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1 Coupled electromagnetic - heat transfer model

The microwave heating process proposed in this paper involves raising the temperature of PAN fibres
using electromagnetic waves, via a lossy dielectric susceptor coating. The electromagnetic waves are
generated by a P = 1 kW magnetron operating with an assumed efficiency of ηmag = 60 − 70%.
A TE10 waveguide then passes the electromagnetic waves into the microwave cavity with a volume
of 0.32m(height)× 0.45m(width)× 0.28m(depth). The electromagnetic fields alternate with a fre-
quency of f = 2.45GHz, which in turn excite the polar molecules in the susceptor material as their
poles try to align with those of the waves. This process raises the kinetic energy of molecules in
a substance, with the average described by temperature. The susceptor material is made of XXX,
which has a high dielectric loss that means the temperature increases rapidly upon exposure to
electromagnetic waves. As the temperature of the susceptor increases, heat conducts to the lower
temperature PAN precursor material located at the core of the fibre. In order to model the transient
temperature distribution on the PAN core, it is necessary to couple the electromagnetic and heat
transfer domains.

1.1 Heat transfer domain

First, the heat transfer model will be described for the PAN and susceptor materials (fibre domain).
The heat diffusion equation for three dimensional transient heat conduction in cylindrical coordinates
is described by the following;
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Where r, φ, z describe the radial, circumferential, and axial coordinates, T is the temperature (K),
k is the thermal conductivity (W/mK), Q̇ represents volumetric heat generation that results from
dielectric heating of the fibre (W/m3), ρ is the density (kg/m3), Cp is the specific heat capacity
(J/kgK), and t represents time (s). Recognising the symmetry that exists in heating of the fibre, and
the size of the geometry in comparison to the wavelength of the electromagnetic field, Equation 1 may
be reduced to a one dimensional problem by assuming symmetry with respect to the circumferential
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. This simplification may be afforded as the cross section of

the fibre will not experience a significant variation in electric field strength (Erms), due to the size
of the fibre diameter relative to the electromagnetic field wavelength (10−1 µm vs 10−1m). For
simplicity, the fibre is assumed as suspended in the electromagnetic field, with temperatures and
heat losses to the environment uniform around the circumference and along the length; embedded in
this assumption is the omission of the effects of neighbouring fibres in a bundle, and that conditions
are representative of a fibre at the outer surface of a bundle. As the model must be able to describe
the transient temperature response of the fibre material as heat is conducted radially through the
fibre via the dielectrically heated susceptor material, the temporal and volumetric heat generation
terms are retained in the formulation of the one dimensional model;
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Mathematical models have been developed for linear and non-linear schemes, both of which are
described below using implicit finite difference methods.

1



1.1.1 Linear model

If constant material properties are assumed, then the model can be linearised, and Equation 2
reduces to the following;
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Where α represents thermal diffusivity
(
α = k

ρCp
, m2/s

)
. Equation 3 can be re-written as follows;

1

r

∂T

∂r
+
∂2T

∂r2
+
Q̇

k
=

1

α

∂T

∂t
(4)

In order to solve the above equation to deliver a transient temperature profile over the radial coor-
dinate (0 ≤ r ≤ ro), it is necessary to define initial and boundary conditions. Upon introduction
of the electromagnetic field to the heat transfer domain, it is assumed that the temperature of the
PAN fibre is equal to the ambient (T∞ = 20◦C);

T |t=0 = T∞ 0 ≤ r ≤ ro (5)

Due to symmetry, a zero temperature gradient exists at the core of the fibre (r = 0);
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At the surface of the susceptor (r = ro), heat losses through radiation and convection are assumed;
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Where ε represents the emissivity of the susceptor coating, σ is the Stefan-Boltzmann constant
(5.68 × 10−8W/m2K4), and h∞ is the convective heat transfer coefficient. The presence of fourth
power terms in the above equation (T 4) makes it highly non-linear, introducing further complication
when resolving for temperatures at the boundary node. The radiative heat loss term can be linearised
by formulating an expression using the radiation heat transfer coefficient (hr);
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Where;
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The radiation heat transfer coefficient, with units of W/m2K, is updated at every point in time
during simulation due to its surface temperature dependency. The convection heat transfer coefficient
is assumed as h∞ = 10W/m2K. The overall heat transfer coefficient can then be computed by
summing the contributions of radiation and convection (h = hr + h∞), and Equation 7 transforms
to the following;
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In effect, the Q̇ term in Equation 4 represents volumetric heat generation in the susceptor coating
only (Q̇sus), as the PAN fibre has a negligible dielectric loss (Q̇PAN ∼ 0W/m3). The susceptor
coating is on the order of 10 − 100nm in thickness. At such scales, the conventional ’bulk’ heat
diffusion model (Equation 1) no longer holds, as the thickness is likely smaller than the mean free
paths of the electrons and phonons that transport heat through the material. Even if the mean free
path is smaller than discrete spatial steps (∆r) used in a heat transfer model, the limit imposed

on the temporal step (∆t) for stability (∆r2

2α for an explicit finite difference model) and accuracy is
prohibitive for transient modelling over 101 s. In order to circumvent this difficulty in modelling the
PAN fibre, the volumetric heat generation term is transformed to a heat flux on the PAN surface. In
this manner, the macro-scale Fourier law model can be applied as the susceptor coating is removed
from the model, and the PAN fibre is ∼ 10µm in diameter. Utilising a 1µm spatial step permits
a time step of ∆t = 10−6 s for stability and accuracy, which is over 106× larger than the limiting
temporal increment for modelling at 10−100nm 1). When the heat generation term is converted to
an incident heat flux on the PAN surface, an energy balance dictates the state of thermal equilibrium
of the fibre;
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Where Q”sus is the incident heat flux on the PAN surface from the dielectrically heated susceptor,
calculated using;

Q”sus = Q̇susLsus (12)

Where Lsus is the half-thickness of the susceptor coating on the PAN surface. Inherent in the
application of Equation 12 is an assumption of uniform temperature across the susceptor material.
Assuming a negligible dielectric loss in the PAN fibre, Equation 4 reduces to the following;
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By reducing the heat diffusion equation to a one-dimensional radial conduction problem, the tran-
sient temperature profile can be solved numerically using implicit finite difference methods with
appropriate initial and boundary conditions. This method is unconditionally stable, meaning a so-
lution can be obtained using any temporal step size (∆t), and is resolved iteratively with a set of
linear algebraic equations. However, the chosen time increment does influence solution accuracy, so
caution must be exercised in this regard. The equations needed to build the finite difference model
are essentially discrete approximations of the differential terms present in the heat equation, and
are formulated using the second-order accurate central difference scheme;
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1In formulating a non-linear finite difference model, stability limits associated with explicit modelling are used as
a guide for approximate temporal steps in the implicit schema.
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In the above equations, the n superscript represents discrete time steps of size ∆t, whilst the i
subscript represents discrete spatial steps of size ∆r. A temporal position can therefore be located
with tn = n∆t, whilst spatial positions are located by r = (i − 1)∆r. When the partial derivative
approximations are recombined, Equation 13 is described in the implicit finite difference schema by
the following;
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In order to solve the transient heat conduction problem using the finite difference scheme, temper-
atures are evaluated at a new time (n+ 1), rather than in a previous (n) time, as is the case using
conditionally stable explicit solution methods. The Gauss-Seidel iteration technique is employed
here to resolve temperatures in the finite difference stencil at new times. This method is robust,
efficient, and involves solving a linear set of finite difference equations describing nodal temperatures
at new times (Tn+1

i ) simultaneously by iterating towards converged solutions, then marching the
solution at each time step by setting the outputs at time n as the inputs for time n+1. Considering a
system of N finite difference equations with N unknowns that correspond to the number of discrete
nodes in the finite difference stencil, the linear algebraic equations are reordered according to the
following;
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Where aii is the coefficient for the temperature at node i (Tn+1
i ), aij represents coefficients for

temperatures at neighbouring nodes in the stencil, and Ci is a coefficient comprised of the remaining
terms in the diffusion equation for Tn+1

i . For ease of convergence, the equations should be re-ordered
in order to ensure that the diagonal coefficients (aii) are the largest elements in each row; in this
problem, and indeed most heat transfer problems, the diagonal coefficients prove to be the largest
in each unknown equation. A satisfactory convergence condition is as follows;

|aii| >
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N∑
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|aij | (19)

With the coefficients for each node determined and appropriately sequenced, the iteration procedure
can commence using a general description of the form;
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The k superscript refers to the level of the Gauss-Seidel iteration. In establishing Tn+1
i , rational

estimates of nodal temperatures at k = 0 can be obtained using the converged solution at Tni . At
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subsequent Gauss-Seidel iterations (k > 0), new values of T
n+1(k)
i are calculated using current values

of Tn+1(k) at 1 ≤ j ≤ i− 1, and values of Tn+1(k−1) at i+ 1 ≤ j ≤ N . The iteration continues until
an appropriate convergence criterion is reached. In this study, the following must be satisfied for
each node in the stencil;

∣∣∣Tn+1(k)
i − Tn+1(k−1)

i

∣∣∣ < E (21)

Where Err is an acceptable error in temperature; 0.001K is applied here. Due to the cylindrical
fibre geometry and imposed boundary conditions, different coefficients exist for modes at the root,
the interior, and at the surface. For interior nodes (0 < r < ro, 1 < i < N), the coefficients extracted
from Equation 17 are as follows;
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For the core node (r = 0, i = 1), symmetry is assumed, with Equation 17 reducing to the following
when Tn+1

i−1 is replaced with Tn+1
i+1 ;
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With the following coefficients extracted;
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The fictitious node concept is leveraged to define an appropriate equation for the outer surface
(r = ro, i = N), as node i + 1 is beyond the confines of the nodal stencil. The finite difference
representation of the surface boundary condition (Equation 11) is as follows;
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Equation 26 is then substituted into Equation 17, yielding the following coefficients;
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1.1.2 Non-linear model

The heat diffusion problem becomes non-linear when material properties are assigned a temperature
dependency. A number of approaches have been developed for solving non-linear problems, such
as lagging the evaluation of temperature dependent properties by one time step, a three-time-level
implicit scheme, and linearisation procedures [1]. For the current model, the three-time-level implicit
scheme developed by Dupont et al. [2] is used (known as the Dupont-II scheme [1]). In this method,
linear algebraic finite difference equations are solved simultaneously for time n + 1 using results at
times n and n− 1. This approach is deemed to be more accurate than simply lagging temperature
dependent properties by one time step, can be readily implemented once the time marching procedure
is started, and is stable across large time steps [1]. As this method requires the results of two previous
time levels to solve for n+ 1, a two-time-level scheme is necessary to start the model. The implicit
finite difference model described in Section 1.1.1 can be used to start the time marching procedure,
passing results for n = 1 to the three-time-level model for the evaluation of results at n ≥ 2. Hogge
[3] found the Dupont-II model with a weight parameter of w = 1

4 to produce excellent results to
non-linear diffusion problems after critically examining a number of methods [1]. This parameter
dictates the proportional time-averaging weight for times n + 1 and n − 1. For interior nodes, the
three-time-level finite difference equation in the Dupont-II scheme is as follows;
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Localised radial and thermal conductivity parameters between neighbouring nodes are evaluated as
follows;

ri± 1
2

=
ri + ri±1

2
(30)

k∗i± 1
2

=
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2
(31)

Material properties k∗i , ρ∗i , and C∗pi are time-averaged over the two most recent time steps;
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3

2
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1

2
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i (32)
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ρ∗i =
3
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(34)

Empirical models for material properties as a function of temperature have been developed and
incorporated into the model. For the core node (r = 0, i = 1), the following application of l’Hôpital’s
rule to treat the singularity at r = 0 yields the following finite difference equation [1];

k∗i
2

∆r2

[
3

4
Fn+1
i +

1

4
Fn−1
i

]
= ρ∗iC

∗
pi

Tn+1
i − Tni

∆t
(35)

Where Fn+1
i and Fn+1

i are as follows;
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(36b)

For the outer surface node (r = ro, i = N), a Taylor series expansion is used to derive a finite
difference equation for the energy balance over the fibre boundary, yielding the following in the
Dupont-II scheme [1];
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i and Fn+1
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(38a)
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The incident heat flux term is established through an energy balance on the surface;

Q”∗ =
3

2
Q”n − 1

2
Q”n−1 (39)

Where;

Q”n = Q”sus − hn (TnN − T∞) (40)

The Q”sus term is assumed as constant in this analysis, with its calculation described in Section 1.2.
Initiation of the three-time-step model necessitates the use of a two-time step model for time i = 1.
After the fully implicit two-time-stepping model is used to initialize the three-time-stepping Dupont-
II scheme, the Gauss-Seidel procedure is again used to solve the linear algebraic equations simul-
taneously for n ≥ 2 (see Equations 18-21). Coefficients are extracted from the finite difference
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representation of each node as before, however they are listed here for completeness. For interior
nodes (0 < r < ro, 1 < i < N), the coefficients extracted from Equation 28 are as follows;
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For the core node (r = 0, i = 1), the coefficients extracted from Equation 35 are as follows;
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For the outer surface node (r = ro, i = N), the coefficients extracted from Equation 37 are as
follows;

aii =
2∆t k∗

i− 1
2(

∆r2ρ∗iC
∗
pi

) + 1 (43a)

ai(i+1) = 0 (43b)

ai(i−1) = −
3∆t k∗
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2(
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∗
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∗
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2
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∗
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)
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1.2 Electromagnetic domain

Maxwell’s equations constitute a fundamental model for electromagnetism. These equations are
generally represented in integral or differential form to describe the electric and magnetic fields in a
three-dimensional space. Numerical techniques such as Finite-difference time-domain (FDTD) and
Finite element method (FEM) are commonly used to solve Maxwell’s equations in electromagnetic
problems. In the present model, the Q̇ term necessary to resolve the transient temperature field
in the PAN fibre is established using a series of analytical expressions that describe peak electric
field strength. This simplification is afforded as the location of ’hot spots’ in the commercial mi-
crowave oven are first identified in the experimental analysis, with the PAN fibre then positioned
appropriately. The volumetric heat generation term is calculated from the following;

Q̇ = ωε0ε
′′
E2
rms (44)
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Where ω is the angular frequency in rad/s (ω = 2πf), ε0 is the permittivity of free space (8.85 ×
10−12 C2/Nm2), ε

′′
is the dielectric loss constant, and Erms is the root mean square value of the

electric field intensity in V/m. Assuming a fixed input power of P = 0.7 kW from the magnetron,
the average microwave strength over the cavity cross section is calculated from the following;

Iavg =
P

A
(45)

Where Iavg is the average intensity in W/m2, and A is the cross sectional area of the cavity (0.32m×
0.45m). With the intensity established, the peak electric field strength can then be obtained from
the following;

Iavg =
cε0E

2
max

2
(46)

Emax =

√
2Iavg
cε0

(47)

Where c is the speed of light (2.99× 108m/s). The root mean square value is obtained using;

Erms =
Emax√

2
(48)

1.3 Material properties

***This section will describe material properties of PAN and CNT susceptor using graphs and
polynomial expressions when available***
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Nomenclature

Symbol
a diagonal coefficients
A cross sectional area (m2)
c speed of light (m/s)
C remainder coefficient
Cp specific heat capacity (J/kgK)
E electric field strength (V/m)
Err error criteria
f frequency (1/s)
h heat transfer coefficient (W/m2k)
I electric field intensity (W/m2)
k thermal conductivity (m)
L length (m)
P power (W )
Q” heat flux (W/m2)

Q̇ heat generation (W/m3)
r radial position (m)
t time (s)
T temperature (K)

Greek
α thermal diffusivity (m2/s)
∆r spatial step (m)
∆t time step (s)
ε emissivity
ε dielectric loss constant
ε0 permittivity of free space (C2/Nm2)
η efficiency
σ Stefan-Boltzmann constant (W/m2K4)
ω angular frequency (rad/s)

Sub / superscript
∗ time-averaged index
∞ ambient
avg average
i spatial increment
j neighbouring spatial nodes
k Gauss-Seidel iteration level
max maximum
n temporal increment
N total discrete spatial nodes
PAN PAN fibre material
r, φ, z cylindrical coordinates
rms root mean square
sus susceptor material
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