
An empirical assessment of baseline feature location techniques

Abdul Razzaq, Andrew Le Gear, Chris Exton, Jim Buckley

Publication date

01-01-2020

Published in

Empirical Software Engineering;25, 266-321

Licence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document Version
1

Citation for this work (HarvardUL)

Razzaq, A., Le Gear, A., Exton, C.and Buckley, J. (2020) ‘An empirical assessment of baseline feature
location techniques’, available: https://hdl.handle.net/10344/9969 [accessed 23 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

https://doi.org/10.1007/s10664-019-09734-5

An empirical assessment of baseline feature location
techniques

Abdul Razzaq1 ·Andrew Le Gear2 ·Chris Exton1 · Jim Buckley1

Abstract
Feature Location (FL) aims to locate observable functionalities in source code. Considering
its key role in software maintenance, a vast array of automated and semi-automated Feature
Location Techniques (FLTs) have been proposed. To compare FLTs, an open, standard set of
non-subjective, reproducible “compare-to” FLT techniques (baseline techniques) should be
used for evaluation. In order to relate the performance of FLTs compared against different
baseline techniques, these compare-to techniques should be evaluated against each other.
But evaluation across FLTs is confounded by empirical designs that incorporate different FL
goals and evaluation criteria. This paper moves towards standardizing FLT comparability
by assessing eight baseline techniques in an empirical design that addresses these con-
founding factors. These baseline techniques are assessed in twelve case studies to rank their
performance. Results of the case studies suggest that different baseline techniques perform
differently and that VSM-Lucene and LSI-Matlab performed better than other implementa-
tions. By presenting the relative performances of baseline techniques this paper facilitates
empirical cross-comparison of existing and future FLTs. Finally, the results suggest that the
performance of FLTs partially depends on system/benchmark characteristics, in addition to
the FLTs themselves.

Keywords Systematic literature review · Feature location · Information retrieval ·
Concept location

Communicated by: Paul Grünbacher

� Abdul Razzaq
abdul.razzaq@lero.ie

Andrew Le Gear
andrew.legear@horizon-globex.ie

Chris Exton
chris.exton@ul.ie

Jim Buckley
jim.buckley@ul.ie

1 Lero, CSIS Department, University of Limerick, Limerick, Ireland
2 Horizon Globex Ireland DAC, Limerick, Ireland

Empirical Software Engineering (2020) 25:266–321

Published online: 16 July 2019
The Author(s) 2019, corrected publication 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09734-5&domain=pdf
mailto: abdul.razzaq@lero.ie
mailto: andrew.legear@horizon-globex.ie
mailto: chris.exton@ul.ie
mailto: jim.buckley@ul.ie

1 Introduction

A feature is an observable functionality in a software system that can be triggered by
the user (Eisenbarth et al. 2003). Feature Location (FL) concerns itself with the location
of feature-related, source code elements. Since the 2000s, hundreds of articles to address
the task of feature location have been published in software engineering venues (Razzaq
et al. 2018; Dit et al. 2013; Rubin and Chechik 2013; Cornelissen et al. 2009). Notably
influential works include Chen and Rajlich (2000), whose technique achieved FL through
the examination of the software’s structure via a dependency graph, Wilde et al. (2001),
who used program traces gathered during dynamic analysis, and Antoniol et al. (2002), who
used an Information Retrieval (IR) technique (textual analysis) to support the feature loca-
tion task. From these early efforts, the number of structural and textual analysis approaches
for FL has expanded dramatically and many new FLTs have been developed (Chen and
Rajlich 2000; Antoniol et al. 2002; Lukins et al. 2008; Marcus and Maletic 2003; Mar-
cus et al. 2004; Starke et al. 2009) tailored to different software maintenance activities
(Cornelissen et al. 2009). Also, original FLTs have been gradually refined with the inten-
tion of enhancing their efficacy. Scanniello et al. (2015), Saha et al. (2013), Revelle et al.
(2011), and Rao and Kak (2011), Poshyvanyk et al. (2006, 2012), Panichella et al. (2013),
Mahmoud and Bradshaw (2015), Kagdi et al. (2013), Heck and Zaidman (2014), Cleary
et al. (2009), Chochlov et al. (2017), Binkley et al. (2015), Bassett and Kraft (2013), and
Ali et al. (2013).

However, this proliferation of FLTs means it can be difficult to compare across these
techniques (Razzaq et al. 2018). Comparison to commonly used baseline techniques
would facilitate cross-comparison and ultimately, may enable developers to choose an
appropriate FL technique for a given software maintenance task. In addition, it would
also allow researchers to identify the state-of-the-art FL techniques on which to build
newly proposed FL solutions. A baseline technique in this context is defined as the one
which:

1. Has a track record as a comparison technique.
2. Is openly-available and reproducible where researchers can repeatedly apply it in

comparison to novel FLTs being developed.
3. Is original - i.e. Not a refined version of an existing technique or a hybrid.
4. Has a fully defined, complete solution to the FL problem including pre-processing and

post-processing steps embedded.
5. Is objective and programmer-independent such that it does not require any intelligent

assistance from the programmer in the FLT process, as this would lead to inconsistent
results when applied by different users.

The baseline techniques are all IR based. This is not a deliberate bias toward IR, but
instead the natural outcome of choosing techniques adhering to the above criteria (Razzaq
et al. 2018). To date only a limited number of FLTs have been evaluated against baseline
techniques (Gethers et al. 2011; Wang et al. 2011; Dit et al. 2015; Mahmoud and Niu 2015;
Marcus and Maletic 2003) and the empirical designs employed have not always been cog-
nizant of confounding factors which may affect they outcome of the evaluations, like the
user’s goal and the different evaluation measures employed.

This paper addresses these issues to provide a stronger baseline FLT foundation for FLT
researchers. It performs a comparison across baseline techniques to assess which are the
better performers and how they rank with respect to each other. In addition, it formally
defines empirical designs that address many of the confounding factors in empirical studies

Empirical Software Engineering (2020) 25:266–321 267

of FLTs in the literature. This will allow more accurate comparison of FLTs in the future.
Hence we focus on the following four research questions:

1. Do the different implementations of identically-named baseline techniques perform
exactly the same? If different implementations of the original baseline techniques per-
form similarly then it enables as-is cross-comparison of the existing body of FLTs
compared to any implementation of the identically named baseline techniques;

2. If not, what are the outstanding implementations of the identically-named baseline tech-
niques for specific empirical designs, defined by FL goals and evaluation measures?
That is, if different implementations of the identically-named baseline techniques per-
form differently, which implementation is better than the others in each case study?
This identifies the best performing implementation of each, to be used as a comparator
for newly proposed techniques;

3. How do all the baseline techniques compare to each other for specific empirical designs
defined on the basis of FL goals and measures? This will facilitate comparison across
FLTs that have not been compared to the same baseline technique by relating the per-
formance of baseline techniques with each other. It also allows the indirect comparison
of the FLTs that are not compared with any other technique, when evaluated using a
data-set which a baseline technique has been/can be evaluated against. In addition, this
will identify the best performing baseline technique overall, to be used as a comparator,
when studies compare a newly proposed technique to a single baseline technique (as is
customary in the field).

4. Based on the results obtained in this study, it seemed that the performance of the FLTs
depended on the intrinsic characteristics of the systems/benchmarks they were applied
to. We assessed if this was so: If differences in systems impact on FLTs performance,
then, the selection of systems to evaluate FLTs should be cognisant of the system’
characteristics that impact on performance.

We show that different implementations of baseline techniques perform differently and
thus present approximate rating factors, that could be used in comparisons against different
baseline FLTs. This facilitates comparison across the existing body of FLTs that have been
compared against baseline techniques. We also identify a best-performing baseline imple-
mentation that should be used as a comparator for newly proposed techniques in the field.
In addition to these, our findings prompt research towards system and benchmark selection
for FLTs evaluation. Finally, we assist researchers towards reproducible and comparable
empirical design, cognizant of FL goals and evaluation criteria, with an illustrative example
of our empirical design. In this vein, we provide case study data, intermediate results, and
implementations online1 for transparency and to encourage others to base their design on,
replicate and extend our work.

The remainder of this paper is organized as follows: Section 2 reviews background and
related work. Section 3 presents the empirical design, particularly with respect to FL goals
and the evaluation criteria, used to assess the baseline techniques. The results obtained after
employing the empirical design are analyzed for each of the four research questions and
are presented in section 4. The paper discusses key findings and how to use the relative
baseline performance to compare the existing body of FLTs, in Section 4.5. Section 6 lists
the potential threats to the validity of our results. Finally, we conclude and outline future
work in Section 7.

1https://www.lero.ie/research/datasets/feature location/comparison

Empirical Software Engineering (2020) 25:266–321268

https://www.lero.ie/research/datasets/feature_location/comparison

2 Background and RelatedWork

A feature is an observable system requirement, functionality or behaviour that can be trig-
gered by users (Eisenbarth et al. 2003). A software system has a set of features where
each feature is implemented through a set of source code elements known as the “extent of
that feature,” as formally defined by Revelle et al. (2011). The concern of Feature location
(FL) is to identify source code elements implementing a feature. This task is intrinsically
associated with software maintenance and evolution activities which frequently mandate
the location of a feature’s code to document, configure, add, remove, or improve on some
functionality (Poshyvanyk et al. 2007).

2.1 Classification of FLTs

A distinguishing factor of FLTs is the type of analyses performed. The most common types
of analysis in FLTs are textual, structural, historical and dynamic (Dit et al. 2013). Textual
analysis attempts to exploit the domain knowledge already encoded by the developers in the
form of comments and identifier-names in a program. The analysis relies on some sort of
textual user-query and matching it against these comments or identifiers. Natural Language
Processing (NLP), Information Retrieval (IR) and Pattern Matching (PM) are the main anal-
ysis techniques employed in textual analysis (Binkley et al. 2015; Diaz et al. 2013; Liu et al.
2007) with the emphasis on IR, as it is more effective than PM while being less complex
than NLP (Wang et al. 2011).

Structural analysis, often referred to as static analysis, allows developers to identify the
relevant program elements by following data or control flow dependencies between them.
For example, if one procedure (or method) is known to be part of the feature and it is the
only caller of another procedure, then it is considered likely that this latter procedure is also
part of the feature (Bassett and Kraft 2013; Scanniello et al. 2015).

With historical analysis, artifacts related to the feature are identified by mining change-
histories available in online source code repositories. For example, if a procedure is known
to be in a feature, procedures that tend to change in the same commits as that procedure
might also be likely candidate locations for that feature (Chochlov et al. 2017; Wang and
Lo 2014; Ye et al. 2016).

Finally, dynamic analysis refers to the invocation and observation of features at execu-
tion time: Execution traces are analyzed to identify code that is always executed when the
feature is exercised in the system, and code that is not executed when the feature is not, thus
identifying code that is (exclusively) associated with the feature (Poshyvanyk et al. 2007;
Liu et al. 2007).

More recently, approaches that leverage some combination of these types of analysis
have been proposed. These are referred to as ‘hybrids’ (Dit et al. 2013). The purpose of this
hybridization is to compensate for the limitations of each individual FLT type, and thus to
achieve better overall results than either would perform individually.

2.2 Information Retrieval Process andModels in Feature Location

The FL research problem is mostly interpreted as an IR problem (Antoniol et al. 2002;
Marcus and Maletic 2003; Marcus et al. 2004; Ali et al. 2013; Binkley et al. 2015; Chochlov
et al. 2017; Cleary et al. 2009; Heck and Zaidman 2014; Revelle et al. 2011; Rao and Kak
2011; Poshyvanyk et al. 2007, 2006, 2012; Mahmoud and Niu 2015; Wang et al. 2011; Zhou
et al. 2012; Wang et al. 2014; De Lucia et al. 2011; Lukins et al. 2010; Mills et al. 2017;

Empirical Software Engineering (2020) 25:266–321 269

Thomas et al. 2013; Biggers et al. 2014; Hill et al. 2015; Eaddy et al. 2008; Dit et al. 2011;
Beard et al. 2011). Hence, existing FLTs are predominantly IR-based FLTs. For example,
89% of the FLTs (151 out of 170) reported by Razzaq et al. (2018) and half of the FLTs
reported by Dit et al. (2013) required a textual input to retrieve relevant features. In this
section, we introduce the IR-based process of feature location embedded in most textual
techniques and describe three generic models underpinning them (referred to here as “IR
models”):

– Vector Space Models (VSM), an algebraic model;
– Latent Semantic Indexing (LSI), a semantic topic model;
– Latent Dirichlet Allocation (LDA), a probabilistic topic model.

2.2.1 The Inherent IR-based, Feature Location Process

Information retrieval is the activity of tracing and recovering relevant information from a col-
lection of documents, given an information need. In FL, an information retrieval model pro-
vides a means of identifying source code elements from source code “documents” likely to
contribute to the implementation of a feature. For example, if a query contains the words, “the
Image object added to the addImage method,” then an IR model attempts to locate source
code elements which contain these words (“added”, “Image”, “addImage” etc.). When a
query and source code elements contain several shared words, the IR model gives the ele-
ment a high relevancy score. Hence, IR-based FLTs accept, as input, a corpus of source code
elements being analyzed, and queries. Execution of a query outputs a list of source code
elements, ranked by the relevancy score between the input query and the elements.

Figure 1 depicts the overall IR approach for feature location, which also illustrates the
evaluation procedure of FLTs. In general, the IR approach to the feature location problem
can be described in three main steps where the evaluation procedure part loops over the
latter two, as highlighted in the figure.

Indexing The left side of Fig. 1 illustrates the source code indexing process. The process
starts by extracting the textual content (e.g. comments and code identifiers) of source code
elements (e.g. methods or classes). This is accomplished through lexical processing and
parsing of the source code, producing a partitioned token stream. Then a series of transfor-
mations is applied to each token and produces one or more terms from each token. Common
transformations include:

– Splitting code identifiers into their constituent words;

Fig. 1 IR approach for feature location

Empirical Software Engineering (2020) 25:266–321270

– Normalizing terms by converting them to a uniform case (upper or lower);
– Filtering terms by removing stop-words (e.g. ‘is’, ‘the’) and-or common programming

language keywords (e.g. ‘if’, ‘else’);
– Stemming terms to reduce words to their inflectional roots (e.g. “protection”, “protec-

tive”, “protected” convert to “protect”).

The output of the process is usually the source code elements’ textual contents, in a compact
matrix, where columns correspond to source code terms and rows correspond to the source
code elements to which the terms belong.

Query Formation Once a matrix/index is built, various FLTs can query it to locate features.
The right side of Fig. 1 illustrates the source code analysis process in a loop. The process
starts by formulating the queries from end-users or developers. These queries are typically
pre-processed in the same manner as the source code: splitting, normalizing, filtering and
stemming.

Code Retrieval In the code retrieval step, after formulating a query, an FLT then applies
the query to each source code element in the matrix. Finally, the FLT ranks the source code
elements in descending order by their relevancy score to the query.

Result Evaluation refers to the evaluation of the FLTs’ results by a developer or by an FLT
researcher, using the indexing, query-formation and code-retrieval steps of the approach.
In FLT-researcher evaluation, multiple queries are formed, and run against the FLT tech-
nique, assessing the quality of the returned results against some known gold-standard result
set or benchmark. For the past decade, researchers have sought to automate this task by
employing the embedded text in software repositories as queries (Ali et al. 2013; Bas-
sett and Kraft 2013; Binkley et al. 2015; Chochlov et al. 2017; Cleary et al. 2009; Rao
and Kak 2011; Wang et al. 2011; Beard et al. 2011; Biggers et al. 2014; Eaddy et al.
2008; Mills et al. 2017; Thomas et al. 2013; Zhou et al. 2012; Dit et al. 2013; Moreno
et al. 2015). For example, to formulate a query, researchers often use bug reports (the
title, the description, or a combination of the two) from the issue tracking repositories of
source code management systems. Then the ranked-list of elements returned by the FLT
is compared against that gold-standard: for example, the locations of the fixes for the
bugs in the repositories. Finally, a set of evaluation measures is employed to assess the
comparison results using different aspects of effectiveness. In the real world scenario, the
developer visually inspects the ranked-list of source code elements produced by the FLT for
relevance.

2.2.2 Vector Space Model

The Vector Space Model (VSM) is a simple algebraic model. To demonstrate VSM, suppose
V denotes the vocabulary in a set of source code elements E. Then an element e belonging to

E is represented by a |V |-dimensional vector
−→
W , where each entry of the vector represents

the weight of a source code term belonging to e (Salton et al. 1975). Popular values for
weight parameter are raw frequency (i.e. the number of occurrences of the term in E) or
“tf-idf” (term frequency, inverse document frequency) (Mahmoud and Niu 2015; Thomas
et al. 2013). Just like the elements of E, a query is also represented by a |V |-dimensional
vector. The similarity between query and source code element is calculated by comparing
their corresponding vectors. Popular similarity functions are “Euclidean distance,” “cosine
distance,” “Hellinger distance,” or “KL divergence” (Thomas et al. 2013). Hence, VSM

Empirical Software Engineering (2020) 25:266–321 271

requires that queries should share the same terms with source code elements; the more
shared terms they have, the higher their similarity score will be.

2.2.3 Latent Semantic Indexing

A source code element and a user generated query may use different terms when referring to
the same feature. For example, a user may use synonymous (different terms used to describe
the same concept) or polysemous (a single term having more than one distinct meaning
depending on context) terms to describe the feature. In such cases, source code elements
similar to a query will likely not be classified as such by VSM.

To address this issue, Latent Semantic Indexing (LSI), an extension to VSM, uses a
“Singular Value Decomposition” (SVD) function to group the terms which are related by
collocation (i.e., terms which often occur in the same elements). In this way, LSI projects
the usage context of the terms in the form of “topics” prior to computing similarity. For
example, a graphics-related topic might contain the words “image,” “colour,” “pixel” and
“jpeg” because these words tend to appear in the same documents. In LSI, elements are still
represented as vectors, but topic vectors, where LSI vectors contain the weight of topics.
In contrast, VSM vectors contain the weights of single terms. To compare a user query,
the query is first transformed into a topic space. Then, similarity between query and the
elements in the topic space are measured by using the similarity function between their
vectors (Deerwester et al. 1990).

In addition to the term weighting parameter and similarity function, LSI requires users
to specify a “dimensionality-reduction” parameter which controls the number of topics (K)
a user wants to populate during the SVD decomposition.

2.2.4 Latent Dirichlet Allocation

Latent Dirichlet allocation is a probabilistic topic model that provides a means to auto-
matically index, search, and cluster unstructured documents. When used for code retrieval,
similar to LSI, LDA uses the co-occurrence of terms in a corpus to discover the set of hidden
topics (latent) within a corpus and represent each source code element as a finite mixture
over this set of topics. In contrast to the LSI which uses SVD reduction to generate top-
ics, in LDA topics are formed through an explicit generative process. This process usually
employs Gibbs sampling (a machine learning algorithm) to iteratively assign words to the
topics. Thus in LDA, each source code element is modelled given the probability that it
expresses each topic, and each identified topic is modelled given the probability of a term
from the corpus being assigned to the topic.

LDA calculates the probability that the source code element generates a term, given a set
of terms belonging to a query Q. Thus the conditional probability (P) (i.e. similarity) of Q

given a source code element e can be calculated as follows:

Sim(Q, e) = P(Q|e) =
∏

qk∈Q

P(qk|e) (1)

where qk is the kth word in the query.
Other parameters to the LDA include: number of topics (K) to control the numbers of

user-defined topics, the smoothing parameter for topic-to-element proportion (α) and the
smoothing parameter for topic-to-term proportion (β). The latter two are hyperparameters
which are used to tune the LDA model for a smoothing effect. In particular, a lower α value
results in fewer topics per source code element and a lower β value results in fewer terms

Empirical Software Engineering (2020) 25:266–321272

per topic, which generally increases the number of topics needed to describe a particular
source code element (Lukins et al. 2008; Biggers et al. 2014; Corley et al. 2015).

2.3 Issues in FLTs Evaluation

The presence of a large numbers of FLTs imposes difficulties for practitioners when decid-
ing on the appropriate technique to employ for a given software maintenance task and for
researchers when trying to identify the state-of-the-art techniques on which to build. This is
due to two reasons:

1. FLTs evaluations are not fully characterized in terms of their FL goals (Razzaq et al.
2018; Shin et al. 2012) resulting in different, but implicit, evaluation biases being
reflected in the researchers’ empirical design decisions;

2. The heterogeneity of empirical design is apparent from literature: Razzaq et al. (2018)
suggested that over 60 different FLT evaluation metrics are used across the 170 papers
with 272 subject systems having been used, and 235 different benchmarks employed.
These heterogeneities make it very difficult to compare across FLT evaluations.

2.4 Configuration of IR-Based FLTs and Best Practice

Given the same data-sets and evaluation measures, FLTs can still produce inconsistent or
contradictory results because of the various configurations of FLTs and different empirical
components like software system studied and queries generated (Thomas et al. 2013). In
the IR models discussed above, for example, configurations depend on: weight of the terms
in the index building step (e.g. frequency of the term in source code elements), number of
topics used to reduce the terms into clusters and core similarity functions of a model (e.g.
cosine similarity, Jaccard distance). It has been demonstrated in several studies that the per-
formance of FLTs varies significantly by such configurations (Biggers et al. 2014; Thomas
et al. 2013; Moreno et al. 2015; Panichella et al. 2016). Additionally, FLT empirical-settings,
such as the way in which queries and source code are pre-processed, the entities of source
code elements used for analysis (e.g. identifiers, comments, both) and how queries (e.g. bug
report title, description, both) are formed for evaluation, have been shown to significantly
impact the performance of FLTs (Biggers et al. 2014; Thomas et al. 2013; Moreno et al.
2015; Panichella et al. 2016). Hence, to perform an apple-to-apple comparison, consistent,
and explicitly identified, FLT configurations and empirical settings must be applied towards
a transparent evaluation.

There are several studies that investigate configuration and empirical settings in quan-
tifying their impact on the performance of FLTs (Biggers et al. 2014; Thomas et al. 2013;
Moreno et al. 2015; Panichella et al. 2016; Lukins et al. 2008). Commonalities between the
findings of such studies and frequently employed settings by other empirical studies can be
adopted towards a more homogeneous empirical design (Antoniol et al. 2002; Lukins et al.
2008; Marcus and Maletic 2003; Ali et al. 2013; Binkley et al. 2015; Cleary et al. 2009;
Kagdi et al. 2013; Mahmoud and Bradshaw 2015; Poshyvanyk et al. 2006; Saha et al. 2013;
Scanniello et al. 2015; Mahmoud and Niu 2015; Wang et al. 2011; Corley et al. 2015).
Table 1 reports on these studies, and their identified best practices in FLT configuration and
empirical settings. This paper, while assessing the relative effectiveness of each baseline
technique, also employs these best-practice configurations and settings.

Empirical Software Engineering (2020) 25:266–321 273

Table 1 Commonly employed configuration and normalization

Parameter Total Studies Commonly

Configurations Empirically Found

Tested Investigating Best Practice

Settings

Settings Common to all FLTs

Test Query 1. Bug report title Thomas et al. (2013) Title + Descr.

2. Bug report description Moreno et al. (2015)

3. Title + Descr. Biggers et al. (2014)

4. Past 10 Bug Report

5. Past All Bug Report (PBRa-All)

6. Title + Descr.+PBRa-All

Source Code 1. Identifiers Thomas et al. (2013) Ident. + Comm.

Entity 2. Comments Moreno et al. (2015)

3. Ident. + Comm. Biggers et al. (2014)

4. Literals

5. Ident. + literals

6. Comm.+ literals

7. Ident. + Comm.+ literals

Pre-processing 1. None Thomas et al. (2013) Split+

Steps 2. Split Moreno et al. (2015) Stop+

3. Stop Panichella et al. (2016) Stem

4. Stem

5.Digit

6. Special chars

7. Split + Stop

8. Split + Stem

9. Stem + Stop

10. Split+ Stop+ Stem

11. Split+Stop+Stem+PBRa

Specific to VSM

Term Weight 1. Tf-Idf Thomas et al. (2013) Tf-Idf

2. Sub-linear Tf-Idf Moreno et al. (2015)

3. Boolean Panichella et al. (2016)

4. tf Wang et al. (2014)

5. tf-entropy

6. logij=log(tfij+1)

Similarity 1. Cosine Thomas et al. (2013) Cosine

Function 2. Overlap Moreno et al. (2015)

3. Jaccard Panichella et al. (2016)

4. Dice Wang et al. (2014)

Empirical Software Engineering (2020) 25:266–321274

Table 1 (continued)

Parameter Total Studies Commonly

Configurations Empirically Found

Tested Investigating Best Practice

Settings

Specific to LSI

Term Weight 1. Tf-Idf Thomas et al. (2013) Tf-Idf

2. Sub-linear Tf-Idf Moreno et al. (2015)

3. Boolean Panichella et al. (2016)

4. tf

5. tf-entropy

Similarity 1. Cosine Thomas et al. (2013) Cosine

Function 2. Jaccard Moreno et al. (2015)

3. Dice Panichella et al. (2016)

Number of 32-300 Thomas et al. (2013) 200-300

Topics Moreno et al. (2015)

Specific to LDA

Similarity 1. Conditional Probability Thomas et al. (2013) Conditional

Function 2. KL Divergence Probability

α 0.01, 0.1, 0.25, 0.5, 0.75, 1 Biggers et al. (2014) 1

Lukins et al. (2010)

β 0.01, 0.1, 0.25, 0.5, 0.75, 1 Biggers et al. (2014) Inversely

Lukins et al. (2010) proportional

to the number

of topics

Number of 32-500 Thomas et al. (2013) 200-300

Topics (K) Biggers et al. (2014)

Lukins et al. (2010)

aPast Bug Reports

2.5 Baseline Techniques: a Comparison Hub

This paper addresses the FLT comparability agenda, while also considering (implicit) FL
goals, configuration parameters and design inconsistencies in previous studies. One solu-
tion towards addressing the issue is to employ a set of techniques that serve as common
comparators across FLTs. Newly presented FLTs could then be compared to standard tech-
niques that other researchers have also used to evaluate their FLTs. We argue that only
by relative comparison of open, standard baseline techniques, under common evaluation
measures, and other empirical-design conditions, will researchers begin to identify the high-
performing FLTs in the field. Hence this paper empirically assesses such baseline techniques
in empirical designs characterized by best identified empirical practice.

A baseline technique in this work is defined as a technique that serves as a common
comparison vehicle: one that allows cross comparison between the FLTs. It is a standard
technique, already proven as comparable, that can be repeatedly employed by researchers to

Empirical Software Engineering (2020) 25:266–321 275

facilitate subsequent comparisons across novel FLTs. Such a technique should be complete
and openly available in a form that researchers can reproduce. It must be objective and not
require programmer input into the FLT execution process.

The comparison utility of baseline techniques is illustrated in Fig. 2 where T1 to T10 are
some novel FLTs and TB1 to TB4 are baseline techniques. Each arrow in Fig. 2 represents an
“empirically-compared-to” relation. Assuming relatively homogeneous empirical designs,
T1 can be easily compared to T2 and T3 because they are all compared to the same baseline
technique. Likewise, because TB3 has been compared to TB1, T1, T2, T3 and T4 can be
indirectly compared, if that same homogeneity condition holds. On the right hand side, T5,
T6 and T7 are techniques that were not compared with any baseline techniques, however
they employed a shared dataset “DS1,” in evaluation, which has also been used to evaluate
a baseline technique TB4. Suppose, the relative performance of TB4 with TB1 and TB3 is
known for the same data-set, it allows an indirect comparison of T5, T6 and T7 with T1-
T4. T8 and T10 are both compared to T9, where T9 is perhaps an FLT that does not have
an openly-available executable. While this allows comparison of the two techniques, it does
not allow their comparison to any of the other technique.

Razzaq et al. (2018) identified the following eight baseline techniques in a survey of FLT
evaluations:

1. VSM-Lucene, Moreno et al. (2015)
2. VSM-Matlab, Dit et al. (2013)
3. VSM-Tracelab, Dit et al. (2015)
4. LSI-Gensim, Beard et al. (2011)
5. LSI-Matlab, Dit et al. (2013)
6. LDA-Gensim, Corley et al. (2015)
7. LDA-R, Biggers et al. (2014)
8. LDA-Gibbs, Zhou et al. (2012)

This paper assesses the relative performance of these baseline techniques towards allow-
ing researchers to grade the performance of newly proposed FLTs that are compared to these
techniques, against previously presented FLTs, that have been compared to these techniques.
In addition, this will also facilitate backward comparability, facilitating cross-comparison
of FLTs which have been evaluated against any one of the baseline techniques. In the next
section we describe our empirical design to assess the relative performance of these baseline
techniques.

Fig. 2 Scenarios of FLTs Comparisons and Demonstration of a Baseline Technique Facilitating Comparison
Across FLTs

Empirical Software Engineering (2020) 25:266–321276

3 Empirical Design

This section presents the empirical design, in line with the guidelines provided in Wohlin
et al. (2012), to evaluate software engineering techniques using case study research. The
primary objective is to clearly present a context-based empirical frame-of-reference as sug-
gested by Wohlin et al. (2012) (Section 3.1). The research questions targeted and hypotheses
tested in this empirical assessment are described in Section 3.2. Software systems are
selected as cases and the rationale for their selection is discussed in Section 3.3. Finally, the
evaluation method, detailing the evaluation measures used and data collection and analysis
methods employed to deal with each of the defined hypotheses, are described in Section 3.4.

3.1 Empirical Frame-of-Reference

To classify the empirical design, we control for factors identified by Razzaq et. al. in FLT
evaluations (Razzaq et al. 2018). Two major factors are described - goal-based classification
of FLTs and evaluation criteria applied:

1. Feature Location Goals - The goals of FLTs are broadly classified into the following
two categories (Razzaq et al. 2018):

(a) Near-full feature location: Here the goal is to locate the full-extent of the source
code implementing a feature (for example, identifying the full scope of a feature
to be enhanced, or to define the differentz variants in a software system when
moving to micro-services or a software product line Kästner et al. 2014). This
goal has implications for estimation and resource allocation;

(b) Foothold-of-feature location: Here the goal is to identify any single point-
of-entry into the feature (a single source code element) as a “foothold”, for
example to begin debugging or impact analysis (Poshyvanyk et al. 2012; Rovegård
et al. 2008).

2. FLTs Evaluation Criteria: FLTs have been assessed using various objectives. However,
effectiveness is the predominant objective, as suggested by Shin et al. (2012) and Dit
et al. (2013) and Razzaq et al. (2018). Based on the specific evaluation goals of FLTs,
effectiveness can be measured by two aspects (Shin et al. 2012):

(a) Relevance: Precisely separating feature-related code from non-related code.
(b) Rank: Ranking of the retrieved feature-related source code elements on the

ranked-list.

Importantly, assessing an FLT with both of these effectiveness aspects combined is also
a common practice in evaluation (Cleary et al. 2009; Mahmoud and Niu 2015; Zamani et al.
2014). Therefore, we will assess FLTs with respect to both effectiveness-based aspects and
a composite (henceforth to be called relevance-rank criterion), using several commonly-
employed metrics.

3.1.1 Research Objective

In this section, the defined empirical frame-of-reference is expanded to encompass the
objective of this research. Our objective is to perform an exploratory assessment of baseline
techniques for each goal of feature location with respect to the different effectiveness-based
criteria of evaluation.

Empirical Software Engineering (2020) 25:266–321 277

Specifically, the overall research objective can be divided into two:

1. Near-full Objective: Assess all baseline techniques for the near-full feature location
goal.

2. Foothold Objective: Assess all baseline techniques for the foothold feature location
goal.

With the near-full feature location goal, a user is normally interested in coverage analy-
sis, where output of an FLT is assessed on the portion of the feature retrieved (Shin et al.
2012). Here an FLT can be assessed for both of the effectiveness-based criteria; i.e. how
effective the FLT is by precisely separating feature relevant code from irrelevant code, and
how effective it is in ranking the relevant source code elements highly on the retrieved list.
Four evaluation measures were used to assess this (see Section 3.4.1).

An FLT that highly ranks at-least one feature related element is considered as more
effective when the goal is to locate a foothold of a feature. Hence, to assess the baseline
techniques with respect to the foothold location goal, we employed the effectiveness-
based criteria of ranking relevant (potentially foothold) source code elements highly on the
retrieved list, using MRR as our measure (See Section 3.4.2).

3.2 Research Questions

We propose the following research questions to assess the baseline techniques:

– RQ1. Do the different baseline implementations of the same IR models perform
differently for foothold and for near-full feature location goals?

– RQ2. What are the better baseline implementations of each IR model for foothold and
for near-full feature location goals?

– RQ3. How do all the baseline techniques perform, relative to each other, for foothold
and for near-full feature location goals? Which are the overall-best baseline techniques
for both feature location goals?

– RQ4. Initial analysis of the results suggested that the performance of the FLTs depended
on the individual characteristics of the systems/benchmarks to which they were applied.
Hence a post-hoc research question assesses if differences in systems significantly
impacted on FLT performance?

To further refine the research questions, we derive the null hypotheses to be tested in this
empirical study. In order to represent these null hypotheses in a generic format, we employ
the following nomenclature:

1. The IR-Models are referred to as IR-MX , where X can stand for VSM, LSI and LDA;
2. The three sets of Baseline Techniques, representing the baseline implementations of

the VSM, LSI and LDA IR-Models respectively, are referred to as BTVSM, BTLSI and
BTLDA;

3. For each set of Baseline Techniques BTX , the individual elements in the sets are
referred to as BTXa , BTXb...;

4. All the Baseline Techniques, regardless of the IR-M they implement, are referred to as
BTa , BTb...;

5. The evaluation measures employed are referred to as E1−5;
6. The case studies are referred to as C1−12;

For RQ1, we tested whether the implementations belonging to an IR model (three
in total), differs significantly from other implementations, of the same model, for each

Empirical Software Engineering (2020) 25:266–321278

case study (twelve in total), for each evaluation measure (five in total). Thus one hundred
and eighty hypotheses were tested in this regard. The following then, is the general null
hypothesis that reflects RQ1:

For each IR-MX , for each case study C1−12 for each evaluation measure E1−5, each
BTXa will perform similarly to all other BTXs;

That is, RQ1 assesses each implementation of an IR model for similarity. In contrast
RQ2 assesses whether any implementation of an IR model significantly outperforms the
other implementations of the same IR model and relates their magnitude of differences.
Thus, implementations of an IR model are pairwise tested and related in terms of effect
size for each of the twelve case studies employing all of the five evaluation measures. The
following is the generalized null hypothesis:

For each pair of baseline techniques in BTX , for each case study C1−12, for each
evaluation measure E1−5, BTXa will not significantly outperform BTXb

Next, to measure the relative performance of all baseline techniques, we measure the
difference in performance over all seven baseline techniques, for all four case studies. Thus,
in answering RQ3, we pairwise-tested all of the baseline techniques for each case study and
each evaluation measure. The following is the generalized null hypotheses:

For each pair of baseline techniques, for each case study C1−12, for each evaluation
measure E1−5, BTa will not significantly outperform BTb

In testing this category of hypotheses, and indeed RQ2, for each goal of FL, a base-
line technique is considered to significantly outperform another if it is found to perform
significantly better than the other baseline technique for the majority of cases.

Finally, to understand if software systems and their associated benchmarks impact on
the relative performance of techniques, the following null hypotheses were retrospectively
tested:

For each E1−5, if BTa significantly outperforms BTb on CX then BTa will signifi-
cantly outperform BTb on CY

3.3 Case Studies

Case studies, while providing in-depth insights, can make comparison across FLTs difficult.
On the other hand, controlled experiments focus more on breadth of analysis, but might fail
to control for the abundant extraneous variables that exist in the evaluation of FLTs (Razzaq
et al. 2018; Ali et al. 2013; Bassett and Kraft 2013; Poshyvanyk et al. 2006; Wang and Lo
2014; Dit et al. 2013, 2011; Thomas et al. 2013; Shin et al. 2012; Panichella et al. 2016;
Cataldo et al. 2009; Robillard 2008). They can also manifest as unreal, controlled situations
which obscure the natural behaviour of FLTs (Easterbrook et al. 2008).

To simultaneously focus on depth (case-study) and width analysis, and to move
towards a more standardized selection of the systems that provide trusted benchmarks,
we adopted a multiple-case study design over carefully selected systems in this empirical
assessment.

Case studies presented in FL literature range from very ambitious and well-organized
studies in the field (Kagdi et al. 2013), to smaller, more toy-like examples (illustrations)
(Chen and Rajlich 2000). Additionally, as suggested by Wohlin et al. (2012), the adapt-
able nature of “case study” research-design allows the accommodation of different research

Empirical Software Engineering (2020) 25:266–321 279

methods in it. To clarify, in the context of this study, we define the case-study context
as:

“ an in-depth assessment performed on a non-sample software system. The employed
software systems should be well-established systems, not just toy examples, where the
features have their full (or nearly full) extent identified in the source code. This can
be used as a benchmark in evaluating the location of features (Razzaq et al. 2018)”

In this section, we present the systems we studied and rationalize their selection. We
required all selected systems to share the following characteristics:

1. Open source: To ensure the replicability of our case studies.
2. Publicly accessible Issue Tracking System (ITS) and Version Control System (VCS):

An ITS is a repository where developers (and users, in the case of publicly available
systems) can report bugs or place feature-requests for a software system. When devel-
opers fix the filed bug or change features against a feature-request they update the
status of the bug or feature-request in the ITS and store information on the source
code elements updated during this process in a VCS. The process of reporting bugs or
feature-requests in an ITS, and then acquiring the added, removed or changed source
code elements, against them, from a VCS is known as re-enactment and, is one of the
ground-truths (Li et al. 2013) used to create feature location benchmarks. In addition,
we required the selected software systems to have ITS and VCS repositories publicly
available to acquire the reported bug reports, feature-requests and code changes. Dur-
ing re-enactment bug reports/feature-requests can be used as a replacement for possibly
subjective queries developed by researchers and the code changes, a proxy for feature
locations (Mills et al. 2017).

3. More reliable ground-truth: Numerous benchmarks to validate the results of FLTs have
been presented in FL literature. In previous work, we identified twenty-nine studies
where they make their benchmarks publicly available (Razzaq et al. 2018). The major-
ity of those benchmarks (twenty-four) are solely created through a single ground-truth.
However, establishing a representative ground-truth is still a challenging and debatable
subject (Ye et al. 2016; Tóth et al. 2010). To address this issue, researchers suggested
either to employ multiple sources of ground-truths in the benchmark creation process
(Hill et al. 2015) or select a set of source code elements which are commonly declared
as benchmark elements by multiple researchers (Martinez et al. 2018). Hence, we
required the benchmarks to be unambiguous; i.e. commonly accepted by researchers
(Razzaq et al. 2018) or strengthened with triangulation: That is, there must be more
than one ground-truth (Mills et al. 2017).

4. Appropriate granularity: Coarse-level (e.g. file-level) granularity of the benchmark ele-
ments requires additional effort by the developer to locate the exact feature-related
elements (Chochlov et al. 2017; Kagdi et al. 2013), whereas ultra fine granularity (e.g.
each line of a program) is unusual in studies. Therefore, for a software system to be
selected as a case study in this empirical assessment, it must have a benchmark at
method level (Eaddy et al. 2008) or one that can be easily converted into one at method
level, where developers require less effort to locate the exact feature-related source code
element (Chochlov et al. 2017).

5. Different System types: To address a typical concern with case-study research (general-
izing its results) selected software systems should have diverse context parameters like
project size, age of the system, application domain, type of issue tracking and version
control systems. In this research, a system is considered to large, medium or small if

Empirical Software Engineering (2020) 25:266–321280

that comprises-of more than 100K, 100-50K or less than 50K lines of code, respec-
tively. We consider a system to be old if developed before 2010 and new if developed
after 2010.

In addition to the above characteristics, we purposefully preferred to select software
systems that have been employed in previous FLT evaluation studies to facilitate back-
ward comparability of our results to the body of existing knowledge. We selected twelve
software systems which meet the above criteria, from a list of 272 software systems
applied in FLT evaluations (Razzaq et al. 2018). Table 2 presents the selected software
systems and lists their diverse characteristics. Two of the systems are now discussed
in fuller detail, to elaborate on types of ground-truths/benchmarks employed in this
study.

3.3.1 ArgoSPL

ArgoUML2 is one of the most frequently studied software systems in feature location (Raz-
zaq et al. 2018) and is extensively used by the extractive Software Product Line (SPL)
adoption community (Assunção et al. 2017).

Martinez et al. (2018)3 have presented a feature location benchmark that uses the source
code base of ArgoUML and ArgoUML variants. They leveraged the conditional compila-
tion directives available in the ArgoUML SPL (Assunção et al. 2017) as an unambiguous
and common ground-truth to generate this benchmark over the family of systems. These
directives, like in C/C++, indicate to the pre-processor whether the delimited code fragment
should be passed to the compiler or not. Hence, it enables full-extent definition of fea-
tures and their cross-cuttings. Martinez et al. (2018) annotated these directives and provide
a script to extract the respective source code implementations of 8 features and 15 cross-
cutting features in ArgoUML. A cross-cutting feature is the set of source code elements
shared by more than one feature. Hence, the feature set of the ArgoUML SPL comprises
a collection of loosely coupled functional and cross-cutting features (Couto et al. 2011).
The spread of a large code base over several cross-cutting features make it a challenging
benchmark for feature location (Martinez et al. 2018).

Specifically, the benchmark contains a total of 23 feature to source code mappings cor-
responding to 8 loosely coupled features, 13 pair-wise feature cross-cuttings (the set of
source code elements shared by two features), 1 three-wise feature cross-cutting (the set
of source code elements shared by three features) and 1 feature negation (the set of source
code elements not existing in the set of features). In these 23 feature-mappings, the bench-
mark has a total of 439 and 44 directly used and, 388 and 871 indirectly referred-to,
classes and methods, respectively. To keep the granularity homogeneous in this assess-
ment, we extracted all methods from the classes where the class was determined to be
feature-related.

The list of features have already been described in the literature (Assunção et al. 2017).
To eliminate any potential bias caused by queries formulated by users, these descrip-
tions have been used as test queries (Martinez et al. 2018) in this research. To generate
test queries for cross-cutting features, we aggregate the descriptions of the intersecting
features.

2ArgoUML: http://argouml.tigris.org
3https://github.com/but4reuse/argouml-spl-benchmark

Empirical Software Engineering (2020) 25:266–321 281

http://argouml.tigris.org
https://github.com/but4reuse/argouml-spl-benchmark

Table 2 Characteristics of the selected case studies

System System Features Methods Ground- Issue Tracking

Size age truth System

ArgoSPL Large new 23 14,654 Conditional Scarab

(family of versions) (∼120KLOC) compilation

directives

Derby Large new 33 36,363 Re-enactment Jira

10.9.1 (∼358KLOC)

Eclipse Large old 45 123,732 Re-enactment Bugzilla

3.3 (∼907KLOC)

ArgoUML Large old 91 14,597 Re-enactment Scarab

0.22 (∼149KLOC)

jEdit Large new 150 6,413 Re-enactment SourceForge

4.3 (∼99KLOC)

Commons-Math Large new 63 14,845 Re-enactment Jira

3.6.1 (∼85KLOC)

muCommander Large old 92 8,187 Re-enactment Trac

0.8.5 (∼77KLOC)

JabRef Large old 39 4,607 Re-enactment SourceForge

2.6 (∼74KLOC)

Commons-Lang Large new 46 6,266 Re-enactment Jira

3.5 (∼22KLOC)

Rhino Large old 328 2,801 Prune Bugzilla

1.5 (∼22KLOC) dependency

+
Re-enactment

+
Document

mining

iBatis Large old 85 1,869 Prune Jira

2.3 (∼13KLOC) dependency

+
Re-enactment

+
Document

mining

Mylyn Large old 25 482 Prune Bugzilla

1.0.1 (∼4KLOC) dependency

+
Re-enactment

+
Document

mining

Empirical Software Engineering (2020) 25:266–321282

3.3.2 Rhino

Rhino4 implements a formal specification: the ECMAScript Standard. Eaddy et al. (2008)
reverse engineered the specifications of version 1.5R6 to derive its benchmark (feature to
code mappings5). To verify the accuracy of the benchmark they employed a “prune depen-
dency” rule. In prune dependency, a source code element is considered as related to a feature
if it should be removed or altered, without affecting other features, when that feature is
pruned. In this way, the prune dependency rule allows a direct partition of the software
system into nuanced features, at the cost of intensive effort. To aid program understand-
ing during the process of source-code-to-feature mapping using prune dependencies, Eaddy
et al. (2008) relied on project documentation, source code comments, code navigation and
search tools, change history comments, and unit tests.

For the purpose of formulating non-subjective test queries, Eaddy et al. (2008) also
provide the feature-requests and bug reports assigned to source code elements using a
re-enactment process. We employed their bugs-and-feature-requests mapping to further
buttress/triangulate their benchmark: reverse engineering verified by prune dependency
analysis, buttressed by re-enactment. This reduced the number of features when the asso-
ciations disagreed.6 Finally, their presented benchmark was of relatively fine granularity
(i.e. field and method level): To keep the evaluation design homogeneous in this study, we
consider method level granularity only.

3.3.3 Other Systems

Other systems employed in this study are the commonly used systems in FLT evaluation
literature (Eisenbarth et al. 2003; Bassett and Kraft 2013; Binkley et al. 2015; Mahmoud
and Bradshaw 2015; Panichella et al. 2016; Thomas et al. 2013; Dit et al. 2015), for which a
method-level benchmark exists, as suggested in the recent survey of the field (Razzaq et al.
2018). The benchmarks for these systems are created using a re-enactment process (Dit et al.
2013; Just et al. 2014), except for Mylyn and iBatis which, like the Rhino benchmark, used
prune dependency and document mining (Hill et al. 2015; Eaddy et al. 2008).

The online repository presents the material7 used in our research, including feature-
related benchmark elements and test queries gathered, as described above. Additionally, the
online repository also includes the implementation of the baseline techniques, described
in Section 2.3. Furthermore, it includes the intermediate results for all of the employed
evaluation measures obtained in the assessment of the baseline techniques.

3.4 EvaluationMethod

We compared the results of baseline techniques by comparing the sorted (ranked) list of the
source code elements obtained from them for the two FLT goals outlined. In this research,
we employed the commonly used evaluation measures for each goal, as suggested by
Razzaq et al. (2018).

4http://www.mozilla.org/rhino
5http://www.cs.columbia.edu/∼eaddy/concerntagger/
6This is why the number of features reported in the original study and the number we report are slightly
different.
7https://www.lero.ie/research/data-sets/feature location/comparison

Empirical Software Engineering (2020) 25:266–321 283

http://www.mozilla.org/rhino
http://www.cs.columbia.edu/~eaddy/concerntagger/
https://www.lero.ie/research/data-sets/feature_location/comparison

3.4.1 Evaluation Measures: Near-full Feature Location

Relevance Evaluation Criteria - Evaluation of FLTs in the past have been conducted by mea-
suring recall and precision on retrieved results (Antoniol et al. 2002; Marcus and Maletic
2003; Ali et al. 2013; Heck and Zaidman 2014; Mahmoud and Niu 2015; Gethers et al.
2011; De Lucia et al. 2011; Shin et al. 2012; Borg et al. 2014). Recall measures the accuracy
of retrieved results whereas precision measures the extent to which only accurate results are
retrieved.

Specifically, “recall” measures the fraction of feature-related source code elements that
are correctly retrieved:

|CorrectElements ∩ RetrievedElements|
|CorrectElements| (2)

“Precision” measures the fraction of retrieved source code elements that are related to
the feature: |CorrectElements ∩ RetrievedElements|

|RetrievedElements| (3)

Precision alone fails to measure the coverage of the results, i.e. finding all of the feature-
related elements, by ignoring not retrieved feature-related elements. Recall, by ignoring the
incorrectly retrieved elements, fails to assess ranked-listing with lots of (distracting) false
positives. Hence, to assess how precisely baseline techniques achieve nearly full FL with
high accuracy, we deploy both of these measures.

Sometimes recall and precision are irreconcilable with respect to each other (Ali et al.
2013; Shin et al. 2012). “F-Measure” is another measure which gives a high value only in
the case that both recall and precision values are high. It is a harmonic mean of recall and
precision and is defined as follows:

2 × |Recall × Precision|
|Recall + Precision| (4)

This paper employed all three measures, each having values in the range [0, 1].
Baseline techniques normally retrieve all of the source code elements of the software

system in the ranked-list even if their relevancy to the test query is zero (Binkley et al. 2015;
Zhou et al. 2012). In such cases, recall is always 100% and precision is always equal to the
total feature-related elements over the total number of elements retrieved in the ranked-list
(i.e. the total source code elements of the software system) (Poshyvanyk et al. 2007). Hence,
precision and recall are not appropriate measures when assessed against the whole ranked
list.

To address this issue, empirical studies have defined a threshold relevancy-score (Ali
et al. 2013) or suggested selecting the top K elements (Antoniol et al. 2002) to measure pre-
cision and recall values. However, this practice still does not guarantee size-free assessment
because such a threshold still favours or works against features having more or less feature-
related source code elements than the threshold numbers, respectively (Shin et al. 2012).
Additionally, variability in relevancy-score per technique and, even, per query could also be
very high (Shin et al. 2012). Therefore, we used relative values instead of absolute values,
as suggested by Shin et al. (2012), when evaluating near-full feature location. In doing so,
for each feature, we measure the precision and recall values at the top 10 cut-points equal
to size multiples of the benchmark elements related to that feature.

Relevance-Rank Evaluation Criteria - Mean Average Precision (MAP) is the most fre-
quently used evaluation measure to assess the relevance-rank criteria in the FL literature
(Shin et al. 2012; Razzaq et al. 2018). Average Precision(AP) measures the extent to which

Empirical Software Engineering (2020) 25:266–321284

an FLT places correctly retrieved elements towards the top of the ranked-list by calculat-
ing the precision value at each position of the ranked-list where there is a relevant entry
and then averaging those values. MAP, on the otherhand, measures the mean of the average
precisions calculated for a set of queries. It can be represented as:

1

|Q|
Q∑

q=1

∑N
r=1 (P (r) ∗ isRelevant (r))

|RelevantElementsq | (5)

where r is the rank position of a retrieved source code element in the ranked-list containing
retrieved results of N such elements. Given a query q, isRelevant (r) is a binary function
assigning 1 to the rank position r if it contains a feature-related source code element and 0
otherwise. P(r) is the function that computes precision after truncating the list immediately
below the ranked position r . In this way, MAP assigns a higher precision score to feature-
related elements at the top of the ranked-list (where the denominator is small) compared to
the feature-related elements at the bottom (where the denominator is larger).

Note that “AP” is quite different from the “precision” measure. Precision is a single-
value measure based on the whole list of source code elements returned by the technique.
However, for a ranked sequence of source code elements, it is desirable to also consider the
order in which the correctly returned elements are presented, which is what AP measures: a
developer would typically have to scan source code elements in the list, presumably starting
from the first one, until the relevant source code element is found. Since MAP measures
the rank of accurate elements retrieved, it is used to simultaneously assess FLTs for their
relevance-rank for the goal of near-full feature location in this study.

3.4.2 Evaluation Measures: Foothold Feature Location

The recall and the precision of results begin to be less important when the goal is to
locate one feature-related element. Ranking measures that rank at the top of the ranked list
becomes more influential, because they reduce unnecessary effort for the developer who
vets the retrieval results. To perform this type of assessment, Poshyvanyk et al. (2007)
initially defined an effectiveness metric that measures the rank of the first feature related
element. This metric essentially represents the effort required by the developer in terms of
the number of entities he would have to view before finding the first feature-related element
(Poshyvanyk et al. 2012). However, the Mean Reciprocal Rank (MRR) is a more intuitive
measure of higher ranks because it essentially puts the measure of Poshyvanyk et al. (2012)
as the denominator, resulting in MRR being higher when the first feature-related element
is at the top of the list and lower when the first relevant element is further down in the list.
In addition, MRR is also a predominant choice in existing FLT evaluations when foothold
location seems to be the goal (Lukins et al. 2010; Razzaq et al. 2018). While Reciprocal
Rank(RR) measures the reciprocal of the rank position of the first feature-related element
found in the ranked-list retrieved as a result of an FLT, MRR measures the mean of the
reciprocal ranks over a set of test queries. MRR is defined as follows:

1

|Q|
Q∑

q=1

1

ranqq

(6)

Where rankq is the rank position of the top feature-related element calculated against
a test query q from a set of queries Q. In this way, MRR assesses the FLTs for best case

Empirical Software Engineering (2020) 25:266–321 285

analysis in ranking one feature-related element (i.e. the foothold of a feature) towards the
top of the ranked-list.

3.4.3 Data Collection Method

The overall data collection process is described as a formal procedure (see Algorithm 1).
This facilitates a more effective automation process and reproducibility of our case study
analysis for other researchers. The input to the procedure is a software system S, a technique
to evaluate T , and certain configuration settings Ω for the technique T . The outputs pro-
duced by this process are the vectors representing the scores of each employed evaluation
measure. The overall process, comprising of three phases, is discussed below.

Data Preparation The process is initiated by parsing the source code of each software sys-
tem S at method level granularity, resulting in a list of all methods E from S. To accomplish
this step, we applied a static program analysis to obtain the program model. We used the
JDT API to obtain the Abstract Syntax Tree (AST) model of the program, and then extracted
the source code elements (methods) from this AST model.

Next, the set of extracted methods E and the set of queries Q were pre-processed before
execution of the FLTs. Considering the significance of empirical-settings in terms of its
impact on FLTs performance, we applied the best identified empirical practice in this exe-
cution step, as discussed in Section 2.5. Specifically, identifiers and comments were both
used to represent the source code elements whereas, title and description of feature-requests
and bug reports are used to formulate the test queries. To pre-process the queries and cor-
pus, all three major steps identified as having a positive impact on the FLTs performance;
i.e. splitting identifiers, stop-word removal and stemming, were performed. In splitting the
identifiers step, we combined camelCase and samurai (Dit et al. 2011) splitting techniques.
For example, we split “myMethod,” “my Method” and “my-method” into two isolated
terms: “my” and “method.” For stop-word removal, we used the common English terms list
provided by Dit et al. (2015) while presenting their reproducible framework for FLTs. In
addition, we eliminate the non-literals and frequently used keywords (e.g. “if,” “else”) in the
java language, in the spirit of Biggers et al. (2014) and Thomas et al. (2013). Finally, to stem
the terms, we used the Porter stemmer (Porter 1980) implementation in apache Lucene.8

The pre-processed documents (queries and methods) are then converted to a standard
representation used in IR-based FLTs (Rubin and Chechik 2013), i.e. a term × document
matrix. Two such matrices, ME and MQ were created for each of the document sets E and
Q, respectively. In ME , rows correspond to methods in S and columns correspond to the
methods terms (i.e. the corpus vocabulary), whereas in MQ, rows correspond to test queries
belonging to S and columns correspond to the query terms (i.e. the query’s vocabulary).

Technique Execution In this phase, for each query q in the query set Q belonging to the
software system S, we executed technique T , under configuration settings Ω , to find a
relevancy score for all the source code elements E to q. To accomplish this, technique T

was iteratively executed given each row of MQ (corresponding to a query) to retrieve all
rows of ME which finally produced a relevancy matrix MEQ. In MEQ each row corresponds
to a query and each column corresponds to a source code element (method), whereas the
value in each cell of MEQ represents the relevancy score for each query to each element,
according to the technique.

8https://lucene.apache.org/core/7 2 0/analyzers-common/org/tartarus/snowball/ext/PorterStemmer.html

Empirical Software Engineering (2020) 25:266–321286

https://lucene.apache.org/core/7_2_0/analyzers-common/org/tartarus/snowball/ext/PorterStemmer.html

Table 3 Configuration of the baseline techniques

Baseline technique Optimal Identified by

Configuration

VSM Lucene TF-IDF, Thomas et al. (2013), Moreno et al. (2015)

Cosine Similarity

VSM Matlab TF-IDF, Thomas et al. (2013), Moreno et al. (2015)

Cosine Similarity

VSM Tracelab TF-IDF, Thomas et al. (2013), Dit et al. (2013)

Cosine Similarity

LSI Gensim Number of topics=200 Marcus et al. (2004), Beard et al. (2011)

LSI Matlab Complete Dit et al. (2013)

implementation as it

LDA Gensim number of topics: 200-500, α: 1, Corley et al. (2015), Beard et al. (2011)

iterations: 1000

R LDA number of topics: 200, α: 1, Biggers et al. (2014), Lukins et al. (2010)

iterations: 1000

Gibbs LDA number of topics: 200, Zhou et al. (2012), Panichella et al. (2013)

α: 0.5-1, β: 0.1,

RELEV ANCYSCORE() is a general method passed with an instance of the baseline
technique T and its configuration Ω , in addition to the source code elements and query.
The baseline technique could be any of the eight techniques (i.e. VSM-Lucene, VSM-
Matlab, VSM-Tracelab, LSI-Gensim, LSI-Matlab, LDA-Gensim, LDA-R and LDA-Gibbs)
discussed in Section 2.3. In fact, all baseline techniques were employed in the studies.
Ω is the frequently used configuration proven as best practice in producing better results
as discussed in Section 2.5. Table 3 specifically lists the selected configuration for each
of the baseline techniques and the examples of the studies which identified those config-
urations. Implementations of all baseline techniques are also provided in the replication
package.9

Data Collection The final phase is the data collection phase where ranked lists of source
code elements against each query are created. These ranked lists are then assessed with
evaluation measures inferred by the assessment frame-of-reference of FLTs discussed in
Section 3.1. The phase is initiated by relevancy score based sorting of source code ele-
ments in the MEQ matrix, obtained in the technique execution step. Such a sorting creates
a query-wise descending order sorting of source code elements in each row of MEQ, hence
each row represents a ranked-list of source code elements retrieved against each test query.
These ranked lists were then further assessed to calculate the values of the chosen evaluation
measures. To measure the recall and precision at cut-points relative to the size of features
under investigation, we determined the size of each feature N . Then the values of recall and
precision were calculated at the first 10 cut-points equal to the 10 multiples of N. These
recall and precision values were stored in vectors named “Recall@K”, “Precision@K” and
“F-Measure@K” in algorithm 1, respectively. To measure the MRR and MAP, values of

9https://www.lero.ie/research/datasets/feature location/comparison

Empirical Software Engineering (2020) 25:266–321 287

https://www.lero.ie/research/datasets/feature_location/comparison

Reciprocal Rank(RR) and Average Precision(AP) were calculated for each ranked list rq

and then averaged over the number of queries in Q. Finally, this process was repeated for
all the instances of S (all software systems) and all instances of techniques T (all baseline
techniques).

Empirical Software Engineering (2020) 25:266–321288

3.4.4 Statistical Analysis Method

To eliminate the risk of sample error, empirical assessment is undertaken on nearly com-
plete sets of features in our selected case studies. However, to understand the underlying
data distribution of selected feature sets responsible for such findings and to measure the
statistical significance of our findings, (which potentially extends our work to other similar
systems and new features in these systems in the future), we performed a statistical analysis
on the results obtained.

Since, different implementations of the baseline techniques have been matched to each
feature (each member of the data), we exploited paired statistic techniques to determine
whether the performance difference of each baseline technique is statistically significant or
occurred by chance alone.

In the case of normally distributed data, we exploited a paired t-test where there
are two comparison groups and an “ANOVA” test where the comparison groups are
more than two. Where the distribution of data was found to be non-normal, we lever-
aged the “Wilcoxon signed-rank” test in the case of two comparison groups and, in
the case where there are greater than two comparison groups, the Friedman test was
applied.

To verify the normality of the data, we used the “Shapiro-Wilk W” test which tests the
null hypothesis, checking that the sample is drawn from a normally distributed population.
To reject the null hypothesis in any of the selected paired tests, we accept a probability of
5% of committing a Type-I-error (i.e., α < 0.05). To measure the effect size, in order to
find the magnitude of difference, for parametric analyses we used Cohen’s d. The effect
size can be considered negligible for |d| < 0.2, small for 0.2 < |d| < 0.5, medium for
0.5 < |d| < 0.8, and large for |d| > 0.8. These thresholds are those suggested by Kamp-
enes et al. (2007). Regarding non-parametric analyses, we employed the Cliff’s Delta (δ)
effect size. We judge the magnitude of the effect size by comparing it to four thresholds
suggested by Romano et al. (2006). These thresholds can be summarized as follows: negli-
gible if |δ| < 0.147, small if 0.147 ≤ |δ| < 0.33, medium if 0.33 ≤ |δ| < 0.474, and large
if |δ| ≥ 0.474.

Next we present the obtained results and discuss our findings in the context of each of
the defined research questions.

4 Results and Analysis

This section reports on the relative performance of baseline techniques in the evalua-
tions. This includes results for and analysis of VSM, LSI and LDA baseline techniques
for the first research question, gathered for each of the case studies, and these are pre-
sented in Section 4.1. For one large, medium and small system, we illustrate the results
using boxplots, as they provide a quick visual representation of median, upper and lower
quartile distributions, minimum and maximum values, and outliers. We further enhance
the boxplots to present the mean value analysis. After demonstrating the performance
of the implementations using box-plots, Sections 4.2, 4.3 and 4.4 present the results
gathered for research question 2, research question 3 and research question 4, respec-
tively. Finally, Section 4.5 summarizes the results and proposed answers to the research
questions.

Empirical Software Engineering (2020) 25:266–321 289

Fig. 3 VSM performance for near-full goal of feature location

Empirical Software Engineering (2020) 25:266–321290

4.1 Performance Variation of Different Implementations

4.1.1 VSM

Near-Full Feature location Goal Figure 3 shows the recall, precision, F-measure and aver-
age precision for the Lucene, Matlab and Tracelab VSM implementations, applied to each of
the three case studies (software systems) selected from different sizes. In the case of recall,
precision and the f-measure, the boxplots in the figure plot the averaged values of the initial
10 cut-points. The full set of results for each cut-point are provided in our online repository.
Dot points and horizontal lines through each boxplot represent the mean and median of the
averaged values, respectively.

Even though the difference between systems dwarfs other differences, the difference
in performance of VSM implementations is still visible from Fig. 3 on each system. The
median, mean, and best performances differ for each implementation on each case study and
the differences between the mean and median values are considerable. Their quartile distri-
butions also differ significantly. As an example, consider the recall dispersion in ArgoSPL:
the mean of the recall values averaged for the 10 cut-points (named Mean Recall@K) are
0.281, 0.189 and 0.232. The median values are 0.209, 0.128 and 0.172, and the best values
are 0.933, 0.761 and 0.770 for Lucene, Matlab and Tracelab, respectively. This suggests that
the choice of implementation for VSM model can have a large effect on the performance of
a baseline technique.

Foothold Location Goal Figure 4 displays MRR results for each case study. Clearly, the
mean, median, best values, and distribution of results in the boxplot are quite different from
one implementation to the others, even within systems. As an example, consider the dif-
ferences for Lucene, Matlab and Tracelab VSM for ArgoSPL with respect to mean (0.174,
0.090 and 0.090), median (0.022, 0.013 and 0.018) and best values (1, 0.5 and 1).

4.1.2 LSI

Near-full Goal Figure 5 plots the recall, precision, f-measure and MAP results of two LSI-
based implementations (i.e. Matlab and Gensim) over the same three systems. Again, it is

Fig. 4 VSM performance for foothold location goal

Empirical Software Engineering (2020) 25:266–321 291

Fig. 5 LSI performance for near-full goal of feature location

Empirical Software Engineering (2020) 25:266–321292

evident that the results differ over LSI implementation, within each case studies. Consider
iBatis for example: The Matlab implementation has higher quartile distributions than the
Gensim implementation. Similarly, the mean and median values tend to be higher in the
Matlab implementation, and these trends are visible across the three systems.

Foothold Location Goal Figure 6 visualizes the distribution of MRR results for Matlab and
Gensim implementations of LSI. Regarding the quartile distributions, again there would
seem to be a difference between the two: Matlab would seem to perform better than Gensim
in all three case studies. In the case of median value analysis, Matlab performs at-least as
well as Gensim, but usually better. In best value analysis, Matlab performs better or similar
to Gensim for ArgoSPL and iBatis whereas in the case of jEdit, they perform similarly.

4.1.3 LDA

Near-full Goal Figure 7 displays the recall precision, f-measure and MAP dispersions of
the three implementations of LDA for the three selected case studies. Consistent to the other
IR models, LDA dispersions differ significantly across the case study systems, but in this
case the differences seem inconsistent. Again differences across LDA implementations, but
within systems, are also apparent from the box-plots.

Foothold Location Goal Figure 8 displays MRR dispersion for Gensim, R and Gibbs.
Similar to the other boxplots, the figure shows the different distributions across LDA tech-
niques within systems, but that these differences are not always in the same direction across
systems.

4.1.4 Differing Performance of Different Implementations

Table 4 presents the p-values for each of the hypotheses derived from research question 1
with respect to VSM, LSI and LDA.

Table 4 is partitioned horizontally into three parts where each part presents the analysis
results for each IR-model. Every row in the table presents the hypotheses results of a case
study in terms of the p values for the performance difference assessed under RQ1, for all

Fig. 6 LSI performance for foothold location goal

Empirical Software Engineering (2020) 25:266–321 293

Fig. 7 LDA performance for near-full relevance goal of feature location

Empirical Software Engineering (2020) 25:266–321294

Fig. 8 LDA performance for foothold location goal

five evaluation measures. It can be seen from the p values in the rows that they are less
than 0.05 (shown in bold) in the majority of the case studies for the majority of evalua-
tion measures. This means that, we can successfully reject the null hypotheses that baseline
techniques belonging to the same IR-model perform similarly for the majority of these
evaluation measures in the majority of the case studies presented. Hence, the exact imple-
mentation of the IR technique should be referred to when reporting FLT evaluations. This
finding is true for eleven of the twelve case studies, but implementations applied to Mylyn
do not seem to differ significantly.

4.2 Better-performing Implementations of each IR-model

Table 5 presents the hypotheses results for pair-wise analysis of the different implementa-
tions of the each IR-model, assessed under RQ2. Each row presents the effect-size for the
hypotheses tested for all five evaluation measures. Arrow symbols in the table are used to
indicate the increase or decrease of the first mentioned technique over the other. Embold-
ing is used to demark significance. As an example consider the ArgoSPL system, and the
embolded (0.656 ↑) in the Lucene-over-Matlab row under the recall column. It indicates
that Lucene performed significantly better than Matlab with an effect-size of 0.656 which
is large according to Romano et al. (2006). Likewise, the “↓” symbol used in Matlab-over-
Tracelab under the precision column indicates Tracelab performed better than Matlab with
a medium effect-size.

In the pair-wise analysis of the implementations belonging to VSM, in 138 out of 180
comparisons, the implementations differed significantly. Specifically, in 120 comparisons
where Lucene compared with other implementations, 97 cases are significant. Of those
cases, Lucene outperformed the others in 94 cases while the others out-performed Lucene in
only three cases. Of the 44 cases where it differed significantly to Matlab it outperformed it
43 times and was outperformed by Matlab only once. When it was specifically compared to
Tracelab it significantly outperformed it 50 times and was outperformed only twice. While
these results also suggest an impact of system and measurement choice, overall the Lucene
implementation of VSM is better performing than the other two implementations over the
vast majority of these evaluations.

In the case of LSI, implementations differ for only 36 of the 60 cases where the Matlab
implementation was found to be significantly better than Gensim 31 times and Gensim

Empirical Software Engineering (2020) 25:266–321 295

Table 4 Performance difference of the different implementations belongs-to each IR-model

Near-full Feature Location Foothold Location

Recall Precision F-Measure MAP MRR

VSM

ArgoSPL 0.001 0.014 0.014 0.003 0.019

Derby 0.000 0.001 0.000 0.000 0.000

Eclipse 0.000 0.000 0.000 0.000 0.000

ArgoUML 0.000 0.000 0.000 0.000 0.000

jEdit 0.000 0.000 0.000 0.000 0.000

Math 0.071 0.439 0.001 0.000 0.000

muComman 0.000 0.000 0.000 0.000 0.000

JabRef 0.002 0.001 0.001 0.000 0.000

Lang 0.000 0.000 0.000 0.000 0.000

Rhino 0.000 0.000 0.000 0.000 0.000

iBatis 0.006 0.010 0.010 0.000 0.000

Mylyn 0.192 0.337 0.492 0.462 0.478

LSI

ArgoSPL 0.004 0.014 0.010 0.001 0.715

Derby 0.012 0.015 0.015 0.000 0.000

Eclipse 0.655 0.655 0.655 0.009 0.034

ArgoUML 0.052 0.042 0.038 0.002 0.005

jEdit 0.000 0.000 0.000 0.000 0.000

Math 0.440 0.767 0.678 0.671 0.516

muComman 0.000 0.000 0.000 0.000 0.000

JabRef 0.001 0.001 0.001 0.000 0.001

Lang 0.055 0.040 0.509 0.091 0.073

Rhino 0.000 0.000 0.000 0.000 1.000

iBatis 0.211 0.156 0.156 0.000 0.000

Mylyn 0.300 0.233 0.211 0.326 0.412

LDA

ArgoSPL 0.006 0.014 0.014 0.000 0.000

Derby 0.001 0.000 0.001 0.000 0.000

Eclipse 0.044 0.687 0.368 0.110 0.028

ArgoUML 0.000 0.000 0.000 0.000 0.000

jEdit 0.000 0.000 0.000 0.000 0.000

Math 0.019 0.019 0.019 0.013 0.028

muComman 0.000 0.001 0.000 0.000 0.000

JabRef 0.001 0.001 0.001 0.000 0.000

Lang 0.527 0.527 0.044 0.000 0.000

Rhino 0.000 0.000 0.000 0.000 0.000

iBatis 0.001 0.000 0.000 0.000 0.000

Mylyn 0.538 0.672 0.459 0.009 0.307

Empirical Software Engineering (2020) 25:266–321296

Ta
bl
e
5

Pa
ir

w
is

e
pe

rf
or

m
an

ce
di

ff
er

en
ce

of
th

e
ba

se
lin

e
te

ch
ni

qu
es

be
lo

ng
to

an
IR

-m
od

el
a

Sy
st

em
M

od
el

Im
pl

em
en

ta
tio

n
N

ea
r-

fu
ll

Fe
at

ur
e

L
oc

at
io

n
Fo

ot
ho

ld
L

oc
at

io
n

R
ec

al
l

Pr
ec

is
io

n
F-

M
ea

su
re

M
A

P
M

R
R

A
rg

oS
PL

V
SM

L
uc
en
e-
ov
er
-M

at
la
b

L
(0
.6
56
)↑

L
(0
.6
27
)↑

L
(0
.6
49
)↑

L
(0
.7
04
)↑

S(
0.

26
)

L
uc
en
e-
ov
er
-T
ra
ce
la
b

L
(0
.6
15
)↑

L
(0
.5
45
)↑

L
(0
.5
53
)↑

L
(0
.6
6)

↑
L
(0
.4
98
)↑

M
at
la
b-
ov
er
-T
ra
ce
la
b

M
(0
.4
28
)↓

M
(0
.3
89
)↓

M
(0
.3
81
)↓

M
(0
.4
25
)↑

N
(0

.0
89

)

L
SI

M
at
la
b-
ov
er
-G

en
si
m

L
(0
.6
07
)↑

L
(0
.5
14
)↑

L
(0
.5
37
)↑

L
(0
.6
79
)↑

N
(0

.0
76

)

L
D
A

G
en

si
m
-o
ve
r-
R

N
(0

.0
54

)
N
(0
.0
31
)↑

N
(0

.0
31

)
N

(0
.0

25
)

S(
0.

26
7)

G
en
si
m
-o
ve
r-
G
ib
bs

L
(0
.5
53
)↑

L
(0
.5
14
)↑

L
(0
.5
45
)↑

L
(0
.6
91
)↑

L
(0
.5
25
)↑

R
-o
ve
r-
G
ib
bs

L
(0
.5
04
)↑

L
(0
.4
78
)↑

L
(0
.4
78
)↑

L
(0
.6
22
)↑

L
(0
.6
94
)↑

D
er

by
V
SM

L
uc
en
e-
ov
er
-M

at
la
b

L
(0
.6
41
)↑

L
(0
.6
41
)↑

L
(0
.6
41
)↑

L
(0
.8
04
)↑

L
(0
.8
01
)↑

L
uc
en
e-
ov
er
-T
ra
ce
la
b

L
(0
.5
57
)↑

L
(0
.5
5)

↑
L
(0
.5
5)

↑
L
(0
.7
32
)↑

L
(0
.6
64
)↑

M
at
la
b-
ov
er
-T
ra
ce
la
b

S(
0.
14
7)

↓
S(

0.
17

7)
S(

0.
17

7)
M
(0
.4
4)

↓
M
(0
.4
25
)↓

L
SI

M
at
la
b-
ov
er
-G

en
si
m

M
(0
.4
37
)↓

M
(0
.4
24
)↓

M
(0
.4
23
)↓

L
(0
.7
33
)↓

L
(0
.7
48
)↓

L
D
A

G
en
si
m
-o
ve
r-
R

S(
0.
32
2)

↓
S(

0.
27

9)
S(

0.
27

9)
L
(0
.8
72
)↑

L
(0
.7
01
)↑

G
en
si
m
-o
ve
r-
G
ib
bs

S(
0.
32
2)

↓
S(

0.
27

9)
S(

0.
27

9)
L
(0
.7
76
)↑

L
(0
.6
64
)↑

R
-o
ve
r-
G
ib
bs

S(
0.
32
2)

↓
S(

0.
27

9)
S(

0.
27

9)
L
(0
.6
27
)↑

L
(0
.8
72
)↓

E
cl

ip
se

V
SM

L
uc
en
e-
ov
er
-M

at
la
b

M
(0
.4
05
)↑

M
(0
.3
81
)↑

M
(0
.3
76
)↑

L
(0
.9
37
)↑

L
(0
.9
6)

↑
L
uc
en
e-
ov
er
-T
ra
ce
la
b

M
(0
.4
05
)↑

M
(0
.3
78
)↑

M
(0
.3
76
)↑

L
(0
.9
69
)↑

L
(0
.9
79
)↑

M
at
la
b-
ov
er
-T
ra
ce
la
b

M
(0
.4
05
)↑

M
(0
.3
78
)↑

M
(0
.3
76
)↑

L
(0
.9
37
)↑

L
(0
.9
6)

↑
L
SI

M
at
la
b-
ov
er
-G

en
si
m

N
(0

.0
67

)
N
(0
.0
67
)↑

N
(0

.0
67

)
M
(0
.3
9)

↑
S(
0.
31
5)

↑
L
D
A

G
en

si
m
-o
ve
r-
R

S(
0.

25
)

N
(0
.1
46
)↑

S(
0.

14
9)

N
(0

.0
66

)
N

(0
.1

3)

G
en
si
m
-o
ve
r-
G
ib
bs

L
(0
.5
06
)↑

N
(0
.0
83
)↑

S(
0.

14
9)

S(
0.
18
4)

↓
S(

0.
31

3)

R
-o
ve
r-
G
ib
bs

S(
0.
31
3)

↑
S(
0.
18
8)

↓
S(

0.
14

9)
N

(0
.0

16
)

N
(0

.1
25

)

A
rg

oU
M

L
V
SM

L
uc
en
e-
ov
er
-M

at
la
b

L
(0
.5
)↑

L
(0
.5
05
)↑

L
(0
.5
02
)↑

L
(0
.6
44
)↑

L
(0
.5
35
)↑

L
uc
en
e-
ov
er
-T
ra
ce
la
b

L
(0
.5
12
)↑

L
(0
.5
05
)↑

L
(0
.5
09
)↑

L
(0
.6
34
)↑

M
(0
.4
52
)↑

M
at
la
b-
ov
er
-T
ra
ce
la
b

N
(0

.0
88

)
N

(0
.1

09
)

N
(0

.1
03

)
M
(0
.3
72
)↓

N
(0

.1
39

)

Empirical Software Engineering (2020) 25:266–321 297

Ta
bl
e
5

(c
on

tin
ue

d)

Sy
st

em
M

od
el

Im
pl

em
en

ta
tio

n
N

ea
r-

fu
ll

Fe
at

ur
e

L
oc

at
io

n
Fo

ot
ho

ld
L

oc
at

io
n

R
ec

al
l

Pr
ec

is
io

n
F-

M
ea

su
re

M
A

P
M

R
R

L
SI

M
at
la
b-
ov
er
-G

en
si
m

S(
0.

20
4)

S(
0.

21
3)

S(
0.

21
7)

S(
0.
31
7)

↑
S(
0.
29
8)

↑
L
D
A

G
en

si
m
-o
ve
r-
R

S(
0.

19
9)

S(
0.

16
9)

S(
0.

17
4)

N
(0

.0
7)

N
(0

.0
67

)

G
en
si
m
-o
ve
r-
G
ib
bs

L
(0
.5
09
)↑

L
(0
.5
09
)↑

L
(0
.5
09
)↑

L
(0
.7
78
)↑

L
(0
.7
23
)↑

R
-o
ve
r-
G
ib
bs

L
(0
.5
68
)↑

L
(0
.5
68
)↑

L
(0
.5
68
)↑

L
(0
.7
79
)↑

L
(0
.7
48
)↑

jE
di

t
V
SM

L
uc
en
e-
ov
er
-M

at
la
b

L
(0
.6
27
)↑

L
(0
.6
35
)↑

L
(0
.6
34
)↑

L
(0
.7
4)

↑
L
(0
.6
57
)↑

L
uc
en
e-
ov
er
-T
ra
ce
la
b

L
(0
.5
68
)↑

L
(0
.6
37
)↑

L
(0
.6
29
)↑

L
(0
.6
88
)↑

L
(0
.6
35
)↑

M
at
la
b-
ov
er
-T
ra
ce
la
b

M
(0
.3
48
)↓

S(
0.
17
4)

↓
S(
0.
2)

↓
M
(0
.3
32
)↓

S(
0.
20
2)

↓
L
SI

M
at
la
b-
ov
er
-G

en
si
m

M
(0
.4
02
)↑

S(
0.
31
8)

↑
S(
0.
32
7)

↑
L
(0
.4
75
)↑

M
(0
.3
43
)↑

L
D
A

G
en
si
m
-o
ve
r-
R

L
(0
.5
42
)↑

S(
0.
17
3)

↑
L
(0
.5
54
)↑

N
(0

.0
81

)
N

(0
.0

22
)

G
en
si
m
-o
ve
r-
G
ib
bs

L
(0
.5
42
)↑

L
(0
.5
41
)↑

L
(0
.5
41
)↑

L
(0
.7
6)

↑
L
(0
.6
96
)↑

R
-o
ve
r-
G
ib
bs

N
(0

)
L
(0
.5
02
)↑

N
(0

.0
06

)
L
(0
.7
8)

↑
L
(0
.7
27
)↑

C
om

m
on

s-
M

at
h

V
SM

L
uc
en
e-
ov
er
-M

at
la
b

M
(0
.3
44
)↑

S(
0.
20
8)

↑
S(

0.
22

5)
S(

0.
22

2)
S(

0.
20

7)

L
uc
en
e-
ov
er
-T
ra
ce
la
b

M
(0
.3
71
)↓

M
(0
.3
71
)↑

M
(0
.3
71
)↑

L
(0
.5
5)

↑
L
(0
.5
9)

↑
M
at
la
b-
ov
er
-T
ra
ce
la
b

M
(0
.3
36
)↑

M
(0
.3
36
)↑

M
(0
.3
36
)↑

L
(0
.4
79
)↑

L
(0
.4
96
)↑

L
SI

M
at
la
b-
ov
er
-G

en
si
m

N
(0

.0
97

)
N

(0
.0

37
)

N
(0

.0
52

)
N

(0
.0

53
)

N
(0

.0
82

)

L
D
A

G
en

si
m
-o
ve
r-
R

S(
0.

27
8)

S(
0.
27
8)

↑
S(
0.
27
8)

↑
S(

0.
17

7)
S(

0.
16

9)

G
en
si
m
-o
ve
r-
G
ib
bs

S(
0.
27
8)

↑
S(
0.
27
8)

↑
S(
0.
27
8)

↑
M
(0
.3
79
)↑

M
(0
.3
89
)↑

R
-o
ve
r-
G
ib
bs

N
(0

.1
35

)
N

(0
.1

35
)

N
(0

.1
35

)
S(
0.
32
1)

↑
S(
0.
28
5)

↑
m

uC
om

m
an

de
r

V
SM

L
uc
en
e-
ov
er
-M

at
la
b

S(
0.

21
9)

N
(0

.0
99

)
N

(0
.0

95
)

N
(0

.1
43

)
N

(0
.0

48
)

L
uc
en
e-
ov
er
-T
ra
ce
la
b

L
(0
.5
24
)↑

L
(0
.5
09
)↑

L
(0
.5
21
)↑

L
(0
.6
26
)↑

L
(0
.5
97
)↑

M
at
la
b-
ov
er
-T
ra
ce
la
b

L
(0
.5
38
)↑

L
(0
.5
27
)↑

L
(0
.5
3)

↑
L
(0
.7
28
)↑

L
(0
.6
84
)↑

L
SI

M
at
la
b-
ov
er
-G

en
si
m

L
(0
.4
91
)↑

M
(0
.3
8)

↑
L
(0
.5
52
)↑

L
(0
.5
85
)↑

L
(0
.4
94
)↑

Empirical Software Engineering (2020) 25:266–321298

Ta
bl
e
5

(c
on

tin
ue

d)

Sy
st

em
M

od
el

Im
pl

em
en

ta
tio

n
N

ea
r-

fu
ll

Fe
at

ur
e

L
oc

at
io

n
Fo

ot
ho

ld
L

oc
at

io
n

R
ec

al
l

Pr
ec

is
io

n
F-

M
ea

su
re

M
A

P
M

R
R

L
D
A

G
en

si
m
-o
ve
r-
R

N
(0

.0
08

)
N

(0
.0

04
)

M
(0
.4
2)

↓
N

(0
.1

35
)

N
(0

.0
9)

G
en
si
m
-o
ve
r-
G
ib
bs

L
(0
.5
21
)↑

L
(0
.8
31
)↑

M
(0
.4
47
)↑

L
(0
.7
65
)↑

L
(0
.7
24
)↑

R
-o
ve
r-
G
ib
bs

L
(0
.4
84
)↑

L
(0
.4
86
)↑

L
(0
.4
82
)↑

L
(0
.7
1)

↑
L
(0
.6
84
)↑

Ja
bR

ef
V
SM

L
uc
en
e-
ov
er
-M

at
la
b

L
(0
.5
28
)↑

L
(0
.5
75
)↑

L
(0
.5
68
)↑

L
(0
.6
99
)↑

L
(0
.6
37
)↑

L
uc
en
e-
ov
er
-T
ra
ce
la
b

M
(0
.4
36
)↑

M
(0
.4
45
)↑

M
(0
.4
48
)↑

L
(0
.6
99
)↑

L
(0
.7
02
)↑

M
at
la
b-
ov
er
-T
ra
ce
la
b

S(
0.

30
3)

M
(0
.3
46
)↓

M
(0
.3
41
)↓

L
(0
.4
76
)↓

S(
0.
22
4)

↑
L
SI

M
at
la
b-
ov
er
-G

en
si
m

L
(0
.5
43
)↑

L
(0
.5
38
)↑

L
(0
.5
43
)↑

L
(0
.6
15
)↑

L
(0
.5
2)

↑
L
D
A

G
en
si
m
-o
ve
r-
R

L
(0
.5
43
)↑

N
(0

.1
33

)
N

(0
.1

33
)

N
(0

.0
11

)
N

(0
.0

25
)

G
en
si
m
-o
ve
r-
G
ib
bs

L
(0
.5
47
)↑

L
(0
.5
61
)↑

L
(0
.5
61
)↑

L
(0
.7
84
)↑

L
(0
.7
17
)↑

R
-o
ve
r-
G
ib
bs

L
(0
.5
54
)↑

L
(0
.5
48
)↑

L
(0
.5
48
)↑

L
(0
.8
33
)↑

L
(0
.7
2)

↑
C

om
m

on
s-

L
an

g
V
SM

L
uc
en
e-
ov
er
-M

at
la
b

L
(0
.5
34
)↑

L
(0
.5
34
)↑

L
(0
.5
34
)↑

L
(0
.5
19
)↑

L
(0
.5
31
)↑

L
uc
en
e-
ov
er
-T
ra
ce
la
b

L
(0
.5
34
)↑

L
(0
.5
34
)↑

L
(0
.5
34
)↑

L
(0
.7
17
)↑

L
(0
.7
33
)↑

M
at
la
b-
ov
er
-T
ra
ce
la
b

N
(0

)
N

(0
)

N
(0

)
L
(0
.6
48
)↑

L
(0
.6
53
)↑

L
SI

M
at
la
b-
ov
er
-G

en
si
m

S(
0.

28
3)

S(
0.

30
2)

N
(0

.0
97

)
S(

0.
24

9)
S(

0.
26

4)

L
D
A

G
en

si
m
-o
ve
r-
R

N
(0

.0
75

)
N

(0
.1

2)
N

(0
.1

2)
S(

0.
28

6)
S(

0.
27

6)

G
en
si
m
-o
ve
r-
G
ib
bs

S(
0.
32
5)

↑
S(
0.
32
5)

↑
S(
0.
32
5)

↑
L
(0
.7
5)

↑
L
(0
.7
61
)↑

R
-o
ve
r-
G
ib
bs

S(
0.
29
8)

↑
S(
0.
29
8)

↑
S(
0.
29
8)

↑
L
(0
.4
99
)↑

L
(0
.4
95
)↑

R
hi

no
V
SM

L
uc
en
e-
ov
er
-M

at
la
b

L
(0
.4
83
)↓

L
(0
.8
67
)↑

L
(0
.8
67
)↑

L
(0
.8
67
)↑

N
(0

)

L
uc
en
e-
ov
er
-T
ra
ce
la
b

S(
0.
25
3)

↓
L
(0
.8
67
)↑

L
(0
.8
67
)↑

L
(0
.8
67
)↑

L
(0
.9
94
)↑

M
at
la
b-
ov
er
-T
ra
ce
la
b

L
(0
.7
29
)↑

M
(0
.4
67
)↑

L
(0
.7
54
)↑

L
(0
.8
67
)↓

L
(0
.9
94
)↑

L
SI

M
at
la
b-
ov
er
-G

en
si
m

L
(0
.8
67
)↑

L
(0
.8
67
)↑

L
(0
.8
67
)↑

L
(0
.8
67
)↑

N
(0

)

L
D
A

G
en
si
m
-o
ve
r-
R

L
(0
.4
97
)↑

L
(0
.8
67
)↓

L
(0
.8
59
)↑

L
(0
.8
61
)↓

L
(0
.8
51
)↓

G
en
si
m
-o
ve
r-
G
ib
bs

L
(0
.4
91
)↑

L
(0
.8
67
)↓

L
(0
.8
64
)↑

L
(0
.8
67
)↓

L
(0
.8
51
)↓

R
-o
ve
r-
G
ib
bs

L
(0
.4
76
)↓

S(
0.
31
2)

↓
M
(0
.3
52
)↓

L
(0
.8
26
)↓

N
(0

)

Empirical Software Engineering (2020) 25:266–321 299

Ta
bl
e
5

(c
on

tin
ue

d)

Sy
st

em
M

od
el

Im
pl

em
en

ta
tio

n
N

ea
r-

fu
ll

Fe
at

ur
e

L
oc

at
io

n
Fo

ot
ho

ld
L

oc
at

io
n

R
ec

al
l

Pr
ec

is
io

n
F-

M
ea

su
re

M
A

P
M

R
R

iB
at

is
V
SM

L
uc
en
e-
ov
er
-M

at
la
b

S(
0.
23
6)

↑
S(
0.
19
6)

↑
S(

0.
20

7)
L
(0
.6
63
)↑

L
(0
.6
29
)↑

L
uc
en
e-
ov
er
-T
ra
ce
la
b

S(
0.

20
8)

S(
0.
20
8)

↑
S(

0.
20

8)
L
(0
.7
64
)↑

L
(0
.6
89
)↑

M
at
la
b-
ov
er
-T
ra
ce
la
b

S(
0.

16
7)

S(
0.
15
5)

$
↓

S(
0.

15
5)

S(
0.

20
2)

S(
0.
22
)↑

L
SI

M
at
la
b-
ov
er
-G

en
si
m

S(
0.

16
6)

S(
0.
15
4)

↑
S(

0.
15

4)
L
(0
.4
95
)↑

L
(0
.4
82
)↑

L
D
A

G
en

si
m
-o
ve
r-
R

N
(0

.0
18

)
N
(0
.0
28
)↑

N
(0

.0
28

)
L
(0
.5
37
)↑

N
(0

.1
14

)

G
en
si
m
-o
ve
r-
G
ib
bs

M
(0
.3
72
)↓

M
(0
.3
87
)↓

M
(0
.3
84
)↓

S(
0.
21
8)

↓
M
(0
.4
24
)↓

R
-o
ve
r-
G
ib
bs

M
(0
.4
06
)↓

M
(0
.4
22
)↓

M
(0
.4
16
)↓

L
(0
.6
63
)↓

L
(0
.5
97
)↓

M
yl

yn
V
SM

L
uc
en
e-
ov
er
-M

at
la
b

S(
0.

15
6)

N
(0

.1
47

)
N

(0
.1

28
)

S(
0.

30
4)

S(
0.

21
8)

L
uc
en
e-
ov
er
-T
ra
ce
la
b

S(
0.

14
8)

N
(0

.1
09

)
N

(0
.1

26
)

S(
0.

29
9)

S(
0.

18
6)

M
at
la
b-
ov
er
-T
ra
ce
la
b

S(
0.

19
3)

S(
0.

14
8)

S(
0.

15
9)

S(
0.

15
9)

S(
0.

25
1)

L
SI

M
at
la
b-
ov
er
-G

en
si
m

S(
0.

20
7)

S(
0.

23
9)

S(
0.

25
)

S(
0.

19
6)

S(
0.

16
4)

L
D
A

G
en

si
m
-o
ve
r-
R

N
(0

.0
68

)
N

(0
.1

14
)

N
(0

.1
14

)
S(

0.
15

9)
N

(0
.0

46
)

G
en

si
m
-o
ve
r-
G
ib
bs

S(
0.

20
7)

S(
0.

22
2)

S(
0.

23
3)

M
(0

.3
9)

N
(0

.1
37

)

R
-o
ve
r-
G
ib
bs

S(
0.

22
7)

S(
0.

20
4)

S(
0.

20
4)

M
(0
.4
6)

↑
S(

0.
18

6)

a L
=

L
ar

ge
,M

=
M

ed
iu

m
,S

=
Sm

al
l,

N
=

N
on

e

Empirical Software Engineering (2020) 25:266–321300

outperformed Matlab significantly only 5 times. While less consistent than VSM Lucene,
the results suggest that the Matlab implementation performed significantly better more often
than the Gensim implementation.

On pair-wise analysis of LDA implementations, it is evident from the table that the Gibbs
performance was significantly different to the Gensim or R implementations in 96 out of the
120 hypotheses. Of those 96 hypotheses, Gibbs outperformed Gensim or R only 22 times,
whereas in the other 74 cases Gibbs was outperformed by the others. So it seems, on aver-
age, to be slightly weaker than the other two LDA implementations. The performance of
the other LDA-based techniques (Gensim and R) is mixed. For example, only 19 of the 60
cases comparing the performance of Gensi and R implementations differed significantly.
Out of those 19, Gensim outperformed R in 14 cases. Thus, it is very hard to decide the
best implementation of LDA for (or regardless of) a specific FL goal, with the likelihood
being that its relative performance keeps varying in each case study. Similarly, the situation
is also not very clear when compare VSM implementations other than Lucene (i.e. Mat-
lab with Tracelab): in 41 of the 60 cases Matlab and Tracelab differ significantly. In 24
of these, Matlab outperformed Tracelab whereas in 17 Tracelab outperformed the Matlab
implementation. In these cases, the results seem to be more system specific than anything
else.

Finally, since FLTs should ultimately be evaluated by goal, it is interesting to analyse
Table 5 by FL goals. In terms of near-full FL, Lucene outperforms the others 79/96 times
and is only outperformed twice (precision and recall on Commons-Math and Rhino, respec-
tively). With respect to gaining a foothold in the code to the feature Lucene outperforms
the others 18/24 times and is never outperformed by the others. In most of these cases,
Lucene outperformed the others with large to medium effect-sizes. This evidence suggests
that, if you are looking at either of the two FL goals, you should look to VSM-Lucene as
the best-of-breed baseline technique implementing the VSM model.

Considering the FL goal type differences for LSI, Matlab outperforms Gensim 25 out of
29 times in terms of near-full feature location and 6 out of 7 times in terms of foothold loca-
tion goal. These are fairly consistent findings where Matlab and Gensim differ (although
they only differ significantly in 60% of cases).

Results of the LDA-based techniques are mixed for both FL goals. Gensim and R differ
only 17 times with respect to the near-full goal, where Gensim outperformed R for 13/17
times. In the case of foothold location Gensim and R differ only 2 times where Gensim
outperformed R in one case and R outperformed Gensim in another. However, Gibbs per-
formed less well in both goals: 20/77 times in near-full FL whereas 2/19 times in terms of
foothold location goal.

4.3 Relative Performance of Baseline Techniques

This section presents the relative performance differences between the baseline techniques.
To find the performance differences, results of all baseline techniques in terms of mean
values for each evaluation measure, are compared to find the percentage of increase or
decrease with respect to the mean values of other baseline techniques.

Table 610 presents the percentages for all evaluation measures. The table should be read
from left to right. For example, consider the precision row in the ArgoSPL study. It shows

10VsL=VSM Lucene, VsM=VSM Matlab, VsT=VSM Tracelab, LsM=LSI Matlab, LsG=LSI Gensim,
LdG=LDA Gensim, LdR=LDA R, LdGi=LDA Gibbs

Empirical Software Engineering (2020) 25:266–321 301

Ta
bl
e
6

R
el

at
iv

e
pe

rf
or

m
an

ce
of

ea
ch

fl
tf

or
ea

ch
ca

se
st

ud
y

A
rg

oS
PL

R
ec

al
l

V
sL

>
17
.9
%

V
sT

>
15

.5
%

L
sM

>
3.

3%
V

sM
>

15
.5

%
L

dR
>

0.
5%

L
dG

>
7.

7%
L

sG
>

22
.2

%
L

dG
i

Pr
ec

is
io

n
V
sL

>
20
.2
%

V
sT

>
13
.5
%

L
sM

>
4.

3%
V

sM
>

17
.8

%
L

dR
>

0.
2%

L
dG

>
7.

1%
L

sG
>

19
.5
%

L
dG

i

F-
M

ea
su

re
V
sL

>
19
.7
%

V
sT

>
14
.2
%

L
sM

>
4.
1%

V
sM

>
17
.7
%

L
dR

>
0.

1%
L

dG
>

7.
4%

L
sG

>
20
.2
%

L
dG

i

M
A

P
V
sL

>
33
.1
%

L
sM

>
0.

7%
V
sT

>
24
.7
%

V
sM

>
21

.7
%

L
dR

>
1.

6%
L

dG
>

8.
6%

L
sG

>
17
.6
%

L
dG

i

M
R

R
V

sL
>

6.
5%

L
sM

>
44

.7
%

V
sT

>
0.

2%
V

sM
>

1.
5%

L
dR

>
37

.5
%

L
sG

>
10

.5
%

L
dG

>
41
.5
%

L
dG

i

D
er

by

R
ec

al
l

V
sL

>
59
.2
%

L
dG

>
32

.8
%

L
dR

>
6.

5%
L

sG
>

35
.7

%
V

sT
>

15
.0

%
L

dG
i

>
79

.3
%

V
sM

>
45

.3
%

L
sM

Pr
ec

is
io

n
L

dG
i

>
41

.7
%

L
dR

>
5.
2%

V
sL

>
70
%

L
dG

>
19

.6
%

V
sT

>
19

.2
%

L
sG

>
78
.4
%

V
sM

>
37

.9
%

L
sM

F-
M

ea
su

re
L
dG

i
>

40
.6
%

V
sL

>
0.

8%
L

dR
>

69
.8

%
L

dG
>

19
.8

%
V

sT
>

19
.0

%
L
sG

>
78
.5
%

V
sM

>
37

.9
%

L
sM

M
A

P
V
sL

>
49
.3
%

L
sG

>
10

%
L
dG

>
78
.1
%

L
dR

>
46

.2
%

V
sT

>
61

.0
%

L
dG

i
>

44
.7

%
V
sM

>
14
.7
%

L
sM

M
R

R
V
sL

>
53
.3
%

L
sG

>
12

.9
%

L
dG

>
45
.8
%

V
sT

>
81

.8
%

L
dG

i
>

72
.6
%

L
dR

>
55

.8
%

V
sM

>
42
.4
%

L
sM

E
cl

ip
se

R
ec

al
l

V
sL

>
0.
0%

V
sM

>
0.
0%

V
sT

>
32
.6
%

L
dG

>
9.

4%
L
dG

i
>

9.
7%

L
dR

>
94

.2
%

L
sM

>
98

.5
%

L
sG

Pr
ec

is
io

n
V
sL

>
0.
0%

V
sM

>
0.
0%

V
sT

>
46

.3
%

L
dR

>
62

.9
%

L
dG

>
49
.1
%

L
dG

i
>

68
.6

%
L

sM
>

98
.5

%
L

sG

F-
M

ea
su

re
V
sL

>
40
.2
%

V
sM

>
67
.8
%

V
sT

>
53

.8
%

L
sM

>
63

.9
%

L
dG

>
69

.2
%

L
sG

>
50

%
L
dR

>
10
0%

L
dG

i

M
A

P
V
sL

>
0.
0%

V
sM

>
0.
0%

V
sT

>
40
.8
%

L
dG

i
>

4.
9%

L
dR

>
41
.4
%

L
dG

>
93
.0
%

L
sM

>
37

.4
%

L
sG

M
R

R
V
sL

>
0.
0%

V
sM

>
0.
0%

V
sT

>
18
.9
%

L
dR

>
22
.7
%

L
dG

i
>

12
.2
%

L
dG

>
75

.8
%

L
sM

>
57
.7
%

L
sG

A
rg

oU
M

L

R
ec

al
l

V
sL

>
39
.0
%

V
sT

>
5.

1%
V

sM
>

3.
3%

L
sM

>
8.

2%
L

dR
>

14
.2

%
L

sG
>

22
.3

%
L
dG

>
99
.2
%

L
dG

i

Pr
ec

is
io

n
V
sL

>
43
.4
%

V
sT

>
4.

2%
L

sM
>

0.
7%

V
sM

>
8.

9%
L

dR
>

16
.5

%
L
sG

>
20
.2
%

L
dG

>
99
.5
%

L
dG

i

F-
M

ea
su

re
V
sL

>
42
.5
%

V
sT

>
4.

9%
V

sM
>

0.
3%

L
sM

>
9.

6%
L

dR
>

15
.6

%
L

sG
>

20
.8

%
L
dG

>
99
.5
%

L
dG

i

M
A

P
V
sL

>
59
.0
%

V
sT

>
1.
1%

L
sM

>
2.
4%

L
dR

>
8.
5%

V
sM

>
12
.0
%

L
sG

>
21

.9
%

L
dG

>
95
.4
%

L
dG

i

M
R

R
V
sL

>
43
.6
%

L
sM

>
18
.6
%

L
sG

>
11
.9
%

V
sT

>
3.

6%
L

dR
>

3.
9%

V
sM

>
15
.8
%

L
dG

>
97
.8
%

L
dG

i

Empirical Software Engineering (2020) 25:266–321302

Ta
bl
e
6

(c
on

tin
ue

d)

jE
di

t

R
ec

al
l

V
sL

>
42
.6
%

V
sT

>
10

.7
%

L
sM

>
8.

5%
V
sM

>
12
.3
%

L
dG

>
14

.0
%

L
sG

>
82

.2
%

L
dR

>
64
.5
%

L
dG

i

Pr
ec

is
io

n
V
sL

>
50
.1
%

V
sT

>
5.
6%

L
sM

>
8.
4%

V
sM

>
12
.6
%

L
dG

>
9.

6%
L
sG

>
32
.8
%

L
dR

>
92

.9
%

L
dG

i

F-
M

ea
su

re
V
sL

>
48
.3
%

V
sT

>
7.

3%
L

sM
>

8.
4%

V
sM

>
12
.6
%

L
dG

>
10

.4
%

L
sG

>
95

.0
%

L
dG

i
>

15
.8
%

L
dR

M
A

P
V
sL

>
52
.0
%

V
sT

>
19

.5
%

L
sM

>
5.

6%
V
sM

>
14
.8
%

L
dG

>
6.

7%
L

sG
>

41
.5

%
L
dR

>
93
.2
%

L
dG

i

M
R

R
V
sL

>
50
.5
%

V
sT

>
4.

3%
L

sM
>

3.
7%

V
sM

>
19
.4
%

L
dG

>
6.

1%
L

sG
>

41
.1

%
L
dR

>
91
.9
%

L
dG

i

C
om

m
on

s-
M

at
h

R
ec

al
l

V
sL

>
18
.2
%

L
sM

>
15

.8
%

L
sG

>
13
.4
%

V
sM

>
7.
3%

L
dG

>
82
.1
%

L
dR

>
80

.7
%

L
dG

i
>

10
0%

V
sT

Pr
ec

is
io

n
V
sM

>
58
.1
%

V
sL

>
25

.6
%

L
sM

>
12

.2
%

L
sG

>
24

.6
%

L
dG

>
87
.7
%

L
dR

>
76

.5
%

L
dG

i
>

10
0%

V
sT

F-
M

ea
su

re
V

sL
>

24
.2

%
L

sM
>

13
.4

%
L

sG
>

17
.4

%
V

sM
>

6.
6%

L
dG

>
86
.8
%

L
dR

>
77

.2
%

L
dG

i
>

10
0%

V
sT

M
A

P
V
sL

>
49
.8
%

L
sG

>
5%

L
sM

>
40

.7
%

V
sM

>
4.
5%

L
dG

>
84

.6
%

L
dR

>
54
.4
%

V
sT

>
48

.1
%

L
dG

i

M
R

R
V

sL
>

34
.1

%
L

sG
>

6.
9%

L
sM

>
41

.6
%

V
sM

>
6.
1%

L
dG

>
85

.8
%

L
dR

>
64
.7
%

L
dG

i
>

7.
1%

V
sT

m
uC

om
m

an
de

r

R
ec

al
l

L
sM

>
22
.9
%

V
sM

>
1.

1%
V

sL
>

23
.4

%
L

dR
>

18
.4

%
L

dG
>

40
.3

%
L
sG

>
83
.3
%

V
sT

>
78
.0
%

L
dG

i

Pr
ec

is
io

n
L
sM

>
23
.8
%

V
sM

>
0.

9%
V

sL
>

17
.5

%
L
dR

>
46
%

L
sG

>
85
.8
%

V
sT

>
67
.3
%

L
dG

>
55
.6
%

L
dG

i

F-
M

ea
su

re
L
sM

>
23
.6
%

V
sM

>
0.

8%
V

sL
>

18
.8

%
L
dR

>
91
.2
%

L
sG

>
11

.5
%

V
sT

>
72

.1
%

L
dG

>
44

.0
%

L
dG

i

M
A

P
L
dG

>
9.
5%

L
sM

>
22
.2
%

V
sM

>
9.

0%
V

sL
>

8.
7%

L
dR

>
52

.4
%

L
sG

>
80
.9
%

V
sT

>
66
.5
%

L
dG

i

M
R

R
L
sM

>
15
.9
%

V
sM

>
13

.2
%

L
dR

>
11

.6
%

V
sL

>
40
%

L
sG

>
35

.7
%

L
dG

>
51
.8
%

V
sT

>
88
.1
%

L
dG

i

Ja
bR

ef

R
ec

al
l

V
sL

>
30
.1
%

V
sT

>
11

.4
%

L
sM

>
20

.5
%

L
dG

>
10

.8
%

V
sM

>
17

%
L

dR
>

28
.5

%
L
sG

>
81
.1
%

L
dG

i

Pr
ec

is
io

n
V
sL

>
30
.1
%

V
sT

>
18

%
L

sM
>

7.
7%

L
dG

>
24

.3
%

V
sM

>
2.

5%
L

dR
>

34
.8

%
L
sG

>
81
.4
%

L
dG

i

F-
M

ea
su

re
V
sL

>
29
.9
%

V
sT

>
17

.1
%

L
sM

>
10

.3
%

L
dG

>
21

.5
%

V
sM

>
6.

2%
L

dR
>

33
.4

%
L
sG

>
81
.2
%

L
dG

i

M
A

P
V
sL

>
55
.6
%

V
sT

>
5.
9%

L
dG

>
8.

2%
L
sM

>
18
.9
%

L
dR

>
12

.2
%

V
sM

>
27
.4
%

L
sG

>
88
.0
%

L
dG

i

M
R

R
V
sL

>
52
.7
%

L
dG

>
16

.8
%

L
sM

>
1.

0%
V

sM
>

2.
2%

V
sT

>
24

.6
%

L
dR

>
11

.3
%

L
sG

>
88
.8
%

L
dG

i

C
om

m
on

s-
L

an
g

R
ec

al
l

V
sL

>
49
.6
%

L
dR

>
28
.4
%

L
sM

>
18
.1
%

L
dG

>
26

.6
%

V
sM

>
10
0%

V
sT

>
0.

0%
L

sG
>

0.
0%

L
dG

i

Empirical Software Engineering (2020) 25:266–321 303

Ta
bl
e
6

(c
on

tin
ue

d)

Pr
ec

is
io

n
V
sL

>
31
.5
%

L
sM

>
28

.6
%

L
sG

>
30

%
L

dG
>

32
.7

%
L

dR
>

10
0%

V
sM

>
0.

0%
V

sT
>

0.
0%

L
dG

i

F-
M

ea
su

re
V
sL

>
50
.6
%

L
sG

>
27

.8
%

L
sM

>
3.

1%
L

dG
>

29
.4

%
L

dR
>

10
0%

V
sM

>
0.
0%

V
sT

>
0.
0%

L
dG

i

M
A

P
V
sL

>
64
.3
%

L
sM

>
17

.9
%

L
sG

>
31

.3
%

L
dG

>
33

%
L

dR
>

78
.1

%
V

sM
>

43
.2

%
L
dG

i
>

10
.2
%

V
sT

M
R

R
V
sL

>
48
.7
%

L
sM

>
17

.3
%

L
sG

>
35
.6
%

L
dG

>
31

.2
%

L
dR

>
85

.9
%

V
sM

>
43

.3
%

L
dG

i
>

10
.0
%

V
sT

R
hi

no

R
ec

al
l

L
sM

>
0.
6%

V
sM

>
0.
6%

L
sG

>
0.

0%
L
dG

i
>

0.
5%

L
dR

>
0.
8%

V
sT

>
2.
6%

L
dG

>
0.
8%

V
sL

Pr
ec

is
io

n
V
sL

>
8.
8%

L
dG

>
5.
2%

L
sM

>
0.
8%

V
sM

>
0.
1%

V
sT

>
1.
1%

L
dG

i
>

0.
1%

L
sG

>
0.
3%

L
dR

F-
M

ea
su

re
V
sL

>
5.
8%

L
dG

>
2.
6%

L
sM

>
0.
8%

V
sM

>
0.
6%

V
sT

>
0.
5%

L
dG

i
>

0.
1%

L
sG

>
0.
3%

L
dR

M
A

P
V
sL

>
6.
7%

V
sT

>
0.

3%
L
dG

i
>

1.
7%

L
sM

>
1.
5%

V
sM

>
0.
8%

L
dR

>
3.
3%

L
sG

>
0.
3%

L
dG

M
R

R
V

sL
>

0.
0%

V
sM

>
0.

0%
L

sM
>

0.
0%

L
sG

>
0.

0%
L

dR
>

0.
0%

L
dG

i
>

49
.4
%

V
sT

>
28
.1
%

L
dG

iB
at

is

R
ec

al
l

L
dG

i
>

55
.9
%

V
sL

>
10

.9
%

L
sM

>
7.

1%
L

dG
>

0.
6%

V
sT

>
5.

2%
L

dR
>

4.
8%

V
sM

>
8.

4%
L

sG

Pr
ec

is
io

n
L
dG

i
>

56
.9
%

V
sL

>
11

.2
%

L
sM

>
7.

5%
V

sT
>

1.
4%

L
dR

>
0.

8%
L

dG
>

2.
6%

V
sM

>
15

.3
%

L
sG

F-
M

ea
su

re
L
dG

i
>

56
.6
%

V
sL

>
11

.2
%

L
sM

>
7.

5%
V

sT
>

1.
6%

L
dG

>
0.

6%
L
dR

>
3.
7%

V
sM

>
13

.9
%

L
sG

M
A

P
L

dG
i

>
18

.7
%

V
sL

>
31

.1
%

L
sM

>
6%

L
dG

>
2.

7%
V

sM
>

1%
V

sT
>

9.
8%

L
dR

>
4.

4%
L

sG

M
R

R
V

sL
>

31
.2

%
L
dG

i
>

57
.8
%

V
sM

>
14
.1
%

L
dR

>
6.

6%
L
sM

>
4.
7%

V
sT

>
35
.1
%

L
dG

>
20

.7
%

L
sG

M
yl

yn

R
ec

al
l

V
sL

>
10

.2
%

V
sT

>
0.

6%
L

sM
>

3.
8%

L
sG

>
1.

7%
V

sM
>

13
%

L
dG

>
6.

3%
L

dR
>

1.
2%

L
dG

i

Pr
ec

is
io

n
V

sL
>

13
.2

%
L

sM
>

0.
8%

V
sT

>
4.

4%
V

sM
>

5.
2%

L
sG

>
5.

7%
L

dG
>

14
.5

%
L

dR
>

1.
4%

L
dG

i

F-
M

ea
su

re
V

sL
>

12
.3

%
L

sM
>

0.
5%

V
sT

>
5.

0%
V

sM
>

3.
7%

L
sG

>
7.

3%
L

dG
>

13
%

L
dR

>
1.

4%
L

dG
i

M
A

P
V

sL
>

33
.6

%
V

sT
>

0.
9%

L
sG

>
1%

L
dR

>
2.
7%

L
dG

i
>

2.
4%

L
sM

>
1.

4%
V

sM
>

11
.6

%
L

dG

M
R

R
V

sL
>

45
.9

%
L

sG
>

4.
7%

V
sT

>
10

.3
%

V
sM

>
3.

3%
L

dR
>

6.
3%

L
sM

>
9.

5%
L

dG
i

>
2.

4%
L

dG

Empirical Software Engineering (2020) 25:266–321304

that VSM Lucene performed 20.2% better than VSM Tracelab, VSM Tracelab performed
13.5% better than LSI Matlab, and LSI Matlab performed 4.3% better than VSM Matlab.
The former two are significant, as shown by the bolded text, but the latter is not. Note that the
table shows significant difference only with respect to the subsequent technique. For exam-
ple, in the recall row under iBatis,the difference between LDA Gibbs and VSM Lucene is
significant, whereas all the remaining adjacent pairs are non-significant. It is evident from
the table that VSM Lucene outperformed the majority of the other techniques in nine of the
twelve case studies. In Mylyn this trend was also evident but not to a significant degree,
while in Derby (one of the nine) LDA Gibbs outperforms VSM Lucene for two of the
five evaluation measures. Indeed, LDA Gibbs outperformed VSM Lucene for four evalu-
tion measures on iBatis also. LSI Matlab seemed to performed better for both of the FL
goals on muCommander and recall on Rhino. These relative performance percentages could
plausibly be employed towards cross-comparison of FLTs when employing a homogeneous
empirical design. For example, in the ArgoSPL study, VSM Lucene performed 38% bet-
ter than VSM Matlab with respect to precision. Then, in a homogeneous empirical design
for precision, if a novel FLT “A” performed 10% better than VSM Lucene and another
FLT “B” performed 5% better than VSM Matlab, then “A” could be considered to perform
approximately 43% better than “B”.

4.4 Impact of Software System

Probably the most startling finding, across the result set of the research questions is the
impact of the software systems under study. For example VSM Lucene, while outperform-
ing other baselines for the majority of the evaluation measures for 10 out of 12 systems,
is outperformed by LSI Matlab in mu commander for each evaluation measure. Like-
wise, when applied to iBatis, it was outperformed by LDA Gibbs in four of the evaluation
measures (three significantly).

Another example concerns LSI Mathlab. It performed relatively well across evaluation
measures in 10 of the 12 system, ranking between 1.2 and 3.8 in terms of relative technique
performance. However, in Derby it was the worst-performing technique across evaluation
measures and in Eclipse its average technique ranking, across the evaluation measures was
7.4 (out of eight).

Likewise the box-plots derived from our results often suggested system-specific trends.
For example Fig. 3 suggests that feature location using VSM IR techniques is generally eas-
ier on jEdit, slightly less easy on ArgoSPL and more difficult on iBatis, across evaluation
measures. Finally, if looked at by system, Mylyn is the only system on which perfor-
mance differences of baseline techniques are not statistically significant for nearly all of the
evaluation measures emlpoyed (see Table 5).

Consequently, Table 7 re-presents the scores of evaluation measures, by software system.
Scores are found to differ significantly across systems with a p-value < 0.050. Boldface
values are the best values of each technique for each system using each evaluation measure.
It is clearly visible from this table that the performance of the baseline techniques varies
more from case study to case study than from technique to technique. For example, con-
sider the recall scores. The difference of the performance for VSM Lucene between Rhino
and Eclipse is 0.751 whereas the difference between the best (LSI Matlab) and worst FLT’s
(VSM Lucene) performance on Rhino, using the same measure is just 0.045. Similarly, the
largest performance difference between two FLTs on a system (jEdit) is 0.352, whereas
largest performance difference of an FLT (LSI Matlab) between two systems is 0.796.
These findings are mirrored throughout the table, implying that software systems (and their

Empirical Software Engineering (2020) 25:266–321 305

Ta
bl
e
7

Sc
or

es
of

ev
al

ua
tio

n
m

ea
su

re
s

on
so

ft
w

ar
e

sy
st

em
s

fo
r

ea
ch

FL
T

s

Sm
al

lS
ys

te
m

s
M

ed
iu

m
Sy

st
em

s
L

ar
ge

Sy
st

em
s

R
hi

no
M

yl
yn

iB
at

is
L

an
g

jE
di

t
Ja

bR
ef

m
uC

om
.

M
at

h
A

rg
oS

PL
A

rg
oU

M
L

D
er

by
E

cl
ip

se

R
ec

al
l

V
SM

L
uc

en
e

0.
75

1
0.
13
4

0.
02
0

0.
10
5

0.
36
3

0.
27
2

0.
13

7
0.
07
8

0.
28
1

0.
18
5

0.
01
4

0.
00

0

V
SM

M
at

la
b

0.
79
1

0.
11

4
0.

01
5

0.
00

0
0.

17
3

0.
12

2
0.
13
8

0.
01

1
0.

18
9

0.
10

9
0.

00
0

0.
00

0

V
SM

T
ra

ce
la

b
0.

77
6

0.
12

1
0.

01
6

0.
00

0
0.

21
5

0.
19

0
0.

00
8

0.
00

0
0.

23
3

0.
11

5
0.

00
2

0.
00

0

L
SI

M
at

la
b

0.
79
6

0.
12
0

0.
01
8

0.
01

3
0.
18
9

0.
17
1

0.
17
9

0.
06
5

0.
19
5

0.
10
4

0.
00

0
0.

00
0

L
SI

G
en

si
m

0.
78

6
0.

11
7

0.
01

4
0.
05
3

0.
12

9
0.

07
1

0.
04

9
0.

05
4

0.
14

8
0.

08
3

0.
00
4

0.
00

0

L
D

A
G

en
si

m
0.

75
6

0.
09
8

0.
01

7
0.
03
8

0.
15
2

0.
13
2

0.
10
3

0.
04
4

0.
16

0
0.

06
4

0.
00
6

0.
00

0

L
D

A
R

0.
78

2
0.

09
4

0.
01

5
0.

03
3

0.
00

9
0.

09
8

0.
10

3
0.

00
8

0.
16
1

0.
09
6

0.
00

4
0.

00
0

L
D

A
G

ib
bs

0.
78
6

0.
09

3
0.
04
5

0.
00

0
0.

00
9

0.
01

4
0.

00
2

0.
00

2
0.

11
4

0.
00

1
0.

00
2

0.
00

0

Pr
ec

is
io

n

V
SM

L
uc

en
e

0.
28
4

0.
02
5

0.
00

3
0.
02
2

0.
08
6

0.
05
7

0.
02

9
0.

02
0

0.
06
5

0.
04
1

0.
00

0
0.

01
0

V
SM

M
at

la
b

0.
24

6
0.

02
1

0.
00

3
0.

00
0

0.
03

7
0.

02
3

0.
03
0

0.
04
8

0.
04

3
0.

02
2

0.
00

0
0.

01
0

V
SM

T
ra

ce
la

b
0.

24
6

0.
02

2
0.

00
3

0.
00

0
0.

04
3

0.
04

0
0.

00
2

0.
00

0
0.

05
2

0.
02

3
0.

00
0

0.
01

0

L
SI

M
at

la
b

0.
24
8

0.
02
2

0.
00
3

0.
01
5

0.
04
0

0.
03
3

0.
03
9

0.
01
5

0.
04
5

0.
02
2

0.
00

0
0.

00
0

L
SI

G
en

si
m

0.
24

3
0.

02
0

0.
00

2
0.

01
1

0.
02

9
0.

01
5

0.
01

3
0.

01
3

0.
03

3
0.

01
7

0.
00

0
0.

00
0

L
D

A
G

en
si

m
0.
26
1

0.
01
8

0.
00

3
0.
00
7

0.
03
2

0.
03
0

0.
00

1
0.
01
0

0.
03
5

0.
01

3
0.

00
0

0.
00

2

L
D

A
R

0.
24

2
0.

01
6

0.
00

3
0.

00
5

0.
02

0
0.

02
2

0.
02
4

0.
00

1
0.

03
5

0.
02
0

0.
00

0
0.
00
5

L
D

A
G

ib
bs

0.
24

3
0.

01
6

0.
00
8

0.
00

0
0.

00
1

0.
00

3
0.

00
0

0.
00

0
0.

02
6

0.
00

0
0.

00
0

0.
00

1

F-
M

ea
su

re

V
SM

L
uc

en
e

0.
41
1

0.
04
2

0.
00
6

0.
03
5

0.
13
8

0.
09
4

0.
04
8

0.
03
2

0.
10
5

0.
06
7

0.
00

0
0.

00
0

V
SM

M
at

la
b

0.
37

4
0.

03
5

0.
00

4
0.

00
0

0.
06

0
0.

03
8

0.
04

8
0.

01
7

0.
06

9
0.

03
7

0.
00

0
0.

00
0

V
SM

T
ra

ce
la

b
0.

37
2

0.
03

7
0.

00
5

0.
00

0
0.

07
1

0.
06

6
0.

00
3

0.
00

0
0.

08
4

0.
03

9
0.

00
0

0.
00

0

Empirical Software Engineering (2020) 25:266–321306

Ta
bl
e
7

(c
on

tin
ue

d)

Sm
al

lS
ys

te
m

s
M

ed
iu

m
Sy

st
em

s
L

ar
ge

Sy
st

em
s

R
hi

no
M

yl
yn

iB
at

is
L

an
g

jE
di

t
Ja

bR
ef

m
uC

om
.

M
at

h
A

rg
oS

PL
A

rg
oU

M
L

D
er

by
E

cl
ip

se

L
SI

M
at

la
b

0.
37
8

0.
03
7

0.
00
5

0.
01

3
0.
06
6

0.
05
5

0.
06
3

0.
02
4

0.
07
2

0.
03
7

0.
00

0
0.

00
0

L
SI

G
en

si
m

0.
37

0
0.

03
3

0.
00

4
0.
01
7

0.
04

7
0.

02
4

0.
00

3
0.

02
1

0.
05

3
0.

02
8

0.
00

0
0.

00
0

L
D

A
G

en
si

m
0.
38
8

0.
03
1

0.
00

5
0.
01
2

0.
05
3

0.
04
9

0.
00

1
0.
01
6

0.
05
7

0.
02

2
0.

00
0

0.
00

0

L
D

A
R

0.
36

9
0.

02
7

0.
00

5
0.

00
9

0.
00

2
0.

03
6

0.
03
9

0.
00

2
0.

05
7

0.
03
3

0.
00

0
0.

00
0

L
D

A
G

ib
bs

0.
37

0
0.

02
7

0.
01
3

0.
00

0
0.

00
2

0.
00

5
0.

00
0

0.
00

0
0.

04
2

0.
00

0
0.

00
0

0.
00

0

M
A

P

V
SM

L
uc

en
e

0.
29
2

0.
04
9

0.
01
0

0.
06
8

0.
23
6

0.
15
9

0.
06

0
0.
06
8

0.
09
8

0.
08
5

0.
06
9

0.
03

1

V
SM

M
at

la
b

0.
26

3
0.

03
0

0.
00

6
0.

00
2

0.
08

6
0.

04
4

0.
06
6

0.
01

9
0.

04
9

0.
03

1
0.

00
1

0.
03

1

V
SM

T
ra

ce
la

b
0.

27
2

0.
03

2
0.

00
6

0.
00

1
0.

11
3

0.
07

1
0.

00
5

0.
00

1
0.

06
5

0.
03

5
0.

00
4

0.
03

1

L
SI

M
at

la
b

0.
26
7

0.
03

0
0.
00
7

0.
02
4

0.
09
1

0.
06
1

0.
08
4

0.
03

3
0.
06
6

0.
03
5

0.
00

1
0.
00
1

L
SI

G
en

si
m

0.
25

2
0.
03
2

0.
00

5
0.

02
0

0.
06

8
0.

03
2

0.
02

6
0.
03
4

0.
03

5
0.

02
7

0.
03
5

0.
00

0

L
D

A
G

en
si

m
0.

25
1

0.
02

6
0.

00
6

0.
01
4

0.
07
3

0.
06
7

0.
09
3

0.
01
8

0.
03

8
0.

02
1

0.
03
1

0.
01

0

L
D

A
R

0.
26

1
0.
03
2

0.
00

5
0.

00
9

0.
04

0
0.

05
0

0.
05

5
0.

00
3

0.
03
9

0.
03
4

0.
00

7
0.

01
7

L
D

A
G

ib
bs

0.
27
1

0.
03

1
0.
01
2

0.
00

1
0.

00
3

0.
00

4
0.

00
2

0.
00

1
0.

02
9

0.
00

1
0.

00
1

0.
01
8

M
R

R

V
SM

L
uc

en
e

1.
00
0

0.
11
3

0.
03
1

0.
09
2

0.
38
8

0.
33
7

0.
10

7
0.
09
8

0.
17
4

0.
21
2

0.
14
3

0.
01

6

V
SM

M
at

la
b

1.
00
0

0.
05

2
0.

00
9

0.
00

2
0.

17
7

0.
13

1
0.
13
9

0.
03

5
0.

09
0

0.
07

9
0.

00
1

0.
01

6

V
SM

T
ra

ce
la

b
0.

50
6

0.
05

8
0.

00
7

0.
00

1
0.

19
2

0.
12

9
0.

02
0

0.
00

2
0.

09
0

0.
08

6
0.

03
2

0.
01

6

L
SI

M
at

la
b

1.
00
0

0.
04

7
0.
00
7

0.
04
7

0.
18
4

0.
13
3

0.
16
5

0.
06

0
0.
16
3

0.
11
9

0.
00

0
0.
00
2

L
SI

G
en

si
m

1.
00
0

0.
06
1

0.
00

4
0.

03
9

0.
13

4
0.

08
6

0.
06

4
0.
06
5

0.
05

5
0.

09
7

0.
06
7

0.
00

1

L
D

A
G

en
si

m
0.

36
4

0.
04

2
0.

00
5

0.
02
5

0.
14
3

0.
16
0

0.
04

1
0.
03
3

0.
04

9
0.

06
7

0.
05
8

0.
00

9

L
D

A
R

1.
00
0

0.
05
1

0.
00

8
0.

01
7

0.
07

9
0.

09
7

0.
12
1

0.
00

5
0.
08
9

0.
08
2

0.
00

2
0.
01
3

L
D

A
G

ib
bs

1.
00
0

0.
04

3
0.
02
2

0.
00

1
0.

00
6

0.
01

0
0.

00
2

0.
00

2
0.

02
9

0.
00

1
0.

00
6

0.
01

0

Empirical Software Engineering (2020) 25:266–321 307

associated benchmarks) have characteristics that can more strongly impact on the perfor-
mance of the FLTs than the FLTs themselves.

Another important observation from Table 7 is that, in line with our observations from
the boxplots, there seems to be a near-ranking across systems where FL seems to be easier
on some systems than on others. For example, the evaluation scores for Rhino seem consis-
tently higher than jEdit, which in turn seem consistently higher than Mylyn, iBatis and then
Eclipse. As these variations patterns are similar across evaluation measure, it implies that
only the characteristics of the software systems/benchmarks are causing these patterns.

4.5 Proposed Answers to the Research Questions

RQ1 : Figures 3-8 and Table 4 suggest that different implementations of each IR model
(VSM, LSI and LDA) performed differently and that these differences were substantial.
Thus, FLTs compared with even identically-named techniques are non-comparable and,
this suggests that the exact implementation of the employed baseline technique should be
referred to while reporting FLT studies.

RQ2 : It is evident from Table 5 that, overall, VSM Lucene tended to outperform other
implementations of VSM. These results are less emphatic in the case of Commons-Math,
muCommander, Rhino, and iBatis, particularly with respect to VSM Matlab, and in Mylyn
there are no significant differences. But overall, its probably fair to declare VSM Lucene as
the best performing technique for near-full and foothold feature location.

With respect to LSI, LSI Matlab performs significantly better than LSI Gensim for the
near-full feature location goal for seven of the twelve systems (see Table 5). But this was not
found for Commons-Math, Commons-Lang, iBatis, Mylyn or ArgoUML, even though the
(non-significant) trend was in the same direction (favouring LSI Matlab over LSI Gensim).
However, in the case of Derby, LSI Gensim performed better than LSI Matlab.

Table 5 presents a more mixed picture for the remaining techniques: VSM Lucene
does seem to outperform VSM Matlab and VSM Tracelab but no real distinction can be
made between VSM Matlab and VSM Tracelab. Finally, with respect to LDA, we found
that LDA implementations perform different to each other. However it is very difficult to
declare an implementation better than the other considering their performance variations
on different systems. Even the worst performing LDA Gibbs was the best performing in
the case of iBatis. As has been already suggested, all these findings are declared with
the caveat that the software system has a strong impact on the performance of baseline
techniques.

RQ3 : In a large majority of cases, VSM Lucene was found to outperform all other baseline
techniques for both goals of FL. Hence, it should probably be employed as a comparator
when researchers compare their FLTs with one baseline technique. Finally, the relative rank
of baseline techniques, presented in Table 6, can be employed towards the cross-comparison
of FLTs using homogeneous empirical designs to this study.

RQ4 : Table 7 shows that, for these techniques and systems at least, performance of the
FTLs varies more from system to system than from FLT to FLT. The table also shows that
the systems often impacted on the performance of FLTs in a consistent manner. For example,
it seems easier to FL in Rhino than Eclipse using IR techniques. This impact on the perfor-
mance of the FLTs would seem to be caused by differences of the systems/benchmarks, as
the impact direction is not aligned with different evaluation measures.

Empirical Software Engineering (2020) 25:266–321308

5 Discussion and Cross-comparison of FLTs

This section discusses the results obtained in the study and the extent to which the software
systems under study impact on the performance of the FLTs evaluated. This leads to a
scoping of the results obtained here and this scoping is presented. Finally, a comparison
framework for empirical evaluations of FLTs is discussed.

5.1 Empirical Basis for FLTs Evaluation

Comparison across FLT Evaluations The study shows that even identically named tech-
niques, belonging to the same IR model, perform differently and often the differences are
substantial. For example, consider the list of relative performances on the ArgoSPL case
study, presented in Table 6: The differences between the best and worst performing imple-
mentations of LSI for recall, precision, f-measure, MAP and MRR are 27.0%, 29.4%,
29.3%, 57.3% and 83.9%, respectively. The differences between the implementations of
other IR models is similarly diverse. It should be acknowledged however, that, in the case of
topic models, this may be partially due to the effect of different configurations used to fine
tune the different implementations of LSI and LDA (Lukins et al. 2008; Biggers et al. 2014;
Thomas et al. 2013; Corley et al. 2015). But in the case of the algebraic model (VSM), all
the implementations studied here combined TF-IDF with the cosine similarity function to
build a VSM model. This shows that some differences (at least) are based on inherent fac-
tors in the implementation; for example differences between the internal algorithms used
to build a term-to-frequency matrix. This observation is particularly important given the
ranking of (the algebraic model) VSM Lucene across implementations.

In summary, in order to cross-compare FLTs, IR models offer objective and reproducible
solutions to the FL problem, in the form of baseline techniques. However, actual differ-
ences in the results of baseline technique implementations belonging to the same IR model
illustrate the importance of having an exactly-the-same ’compare-to’ implementation for
evaluations. Razzaq et al. (2018) showed that 43% of the FLTs they reviewed in their SLR
of the field were compared using VSM, LSI or LDA, but were compared against differ-
ent or not-specified implementations of these techniques. In combination with that paper,
the findings presented here suggest that apparent comparability across the techniques in the
field may be more limited than previously anticipated.

Reproducability of FLTs Recently, reproducability has been one of the hotly debated issues
in software engineering research (Collberg and Proebsting 2016; Shull et al. 2008; Dit et al.
2015; Thomas et al. 2013; Martinez et al. 2018; Juristo and Gómez 2012; Scanniello et al.
2015). The findings presented here also suggest that a holistic description of algorithms
and partial disclosure of their important attributes might not be sufficient to reproduce an
FLT. In addition, reproducibility by non-compilable source code alone has been questioned
in the past, as such source code does not guarantee the ability to generate an identical
FLT (Bassett and Kraft 2013; Binkley et al. 2015); a problem noted by Collberg and
Proebsting (2016). Therefore, for an FLT to be counted as reproducible, we argue that the
paper presenting it should make available and refer to the executable or compilable source
code.

Performance of IR Models with respect to FL Goals This study assessed baseline tech-
niques using the most commonly employed evaluation measures in the field, for near-full
and foothold FL. Figure 9 combines the results of the evaluation measures for each FL goal

Empirical Software Engineering (2020) 25:266–321 309

Fig. 9 Number of times each baseline technique outperformed/being outperformed-by other baseline
techniques for each FL goal

and presents an overview of the total number of times a baseline technique performed sig-
nificantly better or worse than the remaining baseline techniques over the twelve systems.
The line from a baseline technique to the “baselines vertex” in the centre of the figures,
shows the number of times that technique performed significantly better than the other base-
line techniques, whereas a dotted line from the “baselines vertex” to a baseline technique
shows the number of times the other baseline techniques performed significantly better than
the pointed-to baseline technique. It should be noted that the maximum number an edge
could have is 336 for near-full feature location (four measures * twelve systems * seven
compared-to techniques) and is 84 for foothold feature location (one measure * twelve sys-
tems * seven compare-to techniques). From this figure a ranked list of baseline techniques
can be derived.

Near-Full FL Goal: VSM Lucene > LSI Matlab > VSM Tracelab
> VSM Matlab > LDA Gensim > LDA R > LSI Gensim > LDA Gibbs

Foothold Location Goal: VSM Lucene > VSM Matlab > LSI Matlab
> LSI Gensim > LDA R > VSM Tracelab > LDA Gensim > LDA Gibbs

Overall, the performance of algabraic models generally fares better than other IR models,
particularly with respect to near-full feature location. This implies that the lexical space
between feature queries and the implementation of the feature better encompasses the near-
full FL problem than current term-proximities, or terms-to-topics probabilities, which are at
the core of LSI and LDA (see Section 2.2), respectively.

In several earlier FL studies, where two or more FLTs were compared, it was suggested
that VSM performs better than other IR models (Mahmoud and Niu 2015; Wang et al.
2011; Thomas et al. 2013; Zhou et al. 2012). However, other studies from the literature
contradict this finding in favour of LSI (Antoniol et al. 2002; De Lucia et al. 2011). In
the study presented here, both sets of findings are echoed: VSM Lucene typically performs
significantly better than LSI Matlab but there are occasions (specific measures for specific
systems) where the difference between the two is not significant and other occasions where
LSI Matlab significantly outperforms VSM Lucene (see for example mu commander in

Empirical Software Engineering (2020) 25:266–321310

Table 6 where LSI Matlab outperforms VSM Lucene for every measure). Hence the con-
tradictory results in previous studies are unsurprising, in that system heterogeneity has the
potential to alter the rankings considerably.

There is one important note to be made regarding LDA for feature foothold location and
LDA R specifically: Its performance on feature foothold location is much better than on
near-full FL. For example, for the systems presented in Fig. 8, its Mean Reciprocal Rank
(MRR) generally lies above the one-third distribution of results, performing similarly to
VSM and LSI (see Figs. 4 and 6). This shows that the LDA R baseline technique normally
locates one feature-related element in the upper quartile of the ranked-list positions, simi-
lar to the other FLTs. Interestingly, studies which used LDA R for FL (Bassett and Kraft
2013; Binkley et al. 2015; Zhou et al. 2012; Corley et al. 2015) mostly employed MRR as
their evaluation measure (Binkley et al. 2015), suggesting that knowledge of this alignment
between LDA and the foothold feature location goal is already implicit amongst the com-
munity of researchers. But this is the first research that gives an explicit empirical basis
to this implicit knowledge. Such goal-based differences in baseline techniques suggest that
baseline techniques should always be separately assessed for foothold and near-full FL
goals.

5.2 Impact of Candidate Software System

The impact of the software system is one of the most startling, if post-hoc, findings
of this study. For example, consider the performance of techniques for recall, precision,
f-measure, MAP and MRR for small systems in Table 7: VSM Lucene, LSI Matlab,
LSI Gensim, LDA Gensim and LDA R generally performed better on Commons-Lang
whereas VSM Matlab, VSM Tracelab and LDA Gibbs generally performed better on
iBatis. Considering the medium sized systems, VSM Lucene, VSM Tracelab, LSI Gensim,
LDA Gensim and LDA Gibbs performed better on JabRef, whereas VSM Matlab,
LSI Matlab and LDA R performed better on muCommander, for all of the evaluation mea-
sures. A similar pattern can be found in the Derby-Eclipse pair for large systems. These
performance variations are mostly consistent across evaluation measures, which implies
that there must be another factor at play. Given the consistent configurations of the FLTs
and the homogeneous empirical design, the only independent variables which could have
impacted on FLTs’ performance in such a way are the subject systems and their associated
benchmarks.

An important observation from Table 7, is that the performance of all baseline techniques
tend to vary in the same order across systems i.e. Rhino > ArgoSPL > jEdit > JabRef
> muCommander > ArgoUML > Mylyn > Commons-Math > iBatis > Commons-Lang
> Derby > Eclipse. In some cases this is very emphatic: every evaluation measure for
every baseline technique scores better on Rhino than on ArgoSPL. In some cases it is less
emphatic: techniques applied to ArgoSPL outperform those applied to jEdit in recall, pre-
cision and F-Measure for all but two baseline techniques, but this is reversed for MAP and
MRR.

Several characteristics of these case studies might have impacted the baselines’ per-
formance. For example, the table hints that size of the system may be a partial factor:
Techniques applied to Eclipse and Derby, the two largest systems, performed worst, while
techniques applied to the mid-sized systems seemed to rank in the middle. But techniques
applied to ArgoSPL, another large system, performed 2nd best. Likewise of the small sys-
tems, techniques applied to Rhino performed best, but techniques applied to the other three
small systems tended to be quite low down the rankings.

Empirical Software Engineering (2020) 25:266–321 311

Another interesting, and possibly related, observation is that the performance of baseline
techniques did not significantly differ in most cases for Mylyn. A possible reason may be
that the Mylyn codebase is the smallest (482 methods) and the techniques differ more on
larger systems. This suggestion is supported by the fact that iBatis and Commons-Lang,
other smaller-sized systems, have a similarly tight distribution across results.

The average number of source code elements comprising a feature in the benchmarks
might also have an effect on technique performance: the largest average number of source
code elements per feature across our systems are 665 and 436 in Rhino and ArgoSPL
respectively. Techniques applied to these two systems performed best and 2nd-best overall.
Feature size probably reflects the number of meaningful lexicons that can be searched for in
the code - a characteristic suggested by Chochlov et al. (2017) as an important indicator of
IR technique effectiveness. However, feature-size by itself is probably not sufficient, given
that other large features may have source code who’s meaningful lexicons overlap with the
meaningful source code lexicons of the searched for features in highly coupled code.

More generally, in the vein of system characterization and FLT performance, we revisit
the literature to look at system characteristics that have been shown to have some impact on
FLT performance in the past:

1. Studies have shown that size of the software system (e.g. number of total source code
elements) and complexity of its components can affect FLTs (Eaddy et al. 2008).

2. Coupling and cohesion between the elements related to the features have also been
shown to have an impact on some FLTs (Wilde et al. 2001; Kagdi et al. 2013; Revelle
et al. 2011).

3. The proportion of meaningful identifier names has been noted as increasing the
performance of textual FLTs in several studies (Bassett and Kraft 2013; Dit et al. 2013).

4. Likewise, for a number of textual FLTs, the amount of comments has been shown to
increase their performance (Chochlov et al. 2017).

5. Several characteristics of the software life cycle (e.g. code churn Thomas et al. 2013
or code ownership Diaz et al. 2013), have been found to impact on FLT performance
(Kagdi et al. 2013; Diaz et al. 2013; Wang and Lo 2014; Ye et al. 2016; Thomas et al.
2013; Kim et al. 2013).

6. “Structures” are frequently used in the C language but rarely used in Java. Such differ-
ences in source code constructs between different languages have been shown to have
some impact on the performance of FLTs (Saha et al. 2013; Wang et al. 2011).

7. Many FLTs leverage structural information (e.g. inheritance) to enhance FLTs (Bassett
and Kraft 2013; Revelle et al. 2011; Saha et al. 2013; Wang and Lo 2014; Dit et al.
2013). Such program-structural information also differs across programming languages
(Wilde et al. 2001; Revelle et al. 2011) and may impact the FLT.

This literature, and the findings from this study, suggest that looking more closely at
software systems’/benchmark characteristics will be an important FL agenda in the future.
Not only will it facilitate cross-comparison of FLTs, but it may also allow practitioners
select the appropriate FLTs for their systems. To do so researchers will need to identify
and evaluate system/benchmark characteristics that impact on FLTs and adopt empirical
materials that test across the range of these characteristics.

5.3 Forming a Common Baseline Assessment Matrix

This paper performed an assessment of the relative performance of baseline techniques
towards cross-comparison of FLTs, as argued by Razzaq et al. (2018). Originally the

Empirical Software Engineering (2020) 25:266–321312

aim was to find the best performing baseline FLT and relative rankings of baseline FLTs
across systems and FL goals. But, given the huge variance of results across systems, this
did not prove possible. Instead the core contribution of this paper is better contextual-
ized as providing a comparison across baseline techniques, for each of a number of open
system-benchmark pairs.

Figure 10 presents the resulting framework. At the centre of the figure is the ”Base-
line Relative Performance Matrix” where baseline techniques are compared against each
other on the set of software systems utilized here, and their associated data sets (Fig. 10,
right-hand-side). Given the baseline matrix, a novel FLT can be evaluated against these
data-sets (Fig. 10, left-hand-side) using the empirical design espoused here and, by
default, be assessed against all the baseline techniques currently in the matrix. Like-
wise all novel FLTs that are compared against this data set, using the empirical design
espoused here, can be compared against each other, allowing researchers and practi-
tioners a more holistic comparison across techniques, albeit on a limited selection of
systems.

Forward Compatibility by the Framework As time goes by, the research community can
work to expand the matrix to address the limitation of the data-set. When more systems
with high-quality benchmarks become available, researchers can evaluate the baseline tech-
niques against the new systems, creating a new column in the matrix. Additionally, as new
baseline techniques are provided, researchers can evaluate them against the systems already
in the matrix, generating a new row in the matrix. And, as the matrix expands, it is envis-
aged that it will provide a rich environment for hypotheses regarding the interplay between
system/benchmark characteristics and FLTs.

For example, an enlarged matrix can help to find sets of techniques (A) that per-
form better for sets of systems and sets of techniques (B) that perform better for other

Fig. 10 A framework to rank FLTs

Empirical Software Engineering (2020) 25:266–321 313

system. Then researchers can find how the characteristics of these sets-of-systems dif-
fer. This will ultimately help researchers to derive more nuanced benchmarks for FL
and help move research towards ”FLT-recommender” systems based on existing system
characteristics.

6 Threats to Validity

6.1 Construct Validity

Benchmark Creation The main construct validity issue in FLT evaluation is the bench-
mark against which the FLTs are compared. In this case, the benchmarks had high-quality
indicators: They were either commonly acccepted by the research community, provided
by humans, system configuration directives or buttressed by triangulation/reverse engineer-
ing. But, even then, none of these practices guarantee an absolutely correct feature location
set. Indeed, several expert developers highly familiar with the selected case studies, might
each produce a different benchmark for the same feature. In addition, when certain types of
dependencies are employed (e.g. prune dependencies) there is the possibility that other rele-
vant dependencies (like database dependencies, XML file dependencies) are missed during
the benchmark creation process. Likewise, information can be missing from re-enactment
data-sets. For example, some of the links between bug-reports/feature requests and their fix-
ing commits may be missing from CVS repositories. Given the size of the data-sets, we did
not manually check that those links were complete.

Data Collection The precision, recall and f-measure measures employed were based on the
guidelines by Shin et al. (2012). However, selecting a percentage of elements, relative to the
feature size is a heuristic approach that probably doesn’t reflect real-world practice. In addi-
tion, rank-based measures (e.g. MRR) only provide a proxy for effort in feature foothold
location when, in reality, developers can often skim through the ranked-list. But these mea-
sures have frequently been adopted by previous studies in the field and are recommended in
(Razzaq et al. 2018) for full feature location and feature foothold location respectively.

6.2 Internal Validity

Query Designing Involving actual developers in the query-building process might improve
the quality of queries by leveraging the naming conventions they use when writing code,
for example when naming variables, methods and classes. Although we employed external
data-sets (benchmarks and queries) used by several studies (e.g. Poshyvanyk et al. 2012),
bug-reports and feature-requests automatically extracted from online repositories may not
accurately reflect developer queries when searching for a feature.

Configuration and Normalization Configuration of the baseline techniques (weights, α,
β and number of topics parameters) and data-set normalization options (e.g. stemming of
source code and queries Binkley et al. 2015) could impact on the performance of FLTs. We
employed the commonly-used, empirical-best-practice, verified for thousands of different
settings, for each of the three baseline models, towards configuration of baseline techniques
and normalization of the data-set (Biggers et al. 2014; Thomas et al. 2013; Moreno et al.
2015). However, as discussed earlier, individual FLT’s performance might also be impacted

Empirical Software Engineering (2020) 25:266–321314

by other settings not yet fully explored, e.g. the size of queries and the size of the system.
This will be a target of our future work.

Reproducibility We used open implementations of the baseline techniques. However, these
techniques comprise of multiple built-in functions which are combined by writing short
scripts. A replicator may combine the functions in a different order that might impact
on their reproducability. To address this issue, we provide the complete scripts used to
implement the baseline techniques in this study. We further validated the reproducibility
of baseline technique implementations by comparing the results with previous studies. For
example, the MRR score of LSI Matlab, for jEdit4.3, in Dit et al. (2013) was matched with
the MRR score of the LSI Matlab implementation used in this experiment, also on jEdit4.3.
(Both were 0.18).

Result Calculations The relative performance (percentage of the difference) between the
baseline techniques is calculated after rounding the values to three decimal points for scores
of evaluation measures. Relative performance calculated using different numbers of deci-
mals might change the results slightly. Researchers interested in checking the results with a
different number of decimals are invited to use the intermediate results provided with this
research.

6.3 External Validity

Selection of Software Systems Case studies provide indepth insights, whereas controlled
experiments tend to focus on generality (Easterbrook et al. 2008). To simultaneously focus
on depth and generality analysis we adopted a multiple-case study design in this empir-
ical assessment. To evaluate relative performance, all features (data points) from diverse
case studies, are combined towards generalizing the findings, but ultimately only on open-
sourced, java systems, developed using the Object-Oriented (OO) paradigm. This is by no
means representative of all types of systems. More systems, taken from different domains,
languages and paradigms would further improve the generality of this work, as would a
greater number of Java, open-sourced and proprietary systems. This is particularly true
given the diversity of results across systems noted in the results.

7 Conclusion and FutureWork

The vast numbers of FLTs proposed imposes difficulties for practitioners when deciding
on the appropriate technique to employ for a given software maintenance task and for
researchers when trying to identify the state-of-the-art techniques on which to build. We
argue that only by relative comparison against open, standard baseline techniques, under
common evaluation measures, and standard empirical-design conditions, will researchers
begin to identify the high-performing FLTs in the field. In order to facilitate this compari-
son, this paper empirically assesses baseline FLT techniques against each other, using a set
of high-quality system-benchmark pairs.

It formally defines an empirical design based on making explicit and standardizing
several confounding factors. These include discriminating between different FLT goals
and employing standardized evaluation measures against defined benchmarks for those
goals. The FLT evaluation carried out employed the defined empirical design and per-
formed twelve case studies to assess eight baseline techniques. The aim was to investigate

Empirical Software Engineering (2020) 25:266–321 315

whether different implementations belonging to baseline IR models perform differently and
to identify the best implementation for each IR type. Later, in order to facilitate cross-
comparison between FLTs, relative performance across all of the baseline techniques was
also investigated. The following findings have been garnered from this work:

1. Different implementations of identically named baseline techniques perform differ-
ently in each empirical design, as characterized by different FL goals and evaluation
criteria. This casts doubt on the cross-comparison of existing FLTs when compared
with implementations of identically-named baseline techniques.

2. VSM-Lucene and LSI-Matlab are found to perform better than other implementations
of VSM and LSI respectively, with the caveat that choice of software system may
significantly impact their performance.

3. Overall, VSM-Lucene is found to be the best performing FLT for each FL goal in most
of the case studies. Hence, we propose that VSM Luecene be used as the default state-
of-the-art baseline technique for comparison against newly proposed FLT techniques.

4. System effects dwarfed FLT effects in the results obtained. Additionally, there was a
near-consistent ordering, across systems, in terms of the effectiveness of all the FLTs
trialled, suggesting that some systems are more feature-location friendly than others,
regardless of the approach employed. We hypothesize that this may be to do with
feature/system size but that this needs further, directed exploration.

5. Rating factors, in percentages, that relate the performance of baseline techniques
on the system-benchmark pairs were derived for the empirical design employed.
These can be used to cross-compare the FLTs and ultimately provides a framework
within which new and existing FLTs can be compared with less effort. Addition-
ally this framework can be extended to new system-benchmark pairs, and provides
the opportunity to gain insight into system characteristics that may impact on FLT
performance.

We hope to extend this work to non-IR FLTs, by obtaining executable versions of several
structural, dynamic and historical FLTs. These will then be assessed against the existing
baseline techniques, using the system-benchmark pairs and the empirical design described
here. In addition, we intend to keep searching for good candidate system-benchmark pairs
that can be incorporated into, and expand, the framework.

Given the likelihood that different software system or features characteristics strongly
impact on the performance of FLTs, we plan to target identifying these characteristics.
This will facilitate selection of common system-benchmark pairs that not only provide
trusted benchmarks, but also provide coverage over the relevant system characteristics, thus
improving knowledge of the generality of the results obtained. Initial steps in this regard
include studying the differing system characteristics in the Baseline Relative Performance
Index, particularly for systems that have produced widely different results for the baseline
techniques. Likewise, in expanding the set of baseline techniques assessed (to structural,
dynamic and historical FLTs) this system-characteristics work can be extended to those
techniques. Finally, in expanding the matrix with new system-benchmark pairs, the inten-
tion is to widen the data-set to a wider selection of system, ideally resulting in wider insights
on FLT evaluation variations.

Acknowledgments This work was financially supported by Science Foundation Ireland grant 13/RC/2094
and co-funded under the European Regional Development Fund through the Southern & Eastern Regional
Operational Programme to Lero - the Irish Software Research Centre (www.lero.ie)

Empirical Software Engineering (2020) 25:266–321316

Empirical Software Engineering (2020) 25:266–321 317

References

Ali N, Guéhéneuc YG, Antoniol G (2013) Trustrace: mining software repositories to improve the accuracy
of requirement traceability links. IEEE Trans Softw Eng 39(5):725–741

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering traceability links between code
and documentation. IEEE Trans Softw Eng 28(10):970–983

Assunção WKG, Lopez-Herrejon RE, Linsbauer L, Vergilio SR, Egyed A (2017) Reengineering legacy
applications into software product lines: a systematic mapping. Empir Softw Eng 22(6):2972–3016.
https://doi.org/10.1007/s10664-017-9499-z

Bassett B, Kraft N (2013) Structural information based term weighting in text retrieval for feature location.
In: 2013 IEEE 21st international conference on program comprehension (ICPC). IEEE, pp 133–141

Beard M, Kraft N, Etzkorn L, Lukins S (2011) Measuring the accuracy of information retrieval based
bug localization techniques. In: 2011 18th working conference on reverse engineering (WCRE). IEEE,
pp 124–128

Biggers LR, Bocovich C, Capshaw R, Eddy BP, Etzkorn LH, Kraft N (2014) Configuring latent dirichlet
allocation based feature location. Empir Softw Eng 19(3):465–500

Binkley D, Lawrie D, Uehlinger C, Heinz D (2015) Enabling improved ir-based feature location. J Syst Softw
101:30–42

Borg M, Runeson P, Ardö A (2014) Recovering from a decade: a systematic mapping of information retrieval
approaches to software traceability. Empir Softw Eng 19(6):1565–1616

Cataldo M, Mockus A, Roberts JA, Herbsleb JD (2009) Software dependencies, work dependencies, and
their impact on failures. IEEE Trans Softw Eng 35(6):864–878

Chen K, Rajlich V (2000) Case study of feature location using dependence graph. In: 8th international
workshop on program comprehension, 2000. Proceedings. IWPC 2000. IEEE, pp 241–247

Chochlov M, English M, Buckley J (2017) A historical, textual analysis approach to feature location. Inf
Softw Technol 88:110–126

Cleary B, Exton C, Buckley J, English M (2009) An empirical analysis of information retrieval based concept
location techniques in software comprehension. Empir Softw Eng 14(1):93–130

Collberg C, Proebsting TA (2016) Repeatability in computer systems research. Commun ACM 59(3):
62–69

Corley CS, Damevski K, Kraft N (2015) Exploring the use of deep learning for feature location. In: 2015
IEEE International conference on software maintenance and evolution (ICSME). IEEE, pp 556–560

Cornelissen B, Zaidman A, Van Deursen A, Moonen L, Koschke R (2009) A systematic survey of program
comprehension through dynamic analysis. IEEE Trans Softw Eng 35(5):684–702

Couto MV, Valente MT, Figueiredo E (2011) Extracting software product lines: a case study using con-
ditional compilation. In: 2011 15th European conference on software maintenance and reengineering,
pp 191–200. https://doi.org/10.1109/CSMR.2011.25

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2011) Improving ir-based traceability recov-
ery using smoothing filters. In: 2011 IEEE 19th international conference on program comprehension
(ICPC). IEEE, pp 21–30

Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent semantic
analysis. J Am Soc Inf Sci 41(6):391–407

Diaz D, Bavota G, Marcus A, Oliveto R, Takahashi S, De Lucia A (2013) Using code ownership to improve ir-
based traceability link recovery. In: 2013 IEEE 21st international conference on program comprehension
(ICPC). IEEE, pp 123–132

Dit B, Guerrouj L, Poshyvanyk D, Antoniol G (2011) Can better identifier splitting techniques help feature
location? In: 2011 19th IEEE international conference on program comprehension. IEEE, pp 11–20

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1109/CSMR.2011.25
http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2020) 25:266–321318

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software engineering
research. In: Guide to advanced empirical software engineering. Springer, pp 285–311

Eisenbarth T, Koschke R, Simon D (2003) Locating features in source code. IEEE Trans Softw Eng
29(3):210–224

Gethers M, Oliveto R, Poshyvanyk D, De Lucia A (2011) On integrating orthogonal information retrieval
methods to improve traceability recovery. In: 2011 27th IEEE international conference on software
maintenance (ICSM). IEEE, pp 133–142

Heck P, Zaidman A (2014) Horizontal traceability for just-in-time requirements: the case for open source
feature requests. Journal of Software: Evolution and Process 26(12):1280–1296

Hill E, Shepherd D, Pollock L (2015) Exploring the use of concern element role information in fea-
ture location evaluation. In: Proceedings of the 2015 IEEE 23rd international conference on program
comprehension. IEEE Press, pp 140–150

Juristo N, Gómez OS (2012) Replication of software engineering experiments. In: Empirical software
engineering and verification. Springer, pp 60–88

Just R, Jalali D, Ernst MD (2014) Defects4j: a database of existing faults to enable controlled testing studies
for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis.
ACM, pp 437–440

Kagdi H, Gethers M, Poshyvanyk D (2013) Integrating conceptual and logical couplings for change impact
analysis in software. Empir Softw Eng 18(5):933–969

Kampenes VB, Dybå T, Hannay JE, Sjøberg DI (2007) A systematic review of effect size in software
engineering experiments. Inf Softw Technol 49(11-12):1073–1086

Kästner C, Dreiling A, Ostermann K (2014) Variability mining: consistent semi-automatic detection of
product-line features. IEEE Trans Softw Eng 40(1):67–82

Kim D, Tao Y, Kim S, Zeller A (2013) Where should we fix this bug? a two-phase recommendation model.
IEEE Trans Softw Eng 39(11):1597–1610

Li B, Sun X, Leung H, Zhang S (2013) A survey of code-based change impact analysis techniques.
Software Testing, Verification and Reliability 23(8):613–646. https://doi.org/10.1002/stvr.1475. https://
onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1475

Liu D, Marcus A, Poshyvanyk D, Rajlich V (2007) Feature location via information retrieval based filtering
of a single scenario execution trace. In: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. ACM, pp 234–243

Lukins SK, Kraft N, Etzkorn LH (2008) Source code retrieval for bug localization using latent dirichlet
allocation. In: 2008 15th working conference on reverse engineering. IEEE, pp 155–164

Lukins SK, Kraft N, Etzkorn LH (2010) Bug localization using latent dirichlet allocation. Inf Softw Technol
52(9):972–990

Mahmoud A, Bradshaw G (2015) Estimating semantic relatedness in source code. ACM Trans Softw Eng
Methodol (TOSEM) 25(1):10

Mahmoud A, Niu N (2015) On the role of semantics in automated requirements tracing. Requir Eng
20(3):281–300

Marcus A, Maletic JI (2003) Recovering documentation-to-source-code traceability links using latent seman-
tic indexing. In: Proceedings of the 25th international conference on software engineering. IEEE
Computer Society, pp 125–135

Marcus A, Sergeyev A, Rajlich V, Maletic JI (2004) An information retrieval approach to concept
location in source code. In: 11th working conference on reverse engineering, 2004. Proceedings. IEEE,
pp 214–223

Martinez J, Ordoñez N, Tërnava X, Ziadi T, Aponte J, Figueiredo E, Valente MT (2018) Feature location
benchmark with ArgoUML SPL. In: Systems and software product line conference (SPLC). Gothenburg,
Sweden. https://hal.sorbonne-universite.fr/hal-01722316

Dit B, Holtzhauer A, Poshyvanyk D, Kagdi H (2013) A dataset from change history to support evaluation
of software maintenance tasks. In: Proceedings of the 10th working conference on mining software
repositories. IEEE Press, pp 131–134

Dit B, Moritz E, Linares-Vásquez M, Poshyvanyk D, Cleland-Huang J (2015) Supporting and accelerating
reproducible empirical research in software evolution and maintenance using tracelab component library.
Empir Softw Eng 20(5):1198–1236

Dit B, Revelle M, Gethers M, Poshyvanyk D (2013) Feature location in source code: a taxonomy and survey.
Journal of software: Evolution and Process 25(1):53–95

Dit B, Revelle M, Poshyvanyk D (2013) Integrating information retrieval, execution and link analysis
algorithms to improve feature location in software. Empir Softw Eng 18(2):277–309

Eaddy M, Zimmermann T, Sherwood KD, Garg V, Murphy GC, Nagappan N, Aho AV (2008) Do
crosscutting concerns cause defects? IEEE Trans Softw Eng 34(4):497–515

https://doi.org/10.1002/stvr.1475
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1475
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1475
https://hal.sorbonne-universite.fr/hal-01722316

Empirical Software Engineering (2020) 25:266–321 319

Poshyvanyk D, Gethers M, Marcus A (2012) Concept location using formal concept analysis and information
retrieval. ACM Trans Softw Eng Methodol (TOSEM) 21(4):23

Poshyvanyk D, Gueheneuc YG, Marcus A, Antoniol G, Rajlich V (2007) Feature location using probabilis-
tic ranking of methods based on execution scenarios and information retrieval. IEEE Trans Softw Eng
33(6):420–432

Poshyvanyk D, Marcus A, Rajlich V, Gueheneuc YG, Antoniol G (2006) Combining probabilistic rank-
ing and latent semantic indexing for feature identification. In: 14th IEEE international conference on
program comprehension, 2006. ICPC 2006. IEEE, pp 137–148

Rao S, Kak A (2011) Retrieval from software libraries for bug localization: a comparative study of
generic and composite text models. In: Proceedings of the 8th working conference on mining software
repositories. ACM, pp 43–52

Razzaq A, Wasala A, Exton C, Buckley J (2018) The state of empirical evaluation in static feature location.
ACM Trans Softw Eng Methodol (TOSEM) 28(1):2

Revelle M, Gethers M, Poshyvanyk D (2011) Using structural and textual information to capture feature
coupling in object-oriented software. Empir Softw Eng 16(6):773–811

Robillard MP (2008) Topology analysis of software dependencies. ACM Trans Softw Eng Methodol
17(4):18:1–18:36. https://doi.org/10.1145/13487689.13487691

Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: should
we really be using t-test and cohen’sd for evaluating group differences on the nsse and other surveys. In:
Annual meeting of the florida association of institutional research, pp 1–33

Rovegård P, Angelis L, Wohlin C (2008) An empirical study on views of importance of change impact
analysis issues. IEEE Trans Softw Eng 34(4):516–530

Rubin J, Chechik M (2013) A survey of feature location techniques. In: Domain engineering. Springer,
pp 29–58

Saha RK, Lease M, Khurshid S, Perry DE (2013) Improving bug localization using structured information
retrieval. In: 2013 IEEE/ACM 28th international conference on automated software engineering (ASE).
IEEE, pp 345–355

Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM
18(11):613–620

Scanniello G, Marcus A, Pascale D (2015) Link analysis algorithms for static concept location: an empirical
assessment. Empir Softw Eng 20(6):1666–1720

Shin Y, Hayes JH, Cleland-Huang J (2012) A framework for evaluating traceability benchmark metrics
Shull FJ, Carver JC, Vegas S, Juristo N (2008) The role of replications in empirical software engineering.

Empir Softw Eng 13(2):211–218
Starke J, Luce C, Sillito J (2009) Searching and skimming: an exploratory study. In: IEEE international

conference on software maintenance, 2009. ICSM 2009. IEEE, pp 157–166
Thomas SW, Nagappan M, Blostein D, Hassan AE (2013) The impact of classifier configuration and

classifier combination on bug localization. IEEE Trans Softw Eng 39(10):1427–1443
Tóth G, Hegedűs P, Beszédes A, Gyimóthy T, Jász J (2010) Comparison of different impact analysis

methods and programmer’s opinion: an empirical study. In: Proceedings of the 8th international confer-
ence on the principles and practice of programming in Java, PPPJ ’10. ACM, New York, pp 109–118.
https://doi.org/10.1145/1852761.1852777

Wang S, Lo D (2014) Version history, similar report, and structure: putting them together for improved bug
localization. In: Proceedings of the 22nd international conference on program comprehension. ACM,
pp 53–63

Wang S, Lo D, Lawall J (2014) Compositional vector space models for improved bug localization.
In: 2014 IEEE international conference on software maintenance and evolution (ICSME). IEEE,
pp 171–180

Mills C, Bavota G, Haiduc S, Oliveto R, Marcus A, Lucia AD (2017) Predicting query quality for applications
of text retrieval to software engineering tasks. ACM Trans Softw Eng Methodol (TOSEM) 26(1):3

Moreno L, Bavota G, Haiduc S, Di Penta M, Oliveto R, Russo B, Marcus A (2015) Query-based configuration
of text retrieval solutions for software engineering tasks. In: Proceedings of the 2015 10th joint meeting
on foundations of software engineering. ACM, pp 567–578

Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013) How to effectively use topic
models for software engineering tasks? an approach based on genetic algorithms. In: Proceedings of the
2013 international conference on software engineering. IEEE Press, pp 522–531

Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2016) Parameterizing and
assembling ir-based solutions for se tasks using genetic algorithms. In: 2016 IEEE 23rd international
conference on software analysis, evolution, and reengineering (SANER), vol 1. IEEE, pp 314–325

Porter MF (1980) An algorithm for suffix stripping. Program 14(3):130–137

https://doi.org/10.1145/13487689.13487691
https://doi.org/10.1145/1852761.1852777

Empirical Software Engineering (2020) 25:266–321320

Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? more accurate information retrieval-based
bug localization based on bug reports. In: 2012 34th international conference on software engineering
(ICSE). IEEE, pp 14–24

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Abdul Razzaq received the BS(CS) and MPhil degrees in computer
science and software engineering from PMAS UAAR and Quaid-
i-Azam University, Pakistan, in 2010 and 2013, respectively. He is
currently a PhD Scholar at Lero-Irish Software Research Center, Uni-
versity of Limerick. His research interests include measuring the
impact of the mostly uncontrolled variables in empirical practice
and how to cross-compare the heterogenous software engineering
techniques. He has extensive experience in static code analysis and
feature/concept location to support software maintenance activities.

Andrew Le Gear received a B.Sc. 1st Class Honours Degree in
Computer Systems from the University of Limerick in 2003. This
was followed by a research scholarship with the Software Architec-
ture Evolution Group at the same university until December 2006,
when he received a Ph.D. in Computer Science entitled “Component
Reconn-exion.” Andrew is the author of numerous publications in
the fields of software maintenance, architecture, analysis and more
recently in blockchain analysis and reverse engineering. Since com-
pleting his Ph.D., Andrew has also worked as a professional software
engineer in several of the worlds most software intense industries
including Dell, IBM, QAD, Lehman Brothers, Nomura, and most
recently as CTO at Horizon Globex Ireland DAC. Andrew’s main
academic and professional interests now converge on blockchain
technologies and applications.

Wang S, Lo D, Xing Z, Jiang L (2011) Concern localization using information retrieval: an empirical
study on linux kernel. In: 2011 18th working conference on reverse engineering (WCRE). IEEE,
pp 92–96

Wilde N, Buckellew M, Page H, Rajlich V (2001) A case study of feature location in unstructured legacy
fortran code. In: 2001 fifth European conference on software maintenance and reengineering. IEEE,
pp 68–76

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Ye X, Bunescu R, Liu C (2016) Mapping bug reports to relevant files: a ranking model, a fine-grained
benchmark, and feature evaluation. IEEE Trans Softw Eng 42(4):379–402

Zamani S, Lee SP, Shokripour R, Anvik J (2014) A noun-based approach to feature location using time-aware
term-weighting. Inf Softw Technol 56(8):991–1011

Empirical Software Engineering (2020) 25:266–321 321

Jim Buckley was awarded an MSc degree in Computer Science from
the University of Limerick and a PhD in Computer Science from the
same University in 2002. He currently works as a senior lecturer in the
Computer Science and Information Systems Department/Lero at the
University of Limerick, Ireland. His main research interests focus on
supporting software developers who are tasked with maintaining and
evolving software systems. Thus, specific areas of interest include
feature location, software comprehension and architectural analysis
of such systems.

Dr. Chris Exton is currently a senior lecturer in the department of
Computer Science and Information Systems at University of Lim-
erick. He holds a BSc in Psychology and a Ph.D. in Computer
Science (Monash University, Melbourne). He has worked extensively
in the commercial software development field in a variety of differ-
ent industries and countries included Software Engineering positions
in Australia, Ireland and the UK, where he has worked in a num-
ber of diverse companies from electronic manufacturing to banking.
In addition his academic positions includes a number of Schools and
Departments including Monash University Australia, University Col-
lege Dublin and Uppsala University, Sweden. He has worked on a
number of research projects in the area of programmer psychology
and software tools and more recently in the area of medical decision
support systems. He has researched and published in these areas for
over 20 years.

Jim Buckley was awarded an MSc degree in Computer Science from
the University of Limerick and a PhD in Computer Science from the
same University in 2002. He currently works as a senior lecturer in the
Computer Science and Information Systems Department/Lero at the
University of Limerick, Ireland. His main research interests focus on
supporting software developers who are tasked with maintaining and
evolving software systems. Thus, specific areas of interest include
feature location, software comprehension and architectural analysis
of such systems.

Dr. Chris Exton is currently a senior lecturer in the department of
Computer Science and Information Systems at University of Lim-
erick. He holds a BSc in Psychology and a Ph.D. in Computer
Science (Monash University, Melbourne). He has worked extensively
in the commercial software development field in a variety of differ-
ent industries and countries included Software Engineering positions
in Australia, Ireland and the UK, where he has worked in a num-
ber of diverse companies from electronic manufacturing to banking.
In addition his academic positions includes a number of Schools and
Departments including Monash University Australia, University Col-
lege Dublin and Uppsala University, Sweden. He has worked on a
number of research projects in the area of programmer psychology
and software tools and more recently in the area of medical decision
support systems. He has researched and published in these areas for
over 20 years.

	An empirical assessment of baseline feature location techniques
	An empirical assessment of baseline feature location techniques
	Abstract
	Introduction
	Background and Related Work
	Classification of FLTs
	Information Retrieval Process and Models in Feature Location
	The Inherent IR-based, Feature Location Process
	Indexing
	Query Formation
	Code Retrieval

	Vector Space Model
	Latent Semantic Indexing
	Latent Dirichlet Allocation

	Issues in FLTs Evaluation
	Configuration of IR-Based FLTs and Best Practice
	Baseline Techniques: a Comparison Hub

	Empirical Design
	Empirical Frame-of-Reference
	Research Objective

	Research Questions
	Case Studies
	ArgoSPL
	Rhino
	Other Systems

	Evaluation Method
	Evaluation Measures: Near-full Feature Location
	Evaluation Measures: Foothold Feature Location
	Data Collection Method
	Data Preparation
	Technique Execution
	Data Collection

	Statistical Analysis Method

	Results and Analysis
	Performance Variation of Different Implementations
	VSM
	Near-Full Feature location Goal
	Foothold Location Goal

	LSI
	Near-full Goal
	Foothold Location Goal

	LDA
	Near-full Goal
	Foothold Location Goal

	Differing Performance of Different Implementations

	Better-performing Implementations of each IR-model
	Relative Performance of Baseline Techniques
	Impact of Software System
	Proposed Answers to the Research Questions
	RQ1
	RQ2
	RQ3
	RQ4

	Discussion and Cross-comparison of FLTs
	Empirical Basis for FLTs Evaluation
	Comparison across FLT Evaluations
	Reproducability of FLTs
	Performance of IR Models with respect to FL Goals

	Impact of Candidate Software System
	Forming a Common Baseline Assessment Matrix
	Forward Compatibility by the Framework

	Threats to Validity
	Construct Validity
	Benchmark Creation
	Data Collection

	Internal Validity
	Query Designing
	Configuration and Normalization
	Reproducibility
	Result Calculations

	External Validity
	Selection of Software Systems

	Conclusion and Future Work
	References

