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Abstract 

In this work, the transfer of oral solid dosage forms, currently manufactured via wet granulation, to a 15 

continuous direct compression process was considered. Two main challenges were addressed: (1) a 

poorly flowing API (Canagliflozin) and (2) high drug loading (51 wt%). A scientific approach was 

utilised for formulation development, targeting flow and compaction behaviour suitable for 

manufacturing scale. This was achieved through systematic screening of excipients to identify 

feasible formulations. Targeted design of experiments based on factors such as formulation mixture 20 

and processing parameters were utilised to investigate key responses for tablet properties, flow and 

compaction behaviour. Flow behaviour was primarily evaluated from percentage compressibility and 

shear cell testing on a powder flow rheometer (FT4). The compaction behaviour was studied using a 

compaction simulator (Gamlen). The relationships between tablet porosity, tensile strength and 

compaction pressure were used to evaluate tabletability, compactibility and compressibility to 25 

assess scale-up. The success of this design procedure is illustrated by scaling up from the compaction 

simulator to a Riva Piccola rotary tablet press, while maintaining critical quality attributes (CQAs). 

Compactibility was identified as a suitable scale-up relationship. The developed procedure should 

allow accelerated development of formulations for continuous direct compression.  

                                                           
1Abbreviations: Run # = run number of DoE; FF = flow function; CP% = compressibility percentage; CBD = 
conditioned bulk density; σt = tablet tensile strength; Dt = disintegration time; ε = porosity; Py  = mean yield 
pressure; ER0 = immediate elastic recovery; ER48 = elastic recovery after 48 hours; d10 / d50 / d90 = Particle size 
distribution  
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Keywords: Continuous direct compression, raw material characterization, systematic formulation 30 

development, high dosage formulation, compactibility, flow and compaction behaviour.  

1 Introduction 

The manufacture of oral solid dosage forms (OSD) can be achieved using a number of processing 

pathways of differing cost and complexity. The simplest and most cost-effective route is the direct 

compression process (DC). In comparison to more complicated processes, such as dry granulation 35 

(DG) and wet granulation (WG), DC offers reduced cost of equipment, faster processing and a simple 

and efficient process path [1]. Unfortunately, many products, particularly those with a high loading 

of active pharmaceutical ingredient (API), are very difficult to process into tablets by direct 

compression. The main reasons for this are poor flow or compression properties of the API and/or 

excipient mixture [2, 3]. Many of these products are manufactured using a WG process. Thus, there 40 

is significant benefit in the transition of a drug product from a WG process to a DC process.  

Implementing a continuous direct compression process has further advantages over traditional 

batch processes, including scale-up benefits, reduced batch-to-batch variability, reduced production 

costs, reduced footprint for the manufacturing facility and faster product release [1, 4]. While direct 

compression is an inherently continuous processing technique, many of its unit operations including 45 

weighing and blending are still performed in batches [5].  

Designing a robust DC formulation for an API with poor flow and compaction properties at a high API 

load is challenging. Physical models relating key flow and compaction responses and product critical 

quality attributes (CQAs) to fundamental material attributes and process parameters would allow 

feasibility assessment and optimisation of the process within the design space. However, despite 50 

significant research, such quantitative models relating bulk powder performance to particle level 

properties and process parameters remain elusive. Significant challenges exist in relating behaviour 

to either (i) the composition of the powder based on the mass percentage of its constituent 

materials [6] or (ii) some fundamental properties of the powder formulation (particle size 

distribution and shape, particle roughness, moisture content etc.) [7]. The multivariate nature of the 55 

measurement of raw material properties means it is not straightforward to determine which 

properties influence performance most significantly [7]. Furthermore, flow and compaction 

properties arise due to a combined effect of material attributes and processing parameters. Thus, 

commonly used tests for both flow and compaction performance may give different material 

rankings. Flow behaviour depends on the initial stress state of the powder and equipment 60 

interaction [8, 9]. Similarly, compaction responses, such as elastic recovery following tableting, will 

depend on compaction speed for viscoelastic materials, but not for others [10].  
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Although there is a large body of research studying specific aspects of powder flow [11 - 17] and 

compaction [6, 18 - 25] behaviour, comprehensive approaches to formulation design for direct 

compression remain limited. Several studies consider the implementation of a continuous DC 65 

process from a given formulation to the final tablet [4, 5, 26 - 30]. Studies include extended release 

[5, 27, 28], low dose [30] and immediate release tablets [4, 26]. The most common APIs for these 

studies were ibuprofen, acetaminophen and naproxen sodium. The studies investigate various 

aspects of the continuous DC process including variation in blend composition, continuous powder 

feeding, powder blending and tablet press operation and how these influence product quality. Other 70 

studies have focused on specific aspects of the DC process such as resolving poor flow issues in loss-

in-weight feeding [30, 31]. While some of these reports consider material properties via multivariate 

data analysis techniques, such as principle component analysis (PCA) and partial least squares (PLS), 

the broader issue of formulation design and excipient choice is not considered in detail. Running 

such tests on a full production line for a variety of excipient choices would be time intensive and 75 

consume a significant amount of material, increasing the product development costs. Thus many 

formulations are still chosen based on the personal experience of formulators and by a trial and 

error approach [32]. There is a need for a structured scientific approach to formulation design for 

DC, based on a defined set of material sparing tests, in order to select optimal formulations for scale-

up and process optimisation.  80 

A number of lab-scale studies have been performed to evaluate flow and compaction behaviour of 

direct compression formulations. Tye et al. [33] studied four direct compression formulations and a 

placebo formulation. They introduced the compaction triangle to study the relationships between 

compaction pressure, tablet tensile strength and tablet solid fraction in order to evaluate the effects 

of tableting speed on the produced tablets (USP <1062>)[34]. The relationships between these 85 

variables are called tabletability, compactibility and compressibility. Assessment of these 

relationships should allow the determination of whether tablets with an adequate tensile strength at 

a reasonable porosity can be realised, using an acceptable compaction pressure [33, 43]. 

Compactibility, the ability of a powder to be transformed into tablets with resulting strength at a 

given porosity, was proposed as a scale independent relationship, which can be used to predict 90 

tensile strength for scale-up. The Ryshkewitch-Duckworth equation [44, 45] has been successfully 

applied to describe the compactibility behaviour of single powders and also multi-component 

mixtures using a variety of mixture rules [6, 18, 19]. Tabletability defines the capacity of a powder to 

be transformed into a tablet of specified strength under the effect of compaction pressure. 

Tabletability is a key property for a given tablet press, but generally depends on equipment 95 

parameters such as punch velocity and is not scale independent. Compressibility is the ability of a 
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volume to undergo a reduction as a result of an applied force and has been described by numerous 

equations including those of Heckel [38], Kawakita [39], Adams [40] and Gurnham [41]. Tye et al. 

[33] showed the importance of tableting speed for some materials which show much poorer 

compressibility at high compression speeds. Patel et al. [2] highlighted the importance of material 100 

properties and tableting speed on the tabletability, compressibility and compactibility of materials. 

In particular, the flowability and compaction challenges associated with direct compression for a 

poorly performing API at high loads were emphasised. Sun et al. [32, 42-44] considered formulation 

design of a high load tablet formulation. Flowability was considered by performing shear testing with 

blends of the API and different excipients with flow properties of MCC PH102 used as a threshold of 105 

acceptable flow. Plots of tabletability of the various blends based on compactions on a simulator 

were used to rank compaction performance. A minimum tensile strength of 2 MPa was used to 

evaluate successful tablets. It was shown that key responses in high speed tableting, such as tablet 

weight variability, correlated with the shear measurements. Further work [43] showed that the 

reproducibility of flow properties of MCC PH102 from the different batches and manufacturers 110 

considered was sufficient to use it as a reference. The flow function of MCC PH102 was used in a 

recent study to evaluate the upper loading limit at which various APIs mixed with excipients are 

feasible for direct compression [44]. Pitt et al. [45] compare tableting behaviour between a small-

scale benchtop press (Gamlen Tableting, United Kingdom) and a commercial scale Fette rotary tablet 

press (Fette, Germany). Two different formulations were considered, one DC blend and one WG 115 

blend. Tablets of different masses and shapes were considered with tensile strengths calculated 

according to the formulas in reference [46]. Predictions of compactibility, tabletability, 

compressibility and ejection stress were all in agreement between the lab-scale and production 

presses, despite the differences in scale and equipment. The difference in tableting speed was not 

indicated, but, at least for the materials considered, did not influence results significantly. Ejection 120 

stresses on a small scale were shown to predict tablet failure at manufacturing scale for these 

products. Recent work by Osamura et al. [47, 48] also used a bench top tablet press (Gamlen Tablet 

Press (GTP-1)) with flat faced tooling to investigate formulation design for DC blends [39] and WG 

granules [40]. Formulations were assessed based on tensile strength, ejection stress and elastic 

recovery. Formulations with acceptable lab scale performance were shown to tablet well at a 125 

production scale on a rotary tablet press with oval shaped tablets. Low tensile strengths were 

observed to be indicative of tablet capping, while high ejection stresses were indicative of tablet 

binding to tooling. Such studies indicate that a scientific approach to lab scale testing of flow and 

compaction behaviour can be a very useful and efficient way to determine the feasibility and 

optimum formulation for a DC process, before conducting tests in a larger scale with selected 130 
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formulations. However, most studies to date do not consider a comprehensive range of excipient 

choices. Often, only one of flow or compaction behaviour is considered in detail and the optimal 

combination of these two bulk powder properties is not fully considered. Most studies use excipient 

blends only.  

In this work, we present a new systematic design strategy to develop a formulation suitable for a 135 

continuous direct compression framework within a specified design space. The objective is to 

develop a design methodology which is rapid, material sparing, robust and allows accumulated 

knowledge to be transferred to other design problems. The methodology is tested using a case study 

on an industry posed formulation design problem with a difficult to process API, Canagliflozin, at a 

high loading of 51 wt%. The strategy begins with a defined design space of allowable formulations 140 

and specified acceptable flow properties and critical quality attributes (CQAs) that the selected 

formulation should meet. Typically, the following information will be specified: 

 API loading (wt%). 

 The allowable wt% ranges given for lubricant, flow enhancer and disintegrant. 

 Set of candidate fillers. 145 

 Target flow properties and CQAs.  

 

The strategy was developed by identifying a reduced set of key critical material attributes (CMAs) 

and critical process parameters (CPPs) which influence the CQAs. This was accomplished by 

literature survey and the authors’ experience. The formulation design space is iteratively reduced 150 

through careful screening of materials for favourable properties and accumulation of knowledge on 

how the CMAs of the screened materials and the process CPPs determine the final product CQAs. In 

this approach, excipient cost was not considered, as the focus was primarily on formulation and 

process design. The strategy presented here is illustrated graphically in Fig. 1 in section 2.1. 

 155 
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2 Materials and Methods  

2.1 Formulation design strategy  

 

 

Fig. 1. Systematic formulation and process development for continuous direct compression. 160 

 

Building material database 

Step 1 involves building a material database to investigate and understand the flow and compaction 

behaviour of the API and the set of possible excipients. Candidate materials are categorised into the 

functional classes used in this study (API, filler, lubricant, flow enhancer or disintegrant). The API 165 

loading is specified at 51 wt%. Fillers are added to improve the tablet properties such as tensile 

strength and dissolution behaviour. Flow enhancers are added in small quantities to improve the 

flowabilility of the formulation, a key requirement for continuous manufacturing processes. A small 

amount of lubricant is necessary to reduce friction with the tooling during compaction. The addition 

of disintegrants is considered for materials which fail to disintegrate in the desired time. The 170 

Step 1:

Building material database

Step 2: 

Screening of excipients

Step 3:

API plus selected individual fillers

Step 4:

Optimum Filler formulation with DoE mixture 
Design

Step 5: 

Adjustment of formulation with secondary 
excipients

Step 6: 

Adjustment of process parameters
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candidate materials are extensively characterised using a suite of test methods to identify their 

physio-chemical properties and bulk flow and compaction behaviour as described in section 2.3. This 

process delivers quantitative, reproducible information on candidate materials and may be reused in 

future formulation designs.  

 175 

Screening of excipients  

Following material characterisation, step 2 is the screening of candidate excipients based on key 

performance indicators. Initial screening is based on flowability and tensile strength of tableted 

powders at a set pressure. Flowability measurements were performed on a powder rheometer (FT4, 

Freeman technology). The shear cell and compressibility % methodologies used are described in 180 

section 2.3.3. The compressibility test on the FT4 (CP%) is used as the primary flow indicator. This 

indicates the ability of a material to flow from an unpacked state. A secondary flow ranking is 

performed using the flow function from shear testing. This indicates the powders ability to flow from 

a pre-stressed (consolidated state). The flow function has been shown to be useful for ranking of 

flow behaviour from hoppers and tablet weight variability for high speed tableting [42, 44]. To 185 

ensure performance of selected powders throughout the process, only powders which pass 

requirements on both tests should be selected. Bivariate plots are used as a quick visual aid to rank 

powders based on flowability and tensile strength. Secondary ranking is performed based on 

disintegration behaviour. Excipients are not excluded on this basis if they rank well otherwise. Poor 

disintegration performance indicates the need for an excipient mixture or the inclusion of a 190 

disintegrant.  

 

API performance with single fillers 

Screened fillers are mixed with the API at the specified load to consider a set of possible 

formulations with a single filler (step 3). The flow, compaction and disintegration behaviour of the 195 

candidate blends are analysed as in step 2. Based on this, the design space is reduced to three 

selected fillers. 

 

API performance with multiple fillers (Mixture DoEs) 

Screened fillers may each exhibit strong performance in different areas (step 4). To ensure optimal 200 

blend performance ternary mixtures of the primary excipients with the API at the fixed load are 

considered. In order to minimise the number of experiments required to characterise the blend 

performance, a mixture design of experiments (DoE) is used to explore the design space. The 

characterisations in step 2 are repeated. At this stage, further experimental responses, which are 
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indicative of manufacturing performance, are added to allow more extensive ranking. These include 205 

mean yield pressure, tablet elastic recovery and tablet ejection stress. Based on this, two candidate 

blends are selected.  

 

Formulation optimisation using secondary excipients 

If required, the performance of selected blends may be further improved through the addition of 210 

secondary excipients (step 5). The level of flow enhancer may be varied within the allowable limits to 

improve the flow characteristics of the blends, while ensuring that it does not negatively impact 

tablet CQAs. If disintegration behaviour is an issue, the level of disintegrant may be varied within the 

selected limits. Secondary excipients should only be used when needed as they may have a negative 

impact on tablet CQAs [47].  215 

 

Scale-up of blends and adjustment of process parameters 

Steps 1-5 are designed to limit the amount of trial runs on equipment so that time and material is 

spared. Following these steps, only the most feasible blends reach the scale-up and optimisation of 

equipment parameters stage (step 6). The selected blends are rigorously assessed using the 220 

compaction triangle methodology on a lab-scale. The compactibility relationship has been shown by 

various authors to be scalable to high speed compaction and transferrable between equipment. 

Thus, it is used to set optimum target porosity and acceptable limits to reach the required tensile 

strength. Measures indicative of manufacturing issues, such as ejection and detachment stress and 

elastic recovery, are considered in the target porosity range. Dissolution behaviour is also considered 225 

as a function of tablet porosity. Up to this stage, all tableting characterisations may be performed on 

a bench top compaction simulator at slow tableting speeds (punch velocity 1 mm s-1) to minimise 

material used and ensure equipment measurement errors associated with dynamic tableting at high 

speeds are minimal. Once lab scale characterisation is completed, the influence of tableting speed 

may be assessed using an instrumented rotary tablet press. The rate of compaction (punch speed) is 230 

most critical factor in the scale-up of tableting processes and most scale-up problems are speed 

related [41]. A batch run is performed to assess tablet weight variability and assess tablet CQAs to 

determine the success of the approach. 

 

2.2 Materials  235 

Canagliflozin (supplied directly by Janssen) was chosen as a model API. The formulation required a 

fixed load of 51 wt%. The remainder of the blend composition was made up of 0.5 wt% magnesium 

stearate as lubricant (Sigma-Aldrich), fumed silicone dioxide (Aerosil 200 Pharma, Evonik) as flow 
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enhancer (0 – 1 wt%) and a filler or a combination of fillers. Microcrystalline cellulose (MCC), calcium 

hydrogen phosphate (DCP), polyvinylpoly-pyrrolidone (PVPP), hydroxypropyl cellulose (HPC) and 240 

hydroxypropyl methylcellulose (HPMC) were used as fillers. Different grades of these were screened, 

which mainly differed in particle size distribution as specified in Table 1.  

 

Table 1 List of filler materials included in formulation assessment. 

Type of filler Grade Abbreviation Vendor 

Microcrystalline cellulose 
(MCC) 

PH 101 MCC 101 Sanaq 

PH 102 MCC 102 Sanaq 

Dicalcium phosphate(DCP) 
Calcium hydrogen phosphate 
dihydrate 

DCPD Aliphos 

Crospovidone (PVPP) 

Kollidon® CL KollCL BASF 

Kollidon® CL-F KollCLF BASF 

Kollidon® CL-M KollCLM BASF 

Hydroxypropyl cellulose 
(HPC) 

L-HPC LH-11 HPC11 Shin-Etsu 

L-HPC LH-21 HPC21 Shin-Etsu 

L-HPC LH-31 HPC31 Shin-Etsu 

Hydroxypropyl 
methylcellulose 
(HPMC) 

Metolose® 60 SH - 4000 Met604000 Methocel E15 LV, Dow 

Metolose® 60 SH - 10000 Met6010000 Methocel E15 LV, Dow 

Metolose® 65 SH - 50 Met6550 Methocel E15 LV, Dow 

Metolose® 65 SH - 400 Met65400 Methocel E15 LV, Dow 

Metolose® 90 SH - 100 SR Met90100 Methocel E15 LV, Dow 

Metolose® 90 SH - 4000 Met904000 Methocel E15 LV, Dow 

Metolose® 90 SH - SM 4000 Met90SM4000 Methocel E15 LV, Dow 

Metolose® 90 SH - 15000 SR Met9015000 Methocel E15 LV, Dow 

Metolose® 90 SH - 100000 SR Met90100000 Methocel E15 LV, Dow 

 245 

2.3 Methods  

2.3.1 Blend preparation  

All small batch blends were prepared using a Caleva mini mixer at 60 rpm. The blends were prepared 

in following order: canagliflozin was pre-blended with silicon dioxide for three minutes (when used). 

The filler(s) were added and mixed for further three minutes. Magnesium stearate was added last 250 

and mixed for just one minute to avoid it fully coating the particles [49]. For larger amounts of 

blends (> 25 g), a tumble mixer (Stuart STR4/3) at a rotation speed of 30 rpm was used. The material 

was added into a two-litre container with a maximum fill level of 50 % to ensure adequate mixing. 

The powders were added in the same order and using the same mixing times.  

 255 
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2.3.2 Raw material characterisation 

Particle size distribution  

The particle size distribution was determined using a laser diffraction analyser (Microtrac S3500). 

The sample tray was filled up to one third (2 – 10 g) with the selected material and the analysis 

method for irregular particle shape was used. 260 

Density 

Bulk density 

The bulk density of all powders and blends was obtained from the powder compressibility test on 

the FT4 powder rheometer as outlined in section 2.2.3.  

True density of pure components and blends 265 

The true density (ρT) of the individual powders was determined using gas pycnometry (AccuPyc II 

1340, Micromeritics) in a helium atmosphere. The true density of blends was determined according 

to the mass fraction xi and true density ρTi of each constituent powder. For an n-component blend 

the blend true density ρTb  is given by equation 1: 

 1

𝜌𝑇𝑏
=  

𝑥1

𝜌𝑇1
+

𝑥2

𝜌𝑇2
+ ⋯ +

𝑥𝑛

𝜌𝑇𝑛
 (1) 

 270 

2.3.3 Powder flowability (FT4) 

Compressibility test 

The compressibility test is a standard test on the FT4 powder rheometer which measures the 

percentage volume change of a powder under a set pressure of 15 kPa. The powder sample was 

carefully pre-conditioned to ensure test reproducibility with a helical blade, which moved down and 275 

up through the powder bed at a tip speed of 60 mm s-1. After this step, the sample was split to 

obtain a volume of 10 mL. The powder bed was slowly compressed with a vented piston to 15 kPa. 

The change of powder volume was measured and the compressibility percentage (CP%) was 

calculated using equation 2, where Vi was the initial powder volume and Vp the post compression 

volume. 280 

 
𝐶𝑃% = 100 ×

𝑉𝑖 − 𝑉𝑝

𝑉𝑖
 (2) 

 

This test is similar to the compressibility index (Carr’s index) calculated from the bulk and tapped 

powder density. In the absence of a specific benchmark for CP%, the USP flow characterisations for 
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Carr’s index were adopted for the CP% here (Table S1, supplementary information). An upper limit 

of 20 % was chosen as this is the USP upper limit for “fair” flow (USP29 <1174> Powder Flow)[50]. 285 

Shear cell test  

The flow function (FF) was determined using the standardised rotational shear cell test of the FT4 

powder rheometer. The test was performed as described by Wang et al. [11], but only one pre-

consolidation pressure of 9 kPa was used. The flow function after Jenike, which is a commonly used 

term for classifying flow behaviour of powders, is the ratio of the major principal stress (MPS) to the 290 

unconfined yield strength (UYS) as shown in equation 3. The classification of the flow type is listed in 

table S2 in the supplementary information. 

 
𝐹𝐹 =

𝑀𝑃𝑆

𝑈𝑌𝑆
 (3) 

 

2.3.4 Tableting  

Gamlen - benchtop compaction simulator 295 

Compaction analysis was performed using a compaction simulator (Gamlen Tableting D series) using 

a 6 mm round and flat-faced punch and die set. The compaction was force controlled with loads of 

50 – 500 kg applied at a controlled upper punch velocity of 1 mm s-1. For each compression 100 mg 

of sample was manually filled into the die and compacted. The load-displacement data was used to 

perform in-die Heckel analysis and calculate detachment and ejection stresses. Punch elastic 300 

deformation was incorporated into the calculations. To determine the punch deformation, a 

compaction with an empty die was performed. 

Piccola – R&D rotary tablet press 

Scale-up to a multi-station system was performed on a ten station turret R&D Riva Piccola rotary 

tablet press equipped with eight round, flat-faced 8 mm punch and die sets. Two of the ten stations 305 

were blanked. The target OSD weight was 200 mg. The turret speed could be adjusted from setting 1 

to 10 (~2 – 50 rpm), allowing a maximum tablet output of 30,000 tabs h-1. The compaction load 

range could be adjusted from 1 – 60 kN on the main compaction roll. The blend was gravity fed via a 

hopper. For all tests, the pre-compaction force was set to zero. The raw data was exported to excel 

giving dwell, contact, rise, fall and pulse time and forces of the individual punches during 310 

compression and ejection.  
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Compaction and tablet characterisation  

Tensile strength  

The tablet crushing force (hardness) F was determined using a diametrical compression test. For 315 

OSDs compacted on the Gamlen triplicates for each compaction condition were tested for hardness 

using a PTB 311E, Pharma Test hardness tester. This equipment also records the tablet diameter D 

and thickness h. OSDs compacted on the Piccola were characterised using a semi-automated tablet 

testing system (SmartTest 50, Pharmatron Dr. Schleuniger®). The SmartTest 50 records tablet weight 

w, diametrical crushing force F, tablet diameter D and thickness h. As larger amounts of OSDs were 320 

available, 10 tablets per condition were tested for hardness and 30 in total for dimensions and 

weight. The tablet tensile strength (cylindrical tablets) was evaluated using equation 4 [51]: 

 
𝜎𝑡 =

2 𝐹

𝜋𝐷ℎ
 (4) 

Tensile strength values typically range from 0.1 – 4 MPa, while values in excess of 1 MPa are usually 

desirable for tablets [24]. Pitt et al. [45, 46] recommend tensile strengths in excess of 2 MPa to 

ensure a satisfactorily robust product.  325 

Tablet porosity and relative density  

The porosity of a tablet 𝜀 can be calculated during compaction (in-die), since the punch 

displacements are recorded, and after compaction (out-of-die) by measuring the tablet dimensions. 

The tablet porosity is given by  

 
𝜀 = 1 −  

𝜌𝑎𝑝𝑝

𝜌𝑇
= 1 −

4 𝑚

𝜌𝑇𝜋𝐷2ℎ
 (5) 

where m is the tablet mass, ρapp is the apparent tablet density and ρT is the true density of the 330 

powder or blend making up the tablet. The tablet porosity is related to the tablet solid fraction or 

relative density γ by  

 𝜀 = 1 − 𝛾 (6) 

Typically, solid fractions in the range 0.85 ± 0.05 are optimal for tablet formulations [45, 52] 

Compaction pressure and load 

Compaction pressures across the two devices ranged from 0 – 250 MPa covering the range of tablet 335 

porosities of interest. 
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Elastic recovery (%) 

The immediate axial elastic recovery percentage %ER0 and axial elastic recovery after approximately 340 

48 hours %ER48 was measured and evaluated. Further information and equations S1 and S2 can be 

found in the supplementary material.  

Ejection and detachment stresses  

Force-displacement data was collected during the processes of tablet ejection and detachment from 

the lower punch. Excessive forces during these stages can lead to, or indicate a risk of, production 345 

issues such as sticking, capping or lamination. The ejection stress ES is the maximum force FE 

observed during ejection, divided by the tablet surface area in contact with the die walls [53, 45, 47]. 

For a cylindrical tablet it is given by  

 
𝐸𝑆 =

𝐹𝐸

𝜋𝐷ℎ
 (7) 

For commercial requirements, an ejection stress less than 3 MPa generally suffices to produce a 

tablet which does not cap or laminate and ejection stresses up to 5 MPa may be acceptable [45].  350 

The detachment stress DS is calculated by dividing the maximum force observed during detachment 

FD (sometimes referred to as the take-off force) by the area in contact with the lower punch. For a 

cylindrical tablet it is given by  

 
𝐷𝑆 =

𝐹𝐷

𝜋𝐷2
 (8) 

The detachment stress may be higher or lower than the ejection stress depending on material 

properties. Detachment stresses which are significantly higher than ejection stresses can be 355 

considered to indicate the risk of production issues [54]. These properties are dependent on the 

compaction pressure applied or the degree of compression and should be evaluated at an 

appropriate porosity. 

Heckel analysis  

Heckel analysis was performed to characterise the compressibility (pressure-porosity relationship) 360 

and the mean yield pressure Py [49]. Further detailed information can be found in the 

supplementary material.  

 

Compaction triangle 

The compaction triangle was used to relate the key critical process parameters and critical quality 365 

attributes in the tableting process, namely the compaction pressure, the tablet porosity (or solid 
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fraction) and the tablet tensile strength. The equations chosen to relate these variables in this work 

are outlined below 

Tabletability (tensile strength-compaction pressure) In this work, tabletability was described as a 

linear function of the maximum applied pressure [55, 56]: 370 

 𝜎𝑡 = 𝑎𝑃𝑚𝑎𝑥 + 𝑏 (9) 

where Pmax is the maximum applied pressure and a and b are constants. The constant a is a 

parameter which quantifies the increase of the tensile strength per unit increase in the maximum 

applied pressure.  

Compactibility (tensile strength-porosity) The Ryshkewitch-Duckworth equation [36, 37] was used in 

this study. It is defined as: 375 

 𝜎𝑡 = 𝜎𝑡0𝑒−𝑘𝜀 (10) 

where σt0 is the tensile strength of a tablet at zero porosity, and k is a material constant 

representing the bonding capacity of the material [57].  

Compressibility (porosity-compaction pressure) is evaluated out-of-die, by recording the dimensions 

of resulting tablets for different maximum applied pressures. Elastic recovery means the results 

differ from the in-die relationship. In this study, an exponential relationship between porosity and 380 

pressure was used (Heckel equation in exponential form):  

 𝜀 = 𝐴∗𝑒−𝐾𝑃 (11) 

where A* = e-A relates the two forms of the equation.  

Weight uniformity (Piccola)  

Tablet weight variability was assessed by taking a random sample of tablets for each compression 

condition (n = 20) on the Piccola. The weight variability was assessed by considering the relative 385 

standard deviation of tablet weight (RSD). The relative standard deviation RSD is calculated by 

dividing the standard deviation of the sample s, by the sample mean tablet mass 𝑚̅. The RSD was 

reported as a percentage given by  

 𝑅𝑆𝐷 = 100 ×
𝑠

𝑚̅
 (12) 

Disintegration  

Disintegration was carried out in line with USP guidelines (USP <701>)[58]. A full description of the 390 

method is included in the supplementary material. 
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Dissolution  

Dissolution studies were carried out with a USP compliant tablet dissolution apparatus type II 

(Pharma Test PTWS 120D). The testing conditions are outlined in Table S2 in the supplementary 

information. For sample analysis, high pressure liquid chromatography (HPLC, Agilent Technologies 395 

1260 Infinity) was used. The actual API concentration was determined via a calibration curve, which 

was prepared pre-testing. The pass quality criterion required 80 % of the API to be dissolved by 20 

minutes and 85 % at 30 minutes.  

2.3.5 Statistical analysis 

Design of experiments (DoE) and subsequent statistical analysis was performed with the Design 400 

Expert® 9 statistical software from Stat-Ease, Inc. Further data analysis was carried out using R 

(version 3.4.2) with integrated development environment RStudio (version 1.1.383).  

Fitting of regression models and response surfaces is performed using standard techniques. Full 

details of the statistical techniques used are included in supplementary material.  

 405 

3 Results and Discussion 
 

3.1 Material database 

In total 19 fillers, 4 APIs, 1 flow enhancer, 1 disintegrant and 2 lubricants were characterised. Particle 

size distribution, moisture content, true and bulk densities, compressibility percentage, cohesion, 410 

flow function and flow rate index were compiled in the database (supplementary information table 

S4). The tableting behaviour of each powder was assessed and tablet properties such as 

disintegration behaviour, tensile strength and porosity under set conditions were also determined.  

3.2 Screening of excipients 

Compressibility percent (CP%) was used as the key flow indicator. Tensile strength was selected as 415 

the critical tablet property, along with disintegration ability as a secondary response. Fig. 2 

categorises material suitability for continuous direct compression. Ideally, the final blend should be 

in quadrant I, where the selected limits of tensile strength greater than 2 MPa and a CP% less than 

20, are both satisfied. Canagliflozin (Cana) sits in quadrant IV representing poor flow and poor 

tensile strength. Quadrant II represents the ability of forming strong tablets, but poor flowability. 420 

However, poor flow may be improved with flow enhancers and/or a combination of various fillers. 

Quadrant III shows materials with good flowability, but requiring higher pressures to form strong 

compacts. 
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Fig. 2. Screening and categorising materials for flow and compaction behaviour. Quadrant I and III 425 
indicate good flowability; quadrant I and II indicate good compaction properties in terms of tensile 
strength. All materials with open symbols indicate that no disintegration occurred. The materials 
with open or filled circles were selected for further evaluation.  

 

The selected fillers were initially ranked by their flow and compaction behaviour as outlined in the 430 

methods section. Secondary responses of disintegration and electrostatic charging were also 

evaluated. Table 2 shows the best representative of each of the five fillers chosen based on the 

initial screening. Electrostatic charging (e- charging) was evaluated visually during flowability testing, 

where some materials heavily adhered to the tooling while stirring. The filler suitability was 

determined based on a combination of responses including electrostatic charging, flow behaviour, 435 

disintegration and tablet tensile strength. The key responses were flowability and tensile strength. 

Flow behaviour was evaluated using the FF and CP% tests and ranked based on the flow evaluation 

tables S1 and S2 in the supplementary material. Free flowing powders are indicated with ‘+’, slightly 

cohesive to free flowing with ‘0’ and cohesive with ‘-‘. A disintegration time under 5 minutes was 

classified as ‘+’, between 5 and 15 as ‘0’ and over 15 minutes as ‘-‘. A good tensile strength was 440 

defined as above 2 MPa, whereby a poor tensile strength was considered below 1 MPa. The best 

performing representative grade of each material group was chosen, namely MCC PH 102, DCPD, 
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Kollidon® CL (PVPP), L-HPC-LH21 and Metolose® 60 SH – 4000 (HPMC). From all materials screened, 

these materials indicated the best filler suitability in terms of flowability and tensile strength.  

 445 

Table 2 List of pre-selected filler materials. Materials are ranked on required properties for a 
continuous direct compression process. Performance is ranked as good (+), medium (0) or poor (-).  

 Flow 
behaviour 

e- charging Disintegration Tensile Strength 
Filler  

suitability for DC 

MCC 102 0 + + + + 
DCPD + + - 0 0 
KollCL (PVPP) + + + 0 + 
HPC21 + + 0 + + 
Met604000 (HPMC) +/0* + - 0 0 

*FF = +, CP% = 0 

 

3.3 API with single (screened) fillers 450 

Single filler blends with a 51 wt% API loading were prepared using the five selected fillers. 

Canagliflozin is a hemi-hydrate so 51 wt% was given as a fixed requirement for this application to 

achieve 50 wt% API dosage. No other excipients except the filler was added. These blends were fully 

studied to evaluate their flow and compaction responses relative to the API powder alone. Fig. 3 

shows the CP% vs. tensile strength plot including the individual materials and the blends (bold). The 455 

open symbols indicate that no disintegration took place. The FF was also determined to ensure that 

at least two measures were taken to evaluate flowability. The FF (not shown in graph) indicated 

similar flow behaviour as the CP%. The addition of any filler, except for Kollidon® CL, showed 

significant improvement in flowability and a stable or increased tensile strength. Due to the lack of 

disintegration, dissolution was only carried out for the blends containing MCC PH 102, L-HPC-LH21 460 

and Kollidon® CL. (Fig. 4). All three blends passed the requirements for dissolution and matched or 

had a higher initial dissolution rate than the reference dissolution profile from the current wet-

granulated formulation, which is indicated by the dashed reference profile. The slight variations of 

the final API concentration from 100 % is due to slightly lower or higher actual API concentration 

than targeted. This could be due to incomplete mixing of the blends. The five fillers were narrowed 465 

down to three, specifically MCC PH 102, L-HPC-LH21 and DCPD. Kollidon® CL was excluded due to its 

negative impact on both flow and tensile strength responses. Metolose® 60SH 4000 was excluded 

because, even with the aid of disintegrants, the tablets would not disintegrate. Instead the tablets 

swelled, which is a common attribute of this material. As for this specific API a fast disintegration 

was desired, it was excluded from further studies as made it unsuitable for the current formulation 470 

development. However, due to its good compaction and flow behaviour it is a potential candidate 
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for direct compression. Although DCPD did not disintegrate, it was chosen due to its excellent flow 

properties. Through initial trials it was established that disintegration would take place once a 

disintegrant, or a filler which acts as a disintegrant, was added.  

 475 

Fig. 3. Evaluation of single filler blends via compressibility, tensile strength and disintegration 
behaviour. Open symbols indicate that no disintegration took place.  
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Fig. 4. Dissolution plots of the single filler blends. The blends containing DCPD and Metolose® 60 SH 480 
4000 were not included since no disintegration took place.  

 

3.4 Mixture DoE to optimise blend 

The filler portion of the formulation can be made up of mixtures of different filler materials to 

maximise the performance of the formulation. A mixture design of experiments (DoE) was carried 485 

out in order to find the combination of the three selected fillers which would optimise the flow and 

compaction properties of the formulation. A simplex lattice design with three levels comprising 10 

runs was chosen (Fig. 5). The blends all consisted of 51 wt% canagliflozin and 0.5 wt% magnesium 

stearate. The loadings of MCC PH 102 (MCC), L-HPC-LH21 (HPC) and DCPD (DCP) were varied 

according to the design between 0 and 48.5 wt%. The filler composition of the individual runs is 490 

listed in Table 3. All blends were prepared in the Caleva mini mixer (20 g) and later compacted in 

triplicates using the Gamlen compaction simulator at 350 kg load and 100 mg unit sample. 
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Fig. 5. Mixture design, simplex lattice with three levels. Each of the numbered points represents a 
blend with varying concentration of fillers. The API loading of 51 wt% and lubricant concentration 495 
(MgSt) at 0.5 wt% was set constant.  

 

The key responses listed in Table 3 were the FF, CP%, conditioned bulk density (CBD), tensile 

strength (σt), disintegration time (Dt), porosity (ε), mean yield pressure (Py), immediate elastic 

recovery (ER0) and elastic recovery after 48 hours (ER48), along with the measured blend particle 500 

size distributions (d10, d50, d90). 
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Table 3 Overview of the mixture design and measured blend properties and responses.  

Run 
# 

MCC 
[wt%] 

HPC 
[wt%] 

DCP 
[wt%] 

FF 
[-] 

CP%  
[%] 

CBD 
[g cm-3] 

σt 
[MPa] 

Dt 
[s] 

ε 
[-] 

Py 

[MPa] 
ER0 

[%] 
ER48 

[%] 
d10 

[µm] 
d50 

[µm] 
d90 

[µm] 

1 32.3 0 16.2 8.2 17.1 0.484 2.25 23 0.12 45.86 9.5 13.6 12.74 46.8 204.8 

2 16.2 32.3 0 6.3 18.8 0.440 2.85 18 0.12 40.80 8.7 14.9 11.81 42.73 151.9 

3 0 16.2 32.3 11.0 14.3 0.570 2.18 8 0.14 51.02 9.6 14.3 10.05 38.97 96.19 

4 16.2 16.2 16.2 9.0 16.6 0.498 2.35 70 0.14 56.93 9.0 12.5 11.76 42.38 151.7 

5 16.2 0 32.3 10.8 13.7 0.555 1.99 12 0.16 61.56 9.8 12.8 8.97 39.86 147.1 

6 0 32.3 16.2 9.5 14 0.531 2.53 15 0.14 55.13 8.8 12.6 7.29 36.86 95.12 

7 48.5 0 0 9.7 22 0.406 2.51 40 0.13 51.86 8.6 11.8 11.74 47.77 216.8 

8 32.3 16.2 0 7.7 22.1 0.422 2.58 12 0.12 49.50 8.8 11.6 10.96 44.65 195 

9 0 48.5 0 3.2 17.9 0.450 2.62 21 0.12 44.50 8.4 12.3 8.22 38.25 94.59 

10 0 0 48.5 19.5 11 0.650 1.86 - 0.15 79.28 10.0 9.2 7.71 36.16 95.53 
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Collected data was plotted and analysed. The behaviour of responses based on filler composition 505 

was captured using data driven models. The predictive power of different models was assessed. 

Contour plots of selected responses on ternary diagrams are shown in Fig. 6. Each point in the 

diagram corresponds to a given mixture of the three excipients in question. The excipient wt% range 

of 0 - 48.5 wt% has been normalised to 0 - 1. The sum of the excipient amounts used must equal 

unity. The triangle’s vertices represent the use of single components as excipients. The edge 510 

opposite a vertex represents zero wt% of the component at that vertex. The wt% of that component 

increases linearly from zero to one along the line connecting the centre point of the edge to the 

opposite vertex. Thus, points on an edge are mixtures of two components and points in the interior 

of the triangle cover mixtures of the three components in all proportions, where all components are 

non-zero. The contour map corresponds to the response level. The models listed in Table 4 were 515 

obtained by model reduction to their significant effects and show a p-value under 0.05 for the F-test 

for model significance, indicating a statistically significant fit. The two responses for flowability, 

which are CP% (Fig. 6 (A)) and the FF (Fig. 6 (B)), both indicate reasonable fits to the existing data 

when looking at the R2 and adjusted R2. However, based on the predicted R2 value for this data, only 

CP% could be considered accurate for prediction within the design space. Therefore, CP% was 520 

chosen as the main predictor for flowability. Both FF and CP% confirm that blends containing DCPD 

give the best flowability. However, FF and CP% give opposite rankings for the L-HPC-LH21 and MCC 

PH 102 blends. The FF indicates poor flowability for HPC and fair flowability for MCC, whereby CP% 

indicates good flowability for HPC and fair flowability for the MCC blend. The bulk density was also 

recorded, and similarly to the CP%, is highly predictable.  525 

In order to assess the tableting performance, Heckel analysis was carried out and the mean yield 

pressure σt was determined (Fig. 6 (C)). The lower the mean yield pressure Py, the less force is 

required to form a compact (see section 2.3.4 under Heckel analysis). The plot indicates that using 

L-HPC-LH21 as a single filler, has the lowest mean yield pressure (<50 MPa) closely followed by MCC. 

High concentrations of DCPD, however, require significantly more pressure (~70 MPa) to form a 530 

compact. Mean yield pressure is also very predictable based on the mixture of components.  

The tensile strength was identified as a key factor to assess the OSD characteristics and is shown in 

Fig. 6 (D). The tensile strength is very predictable and indicates that a high concentration of 

L-HPC-LH21 (~45 - 48.5 wt%) would produce OSDs at a desired tensile strength of over 2.6 MPa. 

Similarly, MCC PH 102 produced a tensile strength over 2.4 MPa. In both cases, a desired porosity 535 

between 0.10 and 0.15 was attained. The formulations containing high amounts of DCPD (>30 wt%) 

indicated the lowest tensile strengths, with values under 2 MPa.  
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Table 4 Model overview of potential predictable responses with significant p-value. 

 Model type p-value R2 Adjusted R2 Predicted R2 

(A) Compressibility % linear <0.0001 0.9326 0.9133 0.8814 
(B) Flow function  linear 0.0044 0.7885 0.7281 0.4244 
(C) Mean yield pressure linear 0.0001 0.9279 0.9073 0.8463 
(D) Tensile Strength linear 0.0001 0.9211. 0.8385 0.7964 
      
Bulk density linear < 0.0001 0.9916 0.9892 0.9814 
Porosity linear 0.0286 0.6378 0.5343 0.3360 
Elastic Recovery 0 h linear 0.0051 0.7787 0.7155 0.6000 

 

(A) 

 

 

(B) 

 

(C) 

 

(D) 

 

 
Fig. 6. Contour plots of selected responses: (A) compressibility %, (B) flow function, (C) mean yield 540 
pressure and (D) tensile strength.  

The optimum pre-formulation including the API and main filler was selected using the graphical 

optimisation tool in the Design Expert® software (Fig. 7). The limits for CP% (max. 18 %) and σt (min. 
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2.7 MPa) were chosen to select the region of minimum CP% and maximum tensile strength. These 

limits are marked in the figure. The intersection of these two regions gives the optimum formulation. 545 

Based on Fig. 7. the best choice is a formulation comprising 48.5 wt% L-HPC-LH21 as a single filler.  

 

 

Fig. 7. Overlay plot of the tensile strength and CP% for establishing the most suitable pre-
formulation. The limits were narrowed to a tensile strength of 2.7 MPa and a CP% of 18. The most 550 
suitable formulation is outlined in the table.  

 

Dissolution was carried out for each of the 10 tableted blends. The dissolution profiles can be found 

in the supplementary material in Fig. S1, whereby the red dashed line is the reference profile (RP) 

which refers to the commercially used wet granulated formulation. Fig. 8 shows the canagliflozin 555 

dissolved (%) at time point 20 (grey bars) and at time point 30 (hatched bars) of the 10 DoE runs and 

the reference profile (RP). The dashed line indicates the 80 % pass criterion for the 20-minute time 

point and the dotted line indicates the 85 % pass criterion for the 30-minute time point. Three 

blends (run 1, 5 and 10) failed the pass criterion of having 80/85% of the API dissolved by 20/30 

minutes. Those three blends are either a combination of only MCC PH 102 and DCPD or only DCPD. 560 

Provided L-HPC-LH21 is involved in the formulation with DCPD, the dissolution passes the criterion. 

The failure of the dissolution of DCPD as a single filler (run 10), was expected, as no disintegration 

took place in earlier tests. Interestingly, the disintegration time does not appear to be directly linked 



Systematic development of a high dosage formulation to enable direct compression of a poorly flowing API – 13/05/2019 

25 
 

with the dissolution performance; samples, which had a longer disintegration time could still 

perform faster in dissolution than samples which had a rapid disintegration time.  565 

 

 

Fig. 8. Canagliflozin dissolved in % at time point 20 minutes (grey bars) and 30 minutes (hatched 
bars) of the 10 DoE runs listed in Table 3 and the wet granulated reference profile (RP). The dashed 
line indicates the 80 % pass criterion for 20 minutes and the dotted line the 85 % pass criterion for 30 570 
minutes. 

As the flowability can still be improved in the next step using a flow enhancer, the compaction 

behaviour was prioritised over flowability in this step. The mixture design showed that L-HPC-LH21 

performed best as a single filler. However, due to its excellent dissolution behaviour and good 

compaction behaviour, the single filler MCC PH 102 blend was chosen as an alternative blend. The 575 

inclusion of a separate blend reduces the risk of failure and allows for further evaluation of the 

optimum formulation.  
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3.5 Adjustment of formulation using secondary excipients 

The selected pre-formulations contain 51 wt% canagliflozin, 0.5 wt% magnesium stearate and 580 

48.5 wt% of either L-HPC-LH21 or MCC PH 102. Both blends show good compaction behaviour, but 

improvements in flow behaviour are desirable. Therefore, varying amounts of Aerosil 200 (fumed 

silicone dioxide) were added as flow enhancer. The chosen levels were 0.2, 0.4 and 0.6 wt%. 

Canaglifozin was pre-blended with SiO2 first to allow time for coating of the poor flowing API 

particles. SiO2 improves the flow in two ways. Firstly, SiO2 are very small spherical particles and act 585 

as spacer between the bigger irregular shaped particles and improve particle packing to enhance the 

flow behaviour. Secondly, SiO2 also changes the charge of the blend, reducing the overall 

electrostatic charges allowing the blend to flow more easily [59, 60]. However, too much or too little 

SiO2 can lead to poorer flow behaviour and can impact tablet properties such as tensile strength, 

disintegration and dissolution [59, 61]. Fig. 9 outlines the effects of the various silicone dioxide 590 

levels. Fig. 9 (A) and (B) show the CP% and FF for investigating the flow behaviour. For the MCC 

blend, an SiO2 concentration of 0.2 wt% indicates the best CP%. The FF does not show a significant 

difference between the varying SiO2 levels. For the HPC blend the best CP% is achieved with 0.4 wt% 

SiO2. The addition of SiO2 increases the tensile strength to over 2 MPa and the disintegration time 

for both formulations (Fig. S2 (A) and (B)). Both increases are most likely due to the better particle 595 

packing, which is reflected in the relative density (Fig. S2 (C)). In the dissolution profiles (Fig. S2 (D)), 

no significant changes were observed, and all passed the requirements. Due to the positive changes 

in tensile strength and relative density regardless of SiO2 level, the focus was on selecting the blends 

with the best flow behaviour. Although the disintegration time increased marginally with the 

addition of SiO2, they were all still in an acceptable time range.  600 

The selected adjusted formulations were:  

 51 wt % canagliflozin, 0.4 wt% SiO2, 48.1 wt% HPC21, 0.5 wt% magnesium stearate. 

 51 wt % canagliflozin, 0.2 wt% SiO2, 48.3 wt% MCC 102, 0.5 wt% magnesium stearate. 
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(A) 

 

(B) 

 

Fig. 9. Impact of silicone dioxide levels on compressibility % (A) and flow function (B). The 605 
percentages on the bars indicate the SiO2 loading. 
 

3.6 Adjustment of process parameters and scale-up of blends 

 

The previous steps have been conducted in order to select the formulations most likely to succeed at 610 

manufacturing scale (e.g. 250000 – 50000 tablets per hour). To facilitate a rapid and successful scale-

up of the selected formulations, their behaviour in response to key equipment operating parameters 

was then extensively characterised. In order to test the suitability of the two developed formulations 

for manufacturing scale, the following key responses were assessed: 

 Ejection and detachment stresses under varying compaction pressures. 615 

 Dissolution behaviour of formulations compacted under varying compaction pressures. 

 Tabletability, compressibility and compactibility of formulations on different equipment and 

tableting speeds.  

The selection of compaction pressure, tableting speed and equipment together determine the tablet 

porosity, which is identified as a key CQA. To evaluate any tendency for capping or lamination in the 620 

chosen formulations, the tablet detachment stresses from the lower punch and tablet ejection 

stresses out of the die were measured for tablets compacted under six different pressures on the 

Gamlen, which led to different porosities (Fig. 10). Ejection and detachment stresses tend to be 

similar. A maximum ejection stress of 5 MPa has been specified as acceptable for the compaction 

speed on the Gamlen. The detachment stress should not be significantly larger [54]. If there was a 625 

risk of capping or lamination, small hair fractures and/or sticking may be observed. Fig. 10, shows 

that the ejection and detachment stresses for the HPC formulation remain very low until very low 
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porosities are reached (ε < 0.07). In contrast, the MCC formulation shows significantly higher 

stresses at the porosities of interest for manufacturing. Despite this, both formulations pass on the 

basis of the 5 MPa cut-off point.  630 

(A) (B) 

  

Fig. 10. Plots of ejection stress (A) and detachment stress (B) vs. porosity for both finalised MCC and 
HPC formulations. The ejection and detachment stresses remain very low for the HPC formulation 
until very low porosities are reached. The stresses for the MCC formulation increase more rapidly as 
porosity decreases, indicating a higher potential for lamination and capping issues during 
manufacturing.  635 

Dissolution was carried out for each conditions (Fig. 11) noting the related porosities and 

compaction pressure in brackets. The darker the shade the higher the compaction pressure and 

lower the porosity. For both formulations, a decrease in the porosity resulted into a slower 

dissolution. However, both formulations at any of the prepared porosities fulfilled the formulation 

requirements. For the MCC blend a significant difference between the profiles can be seen (Fig. 11 640 

(B) and (D)), which shows a significantly slower dissolution than HPC at lower porosities. While the 

tablets at intermediate scale are larger, their rapid disintegration time suggests similar dissolution 

profiles for similar porosities as seen in the dissolution profiles of the tablets produced on the 

Piccola (Fig. 11 (C) and (D)). 

  645 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

 
Fig. 11. Dissolution profiles of (A) HPC formulation and (B) MCC formulation both compacted on the 
Gamlen and dissolution profiles of (C) HPC formulation and (D) MCC formulation both compacted on 
the Piccola. The porosities are listed after the sample name and the compaction is named in brackets 
after. The dashed lines indicate the 80/85 % limit of API dissolved by 20/30 minutes.  650 

In order to evaluate the tabletability, compressibility and compactibility relationships of the 

formulations, both were tabletted on the Gamlen at low speed (1 mm s-1) and at higher speeds on 

the Piccola rotary tablet press (50 rpm turret speed, ~50 mm s-1 compaction speed). The reason for 

first compacting on the Gamlen is that the API is expensive to use in large quantities. Small scale 

compaction allows an understanding of formulations to be developed while sparing material. All 655 

relevant responses for a given tablet, including Heckel plots, ejection stress, detachment stress, 

elastic recovery and tensile strength can be collected from a single compaction and linked on a one-

to-one basis with tablet porosity and applied pressure. By compacting tablets at different pressure 
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level, a full understanding of the key responses is gained and the compaction triangle plots are 

populated. This is a highly efficient way of assessing formulation performance.  660 

The compaction triangle relationship helps to identify the optimum compaction pressure range to 

generate OSDs at the desired tensile strength and porosity. Once these are identified the knowledge 

can be transferred to different equipment. However, it is known, that the tableting speed has an 

impact on the tabletability and compressibility relationships. Therefore, the compaction triangle 

relationships need to be reproduced on each equipment. However, the compactibility relationship is 665 

generally not sensitive to changes in compaction speeds and can therefore be used as a transferable 

relationship. Fig. 12 compiles these three relationships of the slow speed on the Gamlen () 

(6 mm/100 mg OSDs) and highest turret speed on the Piccola (▲) (8 mm/200 mg OSDs). To study the 

impact of the turret speed on the compaction behaviour, three different turret speed settings (∆) at 

one fixed die fill setting were tested (Fig. 12). The turret speed settings were 7 rpm (‘slowest speed 670 

on Piccola’), 27 rpm (‘medium speed on Piccola’) and 50 rpm ‘(highest speed on Piccola’).  

As the compactibility relationship is not affected by varying equipment, tableting speed and tablet 

size, the optimum tensile strength vs. porosity window could be established. Based on specified 

required limits on the required tablet crushing force for commercial tablets, the target tensile 

strength σT was calculated to be 2.79 ± 27 % MPa (2.03 to 3.55 MPa) for both formulations. Using 675 

the σT limits and the determined fitted equation of the compactibility relationship, the optimum 

porosity was determined as 0.088 to 0.143 and 0.086 to 0.148 for the HPC and MCC formulations, 

respectively. To control these values in practice, the tablet thickness is used as control parameter. 

Based on the tablet volume and size, the optimum thickness for round, flat-faced tablets was 

calculated to be approximately 3.1 – 3.2 mm for 8 mm (200 mg) and 2.7 – 2.9 mm for 6 mm (100 mg) 680 

dosage forms. The calculated thickness and the established compaction pressures from the Gamlen 

tabletability and compressibility relationships were used to quickly establish settings for the Piccola 

tableting. To approach the work on the Piccola, the die fill needed to be adjusted first to achieve the 

target weight of 200 mg. This was carried out at the lowest turret speed setting (7 rpm). The fill is 

controlled by the bottom punch position, which is manually adjusted prior a run. The turret speed 685 

was increased to medium turret speed (27 rpm) and then to the highest turret speed (50 rpm). The 

original set weight of around 200 mg dropped to 195 mg at medium turret speed and to around 190 

mg at the highest turret speed for both formulations. The reason for the weight drop is due to the 

decreased die fill time at higher speeds. The recorded responses were also added to Fig. 12 as open 

triangle symbols. In order to perform the compaction triangle on the Piccola, the die fill was 690 

readjusted to achieve the 200 mg target weight at the highest turret speed. The chosen compaction 
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pressures were similar to the compaction pressures used on the Gamlen. The compaction triangle 

plots were generated for the HPC (Fig. 12 (A) – (C)) and MCC formulation (Fig. 12 (D) – (F)).  
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Fig. 12. Overview of the compaction triangle plots for tabletability, compressibility and compactibility 695 

relationships for HPC formulation (A – C) and MCC formulation (D – F) 

y = 0.0186x - 0.2336
R² = 0.9842

y = 0.0289x - 0.4771
R² = 0.9963

0

1

2

3

4

5

0 50 100 150 200 250

Te
n

si
le

 S
tr

en
gt

h
 [

M
P

a]

Applied Compaction Pressure [MPa]

y = 0.0218x - 0.2653
R² = 0.9829

y = 0.0263x - 0.4557
R² = 0.9912

0

1

2

3

4

5

0 50 100 150 200 250

Te
n

si
le

 S
tr

en
gt

h
 [

M
P

a]

Applied Compaction Pressure [MPa]

y = 0.3762e-0.008x

R² = 0.965

y = 0.3792e-0.01x

R² = 0.9894
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 50 100 150 200 250

P
o

ro
si

ty
 ε

[-
]

Compaction Pressure P [MPa]

y = 0.4441e-0.011x

R² = 0.9957

y = 0.4317e-0.011x

R² = 0.9979
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 50 100 150 200 250

P
o

ro
si

ty
 ε

[-
]

Compaction Pressure P [MPa]

y = 9.9571e-11.51x

R² = 0.9875

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4

Te
n

si
le

 S
tr

en
gt

h
 σ

t
[M

P
a]

Porosity ε [-]

y = 7.6546e-9.725x

R² = 0.9825

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4

Te
n

si
le

 S
tr

en
gt

h
 σ

t
[M

P
a]

Porosity ε [-]



Systematic development of a high dosage formulation to enable direct compression of a poorly flowing API – 13/05/2019 

33 
 

The tabletability plots shown in Fig. 12 (A) and (D) indicate that strong tablets can be attained at 

reasonable pressures, which backs up the earlier calculation of low mean yield pressures. However, 

it is clearly visible that the equipment and tableting speed has an impact on the tabletability. The 

HPC formulation shows quite a significant difference between the Gamlen () and the Piccola (▲), 700 

but also the initial different speed settings on the Piccola show a reduction in tensile strength at 

higher turret speeds (∆). The MCC blend is observed to be less sensitive to tableting speed with a 

much smaller deviation from results on the Gamlen. Similar observations apply to the 

compressibility plots (B) and (E). These two relationships indicate that the MCC formulation is less 

sensitive to compaction speed changes compared to the HPC formulation. The compactibility 705 

relationship is scale independent and shows an excellent fit to the Ryshkewitch-Duckworth equation. 

The HPC formulation shows a higher bonding capacity and theoretical tensile strength at zero 

porosity. In general, on this basis the HPC blend shows a slightly better performance, but both 

formulations satisfy the tensile strength requirements near the target porosity of approximately 

0.11. Overall, all data points from the three different tablet presses, which operated at different 710 

compaction speed and different OSD sizes, fitted to the compactibility relationship, which shows 

that this is a useful tool for scale-up.  

The Piccola also measures the ejection forces. Fig. 13 shows the ejection stresses vs. porosity plots 

from the compaction triangle runs. Compared to the plots in Fig. 10, which were generated on the 

Gamlen, the ejection stresses are a significantly higher for the HPC formulation. However, no 715 

tableting defects were observed. It should be emphasised that the ejection stress cut-off point of 

5 MPa has been specified in the literature for slow compaction speeds. The tablet porosities are in 

the same range in both the Piccola and Gamlen, so the higher ejection stresses for the HPC 

formulation on the Piccola are likely due to the much faster ejection speed. Interestingly, similar to 

the compressibility and tabletability data above, the ejection stresses for the MCC formulation seem 720 

largely independent of ejection speed. The overall variation of the ejection stresses is much larger 

for the Piccola data. The reason for this may be due to some variation in the distribution of 

magnesium stearate within the blend, where tablets with less magnesium stearate could lead to 

higher ejection stresses. Also, a variation in the applied force between individual punches results in 

tablets with slightly different porosities, which can also influence ejection stress.  725 
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(A) 

 

(B) 

 
Fig. 13. Ejection stresses vs. porosity of the HPC formulation (A) and MCC formulation (B) performed 
on the Piccola at 50 rpm turret speed, under different compaction pressures. The variation in porosity 
and ejection stress within the batches is indicated with error bars.  

 730 

Table 5 summarises the most important tableting values at the target properties for the HPC (A) and 

MCC (B) formulation. Both formulations lie in the target ranges of thickness, porosity and tensile 

strength. The tablet weight variation is slightly more inconsistent in MCC formulation, whereby the 

MCC formulation requires lower compaction pressures and also has much lower ejection stresses 

than the HPC formulation. 735 

 

Table 5 Values of the most suitable target runs for the HPC (A) and MCC (B) formulation run on the 
Piccola at the highest turret speed setting 

(A) 
HPC formulation 

(B) 
MCC formulation 

 

P 
[MPa] 

h 
[mm] 

ε 
[-] 

σt 
[MPa] 

ES 
[MPa] 

m 
[mg] 

 P 
[MPa] 

h 
[mm] 

ε 
[-] 

σt 
[MPa] 

ES 
[MPa] 

m 
[mg] 

146 3.19 0.11 2.70 6.05 203.0  110 3.10 0.13 2.47 3.56 193.2 
RSD% 0.8 7.1 16.2 27.3 1.5  RSD% 0.6 12.9 18.8 30.8 2.2 
             
170 3.16 0.10 2.96 6.12 203.7  150 3.08 0.09 3.02 4.75 200.0 
RSD% 1.0 8.2 8.6 16.6 1.7  RSD% 0.6 14.8 13.4 20.8 1.7 

 

  740 

0

1

2

3

4

5

6

7

8

0.00 0.10 0.20 0.30 0.40

Ej
ec

ti
o

n
 S

tr
es

s 
[M

P
a]

Porosity [-]

0

1

2

3

4

5

6

7

8

0.00 0.10 0.20 0.30 0.40

Ej
ec

ti
o

n
 S

tr
es

s 
[M

P
a]

Porosity [-]



Systematic development of a high dosage formulation to enable direct compression of a poorly flowing API – 13/05/2019 

35 
 

4 Conclusion 
 

This work shows that a high dosage formulation for direct compression can be developed and its 

behaviour can be characterised and predicted using the described systematic approach. This 

approach is material sparing and allows a relatively quick formulation development. In this work, 745 

two optimised formulations were developed for the API canagliflozin at a 51 wt% loading and were 

successfully scaled-up from a slow compacting single punch compaction simulator to an R&D rotary 

tablet press. The compactibility relationship was shown to be a good scale-up factor, with consistent 

behaviour across different compaction speeds and equipment. During the formulation development, 

several learnings will facilitate faster formulation development and transfer of products currently 750 

manufactured batch wise to continuous direct compression processes. The generated material 

database and the systematic protocol will help to quickly categorise new materials and formulations. 

Maintained properly, and continuously expanded to include new materials and responses, the 

database serves as a shortcut to rapid decision making on potential formulations. The 

compressibility% was shown to be a more reliable predictor of the flow behaviour of interest than 755 

the flow function. However, the need to consider different measures of flowability, relevant to 

different unit operations is emphasised. The compaction triangle relations are found to be vital for 

formulation development with the key compaction variables of porosity, tensile strength and 

compaction pressure being characterised. Added to this, an understanding of the influence of 

compaction speed on the formulation is vital for successful scale-up.  Other measures such as bulk 760 

density, mean yield pressure and particle size distribution (d90 and d50) are found to be predictable 

based on the blend composition, but further research is needed to advance their use in formulation 

development.  
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