
Minimal climate change impacts on natural organic matter forecasted for a
potable water supply in Ireland

Connie O'Driscoll, José L. J. Ledesma, John Coll, John G. Murnane, Paul Nolan, Eva M. Mockler, Martyn N.
Futter, Liwen W. Xiao

Publication date

01-01-2018

Published in

Science of the Total Environment;630, pp. 869-877

Licence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document Version
1

Citation for this work (HarvardUL)

O'Driscoll, C., Ledesma, J.L.J., Coll, J., Murnane, J.G., Nolan, P., Mockler, E.M., Futter, M.N.and Xiao, L.W.
(2018) ‘Minimal climate change impacts on natural organic matter forecasted for a potable water supply in
Ireland’, available: https://hdl.handle.net/10344/6736 [accessed 23 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie


                  

 

1 

Minimal climate change impacts on natural organic matter forecasted for a 1 

potable water supply in Ireland 2 

 3 

Connie O'Driscoll1, 4†, José L. J. Ledesma2††, John Coll3, John G. Murnane4,7, Paul Nolan5, Eva M. 4 

Mockler6, Martyn N. Futter2, Liwen W. Xiao1††† 5 

1 Department of Civil, Structural and Environmental Engineering, TCD, Dublin, Ireland. 6 

 2 Department of Aquatic Sciences and Assessment, SLU, Uppsala, Sweden 7 

3 Irish Climate Analysis and Research Units, Department of Geography, NUI Maynooth, Maynooth, 8 

Co Kildare, Ireland. 9 

4 Department of Civil Engineering, NUIG, Galway, Ireland 10 

5 Irish Centre for High End Computing (ICHEC); Research and Applications Division, Met Éireann 11 

Dublin, Ireland.  12 

 6 UCD School of Civil Engineering, UCD, Dublin, Ireland 13 

7 School of Engineering, University of Limerick, Ireland 14 

Abstract Natural organic matter poses an increasing challenge to water managers because of its 15 

potential adverse impacts on water treatment and distribution, and subsequently human health. 16 

Projections were made of impacts of climate change on dissolved organic carbon (DOC) in the 17 

primarily agricultural Boyne catchment which is used as a potable water supply in Ireland. The results 18 

indicated that excluding a potential rise in extreme precipitation, future projected loads are not 19 

dissimilar to those observed under current conditions. This is because projected increases in DOC 20 

concentrations are offset by corresponding decreases in precipitation and hence river flow. However, 21 

the results presented assume no changes in land use and highlight the predicted increase in DOC loads 22 

from abstracted waters at water treatment plants. 23 

 24 

Key words: Natural organic matter, carbon cycle, surface water, climate change, INCA-C, Ireland 25 

Authors for correspondence.  E-mail: Connie O’Driscoll, connieodriscoll@gmail.com; ††José 26 

Ledesma, jose.ledesma@slu.se; ††† Liwen Xiao, liwen.xiao@tcd.ie  27 

mailto:connieodriscoll@gmail.com
mailto:jose.ledesma@slu.se
mailto:liwen.xiao@tcd.ie


                  

 

2 

1. Introduction 28 

Declines in the quality of potable surface waters, including increasing concentrations of natural 29 

organic matter (NOM) have the potential to impact on human health and the costs of drinking water 30 

treatment (Whitehead et al. 2009, Delpla et al. 2009). NOM, which can be approximated and 31 

measured as dissolved organic carbon (DOC), are susceptible to higher concentrations as a 32 

consequence of extreme precipitation events in temperate ecoregions (Delpla et al. 2009). 33 

Elevated DOC concentrations can affect the functioning and cost of water treatment processes 34 

(Eikebrokk et al. 2004), as DOC can increase mobility of contaminants and toxic compounds, and is a 35 

precursor for harmful disinfection by-products produced during chlorination including potentially 36 

carcinogenic trihalomethanes (THMs) (Ledesma et al., 2015). Additionally, elevated DOC 37 

concentrations in drinking water supply systems can lead to increased problems with microbial 38 

growth and biofouling. Labile DOC (i.e. polysaccharides and proteins) can promote microbial growth 39 

in water distribution networks, providing habitats for potentially harmful microorganisms which are 40 

protected from disinfectants such as chlorine (Kilb et al. 2003). Thus, local and regional scale 41 

predictions of DOC concentrations in drinking water supplies are warranted so as to safely and 42 

economically manage water treatment and distribution. 43 

Ireland has the highest reported THM exceedances in potable water across the European Union (EU) 44 

(O’Driscoll et al., 2018). In Ireland, most drinking water is abstracted from surface sources which are 45 

more susceptible to high DOC concentrations. Karst geology may further compromise many 46 

groundwater sources (Daly 2009) as swallow holes and other surface karst features provide increased 47 

connectivity between surface water and groundwater. As is the case with other northern mid-high 48 

latitude areas (de Wit et al. 2016), it is anticipated that climate change will also increase DOC in Irish 49 

surface waters (Naden et al. 2010). 50 

Leaching of organic carbon from soils is considered to be the key contributor to DOC in surface 51 

waters (Hejzlar et al. 2003) with 2.9 Pg C yr-1 reported to be mobilised (Regnier et al., 2013). 52 

Anthropogenic disturbance, i.e. deforestation, agricultural intensification, and wastewater discharge is 53 
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believed to be responsible for up to 1.0 Pg C yr-1 since the beginning of the industrial revolution 54 

(Regnier et al. 2013). Some degree of anthropogenic climate change is unavoidable; and while much 55 

effort has been given to quantitative assessment of water supply, relatively less is known about human 56 

induced climate change on the factors controlling organic carbon dynamics (Delpla et al. 2009). Both 57 

positive and negative effects of a changing climate on DOC leaching can be hypothesized. Warmer 58 

and wetter soils may support higher rates of biological activity and DOC production, while increased 59 

drought frequency and severity may suppress DOC production and intensify hydrophobicity (Moore 60 

et al. 2008). 61 

Multiple DOC simulation models exist for both terrestrial and aquatic environments (summarised in 62 

de Wit et al., 2016). The Integrated Catchments model for Carbon (INCA-C; Futter et al. 2007) has 63 

been used to simulate the effect of climatic, land use and acidification-related variables on DOC 64 

fluxes from soils to surface waters and under current and future conditions for a range of catchment 65 

sizes and across different land use categories in Fennoscandia and Canada (de Wit et al. 2016). 66 

INCA-C modelling of a forestry catchment in southern Finland has shown that (1) historical increases 67 

in DOC concentration can be attributed to declines in sulfate deposition and (2) future DOC increases 68 

are associated with a changing climate (Futter et al. 2009). Increased DOC concentrations have also 69 

been projected for a large, primarily agricultural catchment in Southern Ontario, Canada (Oni et al. 70 

2012). Large seasonal variations in DOC concentrations associated with a shift of maximum summer 71 

temperatures towards winter and a longer persistence of elevated summertime DOC concentrations 72 

were observed in the same area (Oni et al. 2015). Given the considerable uncertainties associated with 73 

the complexity of processes regulating soil carbon flux (de Wit et al. 2016),  we believe there is a 74 

pressing need for further impact studies which follow standardised protocols and allow for inter-75 

comparison of the effect of climate extremes on terrestrial carbon cycling (Frank et al. 2015). Such 76 

studies can also help in decision-making processes for current and future use of rivers for drinking 77 

water supply (Ledesma et al., 2012). The main objective of this study was to project potential future 78 

climatic impacts on flow and DOC concentrations and fluxes for a representative agricultural 79 

catchment (Boyne catchment, Fig. 1) which provides potable water to large supply zones in Ireland. 80 
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PERSiST and INCA-C models were first used to simulate current DOC concentrations and fluxes. 81 

Downscaled temperature and precipitation outputs from two Regional Climate Models (RCMs) were 82 

then used to drive the INCA-C model. 83 

2. Methods 84 

2.1. Study area 85 

The Boyne catchment (2693 km2) is located in east-central Ireland. On average, it receives 900 mm 86 

annual rainfall and has an average gradient of 1.24 m km-1 along its main channel length (113 km), 87 

which discharges to the Irish Sea (Figure 1). The Boyne River drains the southern part of the 88 

catchment and the Kells Blackwater River drains the northern part. The confluence of the two 89 

tributaries is approximately 30 km west of the discharge point. The main anthropogenic pressures in 90 

the catchment are associated with diffuse pollution from agricultural runoff, point source effluent 91 

discharges from 21 Municipal Wastewater Treatment Plants (WWTP), and peat harvesting in the 92 

upper parts of the catchment. The Boyne catchment has a history of deteriorating water quality, the 93 

most prominent being eutrophication of lakes in the upper reaches of the Kells Blackwater (Toner et 94 

al. 2005). 95 

Soils in the Southern and central parts of the catchment are dominated by grey brown podzols and 96 

gley soils with significant peat deposits, whereas soils in the north are more typically acid brown 97 

earths and gleys. Land use in the catchment has been characterized using the CORINE Land Cover 98 

Dataset 2012. Arable land used for crop cultivation accounts for 11% of the total area, and pasture is 99 

the accounts for a further 80%. Forest, semi-natural areas, moors and heathland, and transitional 100 

woodland-scrub cover 3% of the catchment, while peat, urban areas and lakes account for the other 101 

6%. Catchment soils are not sensitive to acidification (Aherne et al. 2002). 102 
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103 
Figure 1. Boyne catchment, Ireland, and temperature (Mullingar), rainfall (Kilskyre), and flow and 104 

DOC (Roughgrange) stations. 105 

2.2. Model data 106 

Daily temperature and precipitation data were obtained from Mullingar and Kilskyre for 1st January 107 

2005 to 30th April 2016 (Met Éireann, Figure 1). Daily flows at Roughgrange (2475 km2), 108 

approximately 15 km upstream the main catchment outlet (Figure 1), were obtained from the EPA  109 

(www.epa.ie/hydronet/#07059) for the period 22nd December 2005 to 2nd February 2015. An on-line 110 

submersible spectrophotometer, spectro::lyserTM equipped with a 35 mm measuring cell (s::can 111 

Messtechnik), installed on the raw water abstraction point at the Staleen water treatment plant (the 112 

same location as for the flow measurements), was used to estimate daily DOC values for 7th 113 

September 2014 to 2nd December 2015. Daily time series of agricultural manure spreading, reported 114 

as  kg DOC ha-1 day-1 were generated based on typical manure concentrations in the area (Murnane et 115 

al. 2016) applied at rates permitted under current legislation (SI No. 31 of 2014). 116 

2.3. Hydrological modelling 117 

The PERSiST rainfall-runoff model (Futter et al. 2014) was used to generate daily stream flow, soil 118 

moisture deficit (SMD) and hydrologically effective rainfall (HER) datasets for use in INCA-C 119 

carbon simulations. The Boyne catchment was divided into 6 land use classes: pasture (75%), 120 

http://www.epa.ie/hydronet/#07059
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agriculture (13%), forest (5%), peatland (4%), urban (2%), and lake (1%). These proportions differ 121 

slightly from those of the whole catchment because simulations were performed only for the area 122 

draining Roughgrange (where flow and DOC measurements were taken), which is approximately 200 123 

km2 smaller than the total Boyne catchment area. PERSiST was calibrated using long-term 124 

(December 2005 – February 2015) observed stream flow at Roughgrange and precipitation and 125 

temperature data obtained from the Kilskyre and Mullingar stations, respectively (Figure 1). 126 

Simulations of present day flows were performed for the period where appropriate meteorological 127 

data were available (January 2005 to April 2016).  128 

Manual calibration was first performed by fine tuning the parameters to minimise the difference 129 

between the simulated and observed runoff. Model performance was assessed using the Nash– 130 

Sutcliffe (N–S) efficiency test (Nash and Sutcliffe 1970) of observed and log-transformed flows. In 131 

order to assess parameter sensitivity and potentially improve model performance, a Monte Carlo (MC) 132 

analysis was performed, consisting of 100 iterations with 700 runs each. Model runs with better fits 133 

guided decision making about the upper and lower limits of each parameter for the next MC iteration. 134 

This process was repeated until no further improvement in the model N–S and log(N–S) efficiencies 135 

was achieved.  136 

2.4. DOC modelling 137 

INCA-C requires daily outputs of flows, HER and SMD from PERSiST in addition to daily 138 

precipitation and temperature time series to simulate DOC concentrations and fluxes (Futter et al. 139 

2009). The same land use classes and simulation period (January 2005 – April 2016) used in the 140 

PERSiST model were also applied for INCA-C, which was calibrated to the available DOC data 141 

(September 2014 – December 2015). Initial catchment flow and DOC values were used (70 m3 s-1 and 142 

7 mg L-1 respectively) for 1st of January 2005, based on average known conditions. The model set up 143 

included a constant effluent from the 21 WWTPs calculated based on daily discharge flows from the 144 

facilities. DOC concentrations here were set to 5 mg L-1 based on average DOC concentrations in their 145 

outlet waters. Initial conditions on soil organic carbon (SOC) pools and DOC soil solution 146 
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concentrations for the different land use types were estimated from data in Wellock et al. (2011a, 147 

2011b) (Supplement Table S1). Upper soil horizons contain higher DOC and SOC concentrations 148 

than lower soil horizons, while peat and forest soils show greater values than pasture and agricultural 149 

soils. 150 

A manual calibration was carried out to achieve a good approximation to the observed values prior to 151 

applying MC simulations. The calibration strategy first established operational values for the sensitive 152 

hydrological parameters, soil volumes, and residence times until simulated flow was in the range of 153 

the PERSiST simulation and simulated DOC was in the range of the observed values.  On achieving 154 

an acceptable fit to observed flows, hydrological parameters were fixed. Subsequently, the parameters 155 

describing carbon transformations in the soil were adjusted. 156 

The MC strategy described in Futter et al. (2014) was used for an exploration of the INCA-C 157 

parameter space. During the MC analysis, 100 iterations with 500 runs each were performed. The 158 

initial parameter boundaries were defined as ± 20 % of the parameter values from the best performing 159 

manual calibration. After each iteration of the MC analysis, parameter sensitivity was assessed using 160 

the 100 best performing parameter sets, which were defined by ranking the N-S statistics comparing 161 

modelled and observed DOC. The analysis compared the cumulative parameter distributions derived 162 

from the best performing parameter sets to rectangular distributions, and if non-rectangular, the 163 

parameter was sensitive and the parameter range adjusted prior to the next MC iteration. This routine 164 

terminated when the MC analysis failed to provide any improvement in N–S values over the 165 

preceding set of model runs. A final manual tuning of the sensitive parameters was carried out to 166 

correct the major mismatches and to improve the model efficiency. 167 

Uncertainty estimates for the final model predictions were generated by assuming both that INCA 168 

could be treated in an analogous manner to a high-dimension non-linear regression and that standard 169 

methods for generating confidence intervals (e.g. Sokal and Rohlf 1969) could be employed. 170 

2.5. Regional climate modelling and future DOC projections 171 
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Global (GCMs) and Regional Climate Models (RCMs) simulated the potential impacts of increasing 172 

greenhouse gas concentrations. Local changes in precipitation and temperature are strongly  173 

associated with local geography and topography and are typically not adequately represented in GCM 174 

outputs due to e.g. model grid resolution (Coll, 2010). Limitations associated with GCM projections 175 

can be partially addressed through the use of RCMs, which simulate some topographical effects with 176 

a boundary size of ~50km Nolan (2016). Representative Concentration Pathways (RCPs) simulate 177 

climate change associated with changes in land use and global emissions of greenhouse gasses (Moss 178 

et al. 2010). Projections of future meteorologic conditions were generated by downscaling the EC-179 

Earth consortium GCM was downscaled to the locations of the Mullingar and Kilskyre Met Éireann 180 

stations (Figure 1) using both the COSMO-CLM RCM (version 4.0) with a grid spacing of 4 km, and 181 

the WRF RCM with a grid spacing of 6 km (Nolan, 2016). To account for some of the uncertainty 182 

arising from the estimation of future global emission of greenhouse gases, two IPCC RCP (4.5 and 8.5) 183 

emission scenarios were used to simulate the future climate in this study. Projections of future climate 184 

were evaluated by comparing each of the present-day datasets with the corresponding future dataset 185 

for each simulation within the same group and realisation (Table 1).  186 

Daily totals of precipitation (mm) and mean temperatures (°C) were interpolated for the Kilskyre and 187 

Mullingar Met Éireann stations for a baseline control (1981-2009) and a future period (2031-2059). 188 

These datasets were employed to force the calibrated PERSiST model so as to obtain the four output 189 

time series - precipitation, temperature, soil moisture deficits, and hydrologically effective rainfall 190 

needed to run INCA-C. INCA-C was then run using these simulate time series to generate new 191 

simulations for flow and DOC concentrations and fluxes for Roughgrange.  192 

Table 1. Details of the ensemble Regional Climate Model (RCM) simulations. 193 

RCM GCM Scenario 

(realisations) 

Climate 

projections 

Time period Grid spacing 

COSMO-CLM EC-Earth Reference (3) - 1981-2009 4 km 

COSMO-CLM EC-Earth RCP 4.5 (3) 3 2031-2059 4 km 

COSMO-CLM EC-Earth RCP 8.5 (3) 3 2031-2059 4 km 

WRF EC-Earth Reference (3) - 1981-2009 6 km 

WRF EC-Earth RCP 4.5 (3) 3 2031-2059 6 km 

WRF EC-Earth RCP 8.5 (3) 3 2031-2059 6 km 
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3. Results 194 

3.1. Observed climate and catchment flow and DOC regimes for the  model calibration periods 195 

Mean annual temperature between 2005 and 2015 (9.3 °C) varied between 8.2 °C and 9.9 °C 196 

(Supplement). The lowest and highest average temperatures for the non-growing season (Nov – Mar) 197 

were 2.4 °C in 2010 and 6.3 °C in 2007 respectively, whereas the lowest and highest average growing 198 

season temperatures (Apr – Oct) were 11.2 °C and 12.9 °C in 2015 and 2006 respectively. December 199 

was the coldest month (4.6 ± 2.3°C) and July the warmest (15.0 ± 1.3°C). Yearly precipitation ranged 200 

from 773 - 1120 mm with an average of 993 mm with typically lower amounts from February to June 201 

and higher values in November and December.  202 

Measured discharge (December 2005 – February 2015) ranged from average high flows (Q05) of 203 

113.4 m3 s-1 to average low flows (Q95) of 8.4 m3 s-1 (Figure 2).  Average daily flows were highest in 204 

January (75.95 m3 s-1) and lowest in June (12.85 m3 s-1) during the observed period. 205 

 206 

Figure 2. Daily observed and simulated flow in the Boyne catchment. 207 

Average DOC concentrations were 8.2 mg L-1, with minimum and maximum values of  5.7 and  13.4 208 

mg L-1 respectively between September 2014 and December 2015. DOC concentrations showed a 209 

seasonal pattern with highest values occurring during autumnal flushing between November and  210 
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January (Figure 3). Episodic concentration peaks can be attributed to rainfall events (Ryder et al. 211 

2014). 212 

 213 

Figure 3. Daily observed and simulated DOC concentrations in the Boyne Catchment including 214 

uncertainty boundaries. 215 

3.2 Model-calibrated flow and DOC 216 

Calibration results from the INCA-C model resulted in credible simulations for both modelled flow 217 

(r2=0.80, N-S=0.75, Figure 2) and modelled DOC (r2=0.74, N-S=0.73, Figure 3). Simulated flow was 218 

effectively equivalent between PERSiST and INCA-C. The most sensitive parameters (p<0.01) 219 

identified by the PERSiST MC analysis included  the runoff time constant in the lower soil layer and 220 

the ‘flow velocity exponent’ which controls water residence times in the streams. The most sensitive 221 

parameters (p<0.01) identified by the INCA-C MC analysis also included the lower soil layer runoff 222 

time constant and, the flow velocity exponent in the stream velocity equation, base flow index (a 223 

measure of the fraction of water routed from upper to lower soil boxes), plus the ‘upper layer fast pool 224 

fraction’ (fraction of the total SOC in the upper layer that is easily leachable), and the ‘response to soil 225 

temperature variation of 10 °C’ (representing the increase in biological production rate with 226 

increasing soil temperature). 227 

0

2

4

6

8

10

12

14

16

Sep-14 Nov-14 Jan-15 Mar-15 May-15 Jul-15 Sep-15 Nov-15

D
O

C
 (

m
g 

L-1
)

INCA-C

Observed

Uncertainty boundaries



                  

 

11 

Overall, INCA-C reproduced daily flows accurately, with a few overestimations for summer low 228 

flows (Figure 2). There was a strong seasonal signal in both observed and simulated discharge, i.e. 229 

highest flows in winter period and lowest flows in spring and summer. Mean monthly flows were well 230 

captured by the model with some overestimations in summer and early autumn (data not shown). 231 

Mean monthly simulated DOC concentrations (January 2005 – April 2016) averaged 8.4 mg L-1 and 232 

demonstrated seasonality ranging from 6.6 mg L-1 in June to 10.9 mg L-1 in November. The seasonal 233 

DOC pattern for the calibration period (September 2014 – December 2015) fitted the overall 234 

simulation period pattern and both INCA-C and observed DOC had very good correspondence 235 

(Figure 3). Daily DOC observations were also very well captured by the model. However, while the 236 

timing was correct there was a tendency to underestimate some of the peaks. 237 

The simulated daily DOC export pattern matched the observed trend in flow and DOC. In DOC 238 

export increased, similarly to DOC concentrations. Simulated average yearly DOC export between 239 

2005 and 2015, was 5.8 ± 1.3 g C m-2 year-1 (maximum: 7.8 g C m-2 in 2008; minimum: 3.7 g C m-2 in 240 

2005 (supplement)). 241 

3.3 Projected future climate 242 

Results of the 12 downscaled RCM experiments project warmer (+1.1 °C average difference) 243 

conditions in 2031 – 2059 compared to present day INCA-C simulated values. Monthly average 244 

temperatures increase in all cases with little variation between WRF and COSMO (below 0.1 °C), 245 

RCP emission scenarios, and realisations within RCPs (Figure 4a and 4b). Taking into account all 246 

scenarios, annual total precipitation is projected to decrease an average of 6% in the future. Results 247 

indicate decreased monthly precipitation in spring through to late summer, with larger decreases 248 

associated with the WRF precipitation projections (9%) compared to COSMO (4%) for the 249 

corresponding scenarios (Figure 4c and 4d). While the number of precipitation extremes projected by 250 

WRF are similar to the present day number, the COSMO RCM projects a higher potential frequency 251 

for these events (Figure 5a and 5b), e.g. 20 versus 13 events larger than 40 mm for the future COSMO 252 
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high emission scenario (2031-2059) compared to the COSMO baseline scenario (1981-2009), 253 

respectively. 254 

 255 

 256 

Figure 4. Monthly average temperatures (a and b) and precipitation (c and d) for present day (2005-257 

2015) and future Regional Climate Models (WRF (a and c) and COSMO (b and d)) scenarios (2031-258 

2059) in the Boyne Catchment. Error bars are standard deviations of the three realisations of each 259 

scenario. 260 

 261 

a) b) 

c) 
d) 

a) b) 



                  

 

13 

Figure 5 a) and b). Cumulative distribution functions of daily precipitation amounts from quantile 95 262 

to maximum for present day (2005-2015) and the most extreme realization of the Regional Climate 263 

Models (WRF (a) and COSMO (b)) scenarios (2031-2059), including baseline scenario (1981-2009), 264 

in the Boyne Catchment. 265 

3.4 Model-simulated flow and DOC with projected future climate 266 

Average monthly flows are projected to be lower in 2031 – 2059 compared to the present day 267 

throughout the year (Figure 6). These reductions are more pronounced than the decreases in 268 

precipitation, and are associated with a projected increase in future evapotranspiration. Considering 269 

all scenarios and realisations, highest flows in January are projected to decrease from 77.3 to 71.3 m3 270 

s-1 and lowest flows from 32.1 in June in the present day to 24.8 m3 s-1 in July in the future period 271 

(2031 -2059). 272 

Applying the downscaled projections results in greater average yearly DOC concentration from 8.5 in 273 

the present day to 9.3 mg L-1 in the future, considering all scenarios and realisations. Mean monthly 274 

DOC concentrations in the future showed strong seasonality varying from 7.5 mg L-1 in June to 11.6 275 

mg L-1 in November (Figure 6). 276 

Future DOC fluxes will tend to be higher in winter and spring (Dec-May), and lower in summer and 277 

autumn (June-Oct) compared to the present day simulation according to the model simulations (Figure 278 

6) resulting in a future mean annual DOC flux similar to present day flux. 279 

 280 

a) 
b) 
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 281 

 282 

Figure 6 (a-f). Monthly average flow (a-b), DOC concentrations (c-d), and DOC fluxes (e-f) for 283 

present day (2005-2015) and future Regional Climate Models (WRF and COSMO) scenarios (2031-284 

2059) in the Boyne Catchment. Error bars are standard deviations of the three realisations of each 285 

scenario. 286 

4. Discussion  287 

Observed DOC concentrations from Roughgrange fluctuated between 5.7 and 13.4 mg L-1, values that 288 

are comparable to recent studies of Irish stream DOC concentrations (Liu et al. 2014; Ryder et al. 289 

2014). Seasonality of DOC concentrations has been linked to air temperatures (Koehler et al. 2009), 290 

suggesting that cool winters suppress biological production whereas spikes in DOC concentration in 291 

Autumn are a consequence of flushing of material produced during summer as well as DOC 292 

production from e.g. senescing vegetation after the end of  the growing period (Liu et al. 2014). 293 

Patterns in soil temperature, discharge and rainfall accounted for 60% of the variation in DOC in a 294 

forested peat catchment in Ireland (Ryder et al. 2014). Soil temperature and hydrology also appear to 295 

c) d) 

e) f) 
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drive temporal patters in DOC concentration in the agricultural catchment of the present study, as 296 

indicated by the sensitivity of some of the parameters in the model. These parameters include the soil 297 

time constant in the lower soil layer (a measure of timing of recession of the hydrograph), and the BFI 298 

representing the fraction of water that moves vertically through the soil, suggesting that riverine DOC 299 

concentrations are most sensitive to hydrology. Other significant parameters were, the fraction of the 300 

total SOC in the upper layer belonging to an easily leachable pool, and a parameter controlling 301 

process rate response changes in soil temperature, suggesting that riverine DOC concentrations follow 302 

soil temperature patterns that enhance biological production and are likely limited by the exhaustion 303 

of an easily leachable C pool (de Wit et al., 2016). 304 

Present day simulated average yearly DOC export from the Boyne catchment (5.8 ± 1.3 g C m-2 year-1) 305 

falls in the lower spectrum of values reported for peat catchments (Barry et al. 2016; de Wit et al. 306 

2016). However, the Boyne catchment has approximately 4 % peatland and therefore with respect to 307 

agricultural catchments falls in the higher spectrum of values reported (Kronholm and Capel 2012). 308 

The simulated daily DOC export pattern was strongly linked to patterns in discharge, as reported for 309 

forest catchments (Ledesma et al. 2012). Years with higher precipitation (2008, 2012, 2014 and 2015) 310 

showed greater DOC export. The lowest DOC value reported during our study period occurred during 311 

summer after a dry period. Low DOC production in soils during drought has been attributed to a 312 

decrease in microbial activity and organic carbon solubility due to increased acidity following 313 

oxidation of organic sulfur to sulfate when oxygen availability increases (Kalbitz et al. 2000). A 314 

summer DOC concentration peak also occurred following a period of high discharge suggesting other 315 

factors besides senescing vegetation are responsible for DOC production in this catchment, namely 316 

hydrological activation of upper organic-rich soil layers (Ledesma et al. 2015). 317 

INCA-C reproduced the observed hydrological patterns in the Boyne Catchment with model goodness 318 

of fit (r2=0.80, N-S=0.75) showing comparable accuracies with those reported in other INCA-C 319 

studies (Futter et al. 2014; Oni et al. 2015; de Wit et al. 2016). The model goodness of fit for DOC 320 

was high in comparison to some studies (r2=0.74, N-S=0.73) but not as high as is common in 321 
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empirical studies such as e.g. de Wit et al. (2016), who measured ascending concentrations at 474  322 

sites in Norway, Sweden and Finland between 1990 and 2013.  323 

This study is one of the first to use continuous daily DOC data for model calibration. High resolution 324 

continuous monitoring is important to accurately capture DOC trends in peak and base flow 325 

conditions (Tunaley et al. 2016). Having more data points implies that a wider range of environmental 326 

conditions are included which, a priori, would be harder to capture in a single model parameter set. 327 

However, the high model performance obtained here suggests that (1) INCA-C can accurately 328 

reproduce a broad spectrum of daily DOC values and (2) high frequency monitoring data (e.g. from 329 

sensors) could (or even should) be routinely incorporated into model applications. For example, high 330 

resolution data is critical to accurately predict high DOC values that occur under high discharge 331 

conditions. Considering daily DOC values as we did here we have omitted the risk of missing such 332 

events (Ledesma et al. 2012), although the model did not capture the magnitude of all of these peaks. 333 

This error could lead to errors in estimation of DOC fluxes of approximately 30% (Ledesma et al., 334 

2012). This could become more relevant in the future if more extreme precipitation events occur, as 335 

projected by the COSMO model. The quality and representativeness of input and calibration data, 336 

together with good model representation of processes driving flow and DOC in the Boyne catchment 337 

are likely to have been important factors for the successful model simulation presented here. Thus the 338 

simulations were capable of accurately reproducing short term variability in daily DOC time series. 339 

Furthermore, the best parameter sets obtained during calibration reproduced flow and DOC 340 

concentrations over a wide range of different environmental conditions, suggesting that they are 341 

robust for future simulations spanning a potentially wide range of conditions (Moss et al., 2007). 342 

Susceptibility of peatland and forest catchments to climate change impacts is well studied, but there 343 

have been limited assessments of potential future DOC concentration in surface waters of  344 

predominantly agricultural catchments (but see Hejzlar et al. 2003; Oni et al., 2012). Climate change 345 

studies in this context are more often performed in relation to nutrients (Couture et al. 2014).  346 
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Average yearly temperatures are projected to rise in the Boyne Catchment by 1 – 1.1 °C. These 347 

changes represent the largest so far projected to occur for the country (Nolan 2016). Total annual 348 

precipitation is projected to decrease slightly with results suggesting a moderate decrease in projected 349 

monthly averages in spring through to late summer. However, frequencies of heavy precipitation 350 

events are forecasted to increase according to COSMO projections. These events are the primary 351 

cause for ‘risk’ situations with regard to trends in the degradation of drinking water quality (Delpla et 352 

al. 2009). Rising temperatures will likely cause an increase in evapotranspiration that coinciding with 353 

decreased precipitation, will culminate in reduced flows. DOC mean monthly concentrations show an 354 

overall increase. Mean annual DOC export showed no change in the future with any of the climate 355 

and emission scenarios because the increase in DOC concentrations is counterbalanced by the 356 

decrease in flow, which is the driver of DOC fluxes. To better inform practice for water managers the 357 

concentration of DOC should be given more weight as the water treatment plant abstracts the same 358 

amount of water from year to year, therefore DOC loads within treatment plants are set to increase 359 

with increasing concentrations. 360 

Climate impact assessment studies, such as the one presented here, can be interpreted in quantitative 361 

or qualitative terms (van Vuuren et al. 2008). Fully probabilistic quantitative analyses with extensive 362 

evaluation of different sources of uncertainty e.g. parameter sensitivity and their consequences for 363 

model projections have the potential to present an unrealistically precise view of possible future 364 

conditions. The present study based on a single impact model and four future climate realizations 365 

considers a restricted subset of possible sources of uncertainty. Thus, it would be more appropriate to 366 

interpret the results as qualitative representations of a subset of all possible futures. Qualitative 367 

alternative scenarios based on internally consistent narratives, or “storylines” are based in part on the 368 

premise that future conditions will vary over an unknown range. Despite the heterogeneity projected 369 

in possible future temperature and precipitation patterns as compared with present day conditions, the 370 

simulated catchment DOC load response was insensitive to climate change. With the exception of a 371 

potential increase in extreme precipitation, the range of projected future behaviours are not dissimilar 372 
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to those observed under current conditions. However, the results presented here assume no changes in 373 

land use.  374 

When compared to uncertainties in future DOC loads, the uncertainty in possible future land use and 375 

land management is likely to have a larger effect on the range of possible futures for water quality in 376 

agricultural catchments. Socio-economic changes have the potential to have major but unforeseen 377 

effects on land cover or land management (Holman et al. 2017). For example, before the economic 378 

crash in 2008, Rounsevell et al. (2006) projected a wide range of possible land use futures for Irish 379 

agriculture, ranging from “business as usual” to a significant abandonment of agricultural land. 380 

However, the immediate focus ten years on is for agricultural expansion and intensification (EPA, 381 

2016). Bord Na Móna, an Irish semi-state company, owns 7.5% of Irish bogs, and actively harvests ~3% 382 

of all Irish bogs. In a recent statement Bord na Móna announced the ‘biggest change’ of Irelands land 383 

use in modern history, that after 2030 the company will no longer harvest energy peat and will 384 

rehabilitate tens of thousands of acres of Irish bogs to new biodiverse habitats. It is believed that these 385 

degraded habitats will be less resilient to the potential impacts of climate change adaptation than their 386 

undisturbed active bog counterparts (Coll et al., 2009).  387 

Changing patterns of land use or land management have the potential to significantly change possible 388 

future fluxes of DOC, and such changes are not included in the simulations presented here. While 389 

there are potentially larger uncertainties associated with land use change than with climate change, the 390 

modelling exercise presented here can provide plausible storylines relevant for decision-making, for 391 

example management of water treatment plants. Generation of storylines with partial accounting of 392 

uncertainty by combining moderate (e.g. RCP-4.5) and extreme (RCP-8.5) climate scenarios has been 393 

employed in ecological studies to contribute to a dialogue about possible futures (Cremona et al. 394 

2017). Similar results have been presented elsewhere for boreal waters (Oni et al. 2015). Whilst 395 

Cremona et al. (2017) and Oni et al. (2015) do not provide probabilistic assessments of future 396 

conditions, their qualitative storylines are more representative of the true, unknown range of 397 

uncertainty in possible future conditions. Interpreting the results presented here as part of a qualitative 398 
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storyline about possible futures offers water treatment plant operators and society a starting point for 399 

any dialogue about the consequences of climate change for drinking water supply. 400 

The Kells Blackwater, a tributary of the Boyne has a long history of eutrophication and ‘poor’ water 401 

quality status. Understanding catchment processes can help alleviate drinking water treatment costs 402 

and will form part of the engineered solution to adapting infrastructure to cope with future climate 403 

changes (Grayson et al. 2012). In a national assessment of THM exceedances in Irish drinking waters 404 

catchments with ‘higher peat soil and agricultural land use’ were a positive determinant of THM 405 

concentrations in treated water (O’Driscoll et al., 2018). Furthermore, in terms of quality NOM 406 

characteristic of reprocessed humic organic matter was the prominent component remaining following 407 

drinking water treatment. This current study shows that NOM quantity can be modelled with 408 

continuous data. Further work should examine the possibilities of modelling NOM quality subject to 409 

projected intensification of agriculture. 410 

5. Conclusions 411 

As far as we are aware this is the first study which employs routine monitoring data from a water 412 

treatment plant for a large predominantly agricultural catchment to simulate the effects of changing 413 

climate on raw drinking water DOC concentrations. Soil temperature and discharge appeared to drive 414 

the temporal patterns in DOC concentrations. Export for this catchment while lower than that reported 415 

for Irish peat catchments is higher than that reported for agricultural catchments elsewhere. 416 

Simulations were capable of accurately reproducing short term variability in daily DOC time series. 417 

Average yearly temperatures are set to increase by 1-1.1°C. Total annual precipitation is set to 418 

decrease however frequencies of heavy precipitation are set to increase and it is these events that 419 

cause the greatest problem for water managers. Furthermore, DOC export showed no change owing to 420 

the decrease in flows counteracting the increase in DOC concentrations however this will not benefit 421 

water managers in the future as DOC loads within treatment plants are set to increase with increasing 422 

concentrations. 423 
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The results highlight the un-explored resource of high-resolution routine water treatment plant 424 

monitoring data together with routine catchment monitoring data and coupled with high-resolution 425 

climate models to present internally consistent, management-relevant storylines about possible 426 

climate change effects on future NOM increases. 427 
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