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Experimental 

Chemicals Used. All chemicals were used as received. Phenylsilane (PS, 97 %) was supplied 

by Fluorochem and was stored and dispensed from an Ar-filled glovebox. N-methylpyrrolidine 

(Aldrich, 98 %), 1-bromopropane (Aldrich, 99 %), activated charcoal (Aldrich, Darco-G60), 

alumina (Aldrich, acidic, Brockmann I), LiTFSI (3 M, 99.9 %), and NaFSI salts (Solvionic, 

99.9 %) were used as received. The ethylene carbonate, (EC, 99.9 %), and vinylene carbonate 

(VC, 97 %) additives were purchased from Merck and used as received. 

Substrate Preparation. Stainless steel (SS, 316) foil was purchased from Pi-Kem Ltd. with 

a thickness of 0.1mm. The foil was roughened using P600 grit sandpaper to increase the surface 

area and improve the contact between the current collector and the active material. From this, 



substrates of approximately 8 mm x 8 mm were cut and rinsed with acetone. A 20 nm layer of 

Sn (99.999%, Kurt J. Lesker) was then thermally evaporated onto these pieces in a glovebox-

based evaporation unit. The substrates were stored in the Ar filled glovebox prior to reactions 

to minimize oxidation. 

Reaction Setup.  

Si NW Synthesis. Si NWs were grown from stainless steel current collectors using a previously 

published solvent vapour growth system. Reactions were carried out in a long-neck Pyrex 100 

mL round bottomed flask containing 7 ml of squalane (Sigma Aldrich, 99%). The growth 

substrates were placed below the liquid line in the flask, which was attached to a Schlenk line 

setup via a water condenser. This was ramped to a temperature of 125 ºC using a three-zone 

furnace. A vacuum of at least 100 mTorr was applied for 1 h to remove moisture from the 

system. Following this, the system was purged with Ar. The flask was then ramped to the 

reaction temperature under a constant Ar flow. A water condenser was used to control the HBS 

reflux and ensure that the reaction was kept under control. At a reaction temperature (460 ºC) 

0.75 mL of the phenylsilane precursor was injected, through a septum cap, into the system and 

the reaction was allowed to proceed for 1 h. Si NW growth proceeded via the solution liquid 

solid growth mechanism. When terminating the reaction, the furnace was opened and the setup 

was allowed to cool to room temperature before removing the NW coated substrates. The 

synthetic method allowed for the direct preparation of Li-ion battery electrodes as NWs are 

grown directly from the CCs, with mass loadings of approximately 0.2 mg/cm2 used in this 

study. This translated to a theoretical area capacity of 0.72 mAh/cm2 with the experimental 

(initial) areal capacities being in the rage of: 0.44 – 0.40 mAh/cm2. The directly grown active 

material was advantageous for this study as it allowed the SEI layer to be directly analysed on 

the Si NW surface, excluding the potential contributions to its composition from binders or 

conductive additives.  



Electrochemical Measurements. The electrochemical performance was evaluated by 

assembling two electrode Swagelok type cells in an Ar filled glovebox. The cells consisted of 

Si NWs on a SS current collector (8 mm x 8 mm pieces) as the working electrode, Li foil as 

the counter and reference electrode and a Celgard separator. For the ionic liquid electrolyte 

solution N-Methyl-N-propylpyrrolidinium bis-(trifluoromethanesulfonyl) imide, PYR13TFSI, 

and N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide, PYR13FSI, ionic liquids were 

synthesized through a procedure reported elsewhere.79 The electrolyte, 

0.1LiTFSI−0.3PYR13TFSI−0.6PYR13FSI + 5 wt % EC or 5 wt % VC quaternary mixture, was 

prepared by dissolving (in the proper proportion and at 40 ºC for a few minutes) LiTFSI 

(vacuum-dried overnight at 120 ºC) in the PYR13TFSI-PYR13FSI mixture. Finally, the proper 

5 wt. % of either EC or VC was added. A 5 wt. % additive quantity was selected to remain 

consistent with previous studies in this area, which have shown that 1-5 wt. % of an electrolyte 

additive is sufficient to influence the electrochemical performance of Li-ion battery. The ionic 

liquid electrolyte was stored in sealed glass vials within a dry-room. Galvanostatic 

measurements were carried out in a two electrode Swagelok-type cell using a Biologic MPG-

2 in a potential range of 0.01 – 1.0 V versus Li/Li+. The entire electrochemically active mass 

was used to calculate the currents applied. 

Material Characterization. Scanning electron microscopy (SEM) analysis was performed 

on a Hitachi SU-70 system operating between 5 and 20 kV. The uncycled substrates required 

no prior treatment before SEM analysis. For transmission electron microscopy (TEM) analysis 

the NWs were removed from the growth substrate through sonication before being drop cast 

onto a lacy carbon TEM grid. TEM analysis was conducted at 200 kV on a JEOL JEM-2100F 

field emission microscope equipped with a Gatan Ultrascan CCD camera and EDAX Genesis 

EDS detector. For ex-situ analysis the SEI layer was removed, by soaking the electrodes in 

acetonitrile for 24 h before rinsing with 0.1 mM acetic acid, deionized H2O and ethanol in that 



order, prior to imaging. The respective mass of Si and Sn was determined through measurement 

using a Sartorius Ultra-Microbalance SE2 (repeatability ± 0.25 μg). X-ray diffraction (XRD) 

analysis was carried out using a PANalytical X'Pert PRO MRD instrument with a Cu K R 

radiation source (λ = 1.5418 Å) and an X'celerator detector. XPS was performed using a Kratos 

ULTRA spectrometer using monochromatic Al Kα 1486.58 eV. C 1s at 284.8 eV was used as 

the charge reference to determine the core level binding energies. The pass energy 160 eV was 

used for the survey spectra and 20 eV for the narrow regions. Construction and peak fitting of 

synthetic peaks in narrow region spectra used a Shirley type background and the synthetic 

peaks were of a mixed Gaussian-Lorenzian type. XPS examination of the SEI layer the 

electrodes were briefly rinsed with dimethylcarbonate (DMC) to remove excess IL prior to 

analysis. For XPS analysis of the post-cycled Si NWs the SEI was removed by first rinsing 

with acetonitrile, followed by 1 mM acetic acid, deionized water and ethanol before allowing 

to air dry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S1. Voltage profiles of the 1st, 10th, 25th, 50th, 100th, and 250th charge and discharge cycles for the 

Si NWs cycled in a) 0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI + 5% EC, b) 0.1LiTFSI-0.6PYR13FSI-

0.3PYR13TFSI + 5% VC, c) and 0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI ionic liquid electrolytes, d) as well 

as in EC/DEC carbonate electrolyte 



 

 

Figure S2. SEM images at different magnifications of the Si NW morphology after 100 cycles in a 1 M LiPF6 

in EC/DEC (1:1 v/v) electrolyte. 



 

Figure S3. SEM images at different magnifications of the Si NW morphology after 100 cycles in (a-c) 

0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI, (d-f) 0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI + 5% EC and (g-i) 

0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI + 5% VC electrolyte. 

 



 

Figure S4. Coulombic efficiencies for the Si NWs cycled in 0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI + 5% 

EC, 0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI + 5% VC, and 0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI ionic 

liquid electrolytes, as well as in EC/DEC carbonate electrolyte. For clarity the plot begins with the 2nd CE 

value. The initial CE values were 78.59 % (IL), 81.14 % (IL + 5% EC), 55.01 % (IL + 5% VC) and 67.78 

% (EC/DEC) 

 



 

Figure S5. Comparison of differential capacity plots (of the 2nd cycle) for the Si NWs cycled in a) 

0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI + 5% EC, b) 0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI + 5% VC, c) 

and 0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI ionic liquid electrolytes, d) as well as in EC/DEC carbonate 

electrolyte. 

 

 



 

Figure S6. SEM images of the SEI layer formed on Si NWs after 100 cycles in (a-b) 0.1LiTFSI-0.6PYR13FSI-

0.3PYR13TFSI, (c-d) .1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI + 5% EC and (e-f) 0.1LiTFSI-0.6PYR13FSI-

0.3PYR13TFSI + 5% VC electrolyte. 

 

 

 

 

 



 

Figure S7. TEM images at different magnifications of the Si NW morphology after 100 cycles in (a-b) 

0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI, (c-d) 0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI + 5% EC and (e-f) 

0.1LiTFSI-0.6PYR13FSI-0.3PYR13TFSI + 5% VC electrolyte. 

 

 

 

 

 



 
Figure S8. High resolution S 2p spectra of the Si NWs after 100 cycles using each additive as well as the 

XPS obtained for the IL directly. 
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