution, based on figures provided by Central Bank
of Ireland (2019), overlaid with the formation of anticipated loss distributions as connected and autonomous
vehicles (CAVs) attain an increasingly high market share of on‐road vehicles
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effective and commonplace, but do not represent the majority of on‐road vehicles. Despite not
reaching a majority, higher‐liability injury claims will increase as a proportion of total claims.
This will lead to an increased rate of claims currently classed as “tail‐risk” events, in tandem
with the increased repair costs associated these technologically sophisticated vehicles.

A 60% reduction in collisions suggests a scenario in which CAVs have achieved a high
market penetration rate and make up the majority of vehicles on the road. The loss distribution
is formed by setting the shape parameters to be θ = 1.251 , θ = 3.52 and the scale parameter to
be k k= 1.5, = 3.51 2 . Low‐cost bodily injury claims are expected to decrease as a proportion of
total bodily injury claim frequencies. However, they still represent a sizeable majority of claims
given the likelihood that a number of collisions will be “mitigated” rather than avoided. An
increased proportion of bodily injury claims will be events currently classified as “tail‐risk”
events, leading to initial indications of a second “hump.” This is as a result of a higher relative
proportion of collisions that result in serious injuries, given that the majority of low‐severity
injuries can be avoided.

An 80% reduction in collisions suggests a scenario in which ADAS‐enabled vehicles, that
are capable of autonomous control and wireless communication, have achieved a dominant
market share. The loss distribution is formed by setting the shape parameters to be
θ θ= 1.5, = 4.251 2 and the scale parameter to be k k= 1.5, = 4.251 2 . In this latter scenario, a
high proportion of minor‐moderate severity loss events have been eliminated, and many loss
events that remain are events that are “unavoidable” and are likely to commit great personal
harm. Hence, tail‐risk events manifest as a second “hump,” as the overall rate of collisions
decrease, while the relative percentage of high‐severity collisions increase.
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