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Abstract

The objective of the present study was to quantify the accuracy of imputing medium-density
single nucleotide polymorphism (SNP) genotypes from lower-density panels (384 to 12,000
SNPs) derived using alternative selection methods to select the most informative SNPs. Four
different selection methods were used to select SNPs based on genomic characteristics (i.e.
minor allele frequency (MAF) and linkage disequilibrium (LD)) within five sheep breeds
(642 Belclare; 645 Charollais; 715 Suffolk; 440 Texel; and 620 Vendeen) separately.
Selection methods evaluated included 1) random, 2) splitting the genome into blocks of equal
length and selecting SNPs within block based on MAF and LD patterns, 3) equidistant
location while optimising MAF, 4) a combination of MAF, distance from already selected
SNPs, and weak LD with the SNP(s) already selected. All animals were genotyped on the
[llumina OvineSNP50 Beadchip containing 51,135 SNPs of which 44,040 remained after
edits. Within each breed separately, the youngest 100 animals were assumed to represent the
validation population; the remaining animals represented reference population. Imputation
was undertaken under three different conditions; 1) SNPs were selected within a given breed
and imputed for all breeds individually; 2) all breeds were collectively used to select SNPs
and were included as the reference population; and 3) the SNPs were selected for each breed
separately and imputation was undertaken for all breeds but excluding from the reference
population, the breed from which the SNPs were selected. Regardless of SNP selection
method, mean animal allele concordance rate improved at a diminishing rate while the
variability in mean animal allele concordance rate reduced as the panel density increased. The
SNP selection method impacted the accuracy of imputation although the effect reduced as the
density of the panel increased. Overall, the most accurate SNP selection method for panels
with <9,000 SNPs was that based on MAF and LD pattern within genomic blocks. The mean

animal allele concordance rate varied from 0.89 in Texel to 0.97 in Vendeen. Greater
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imputation accuracy was achieved when SNPs were selected and imputed within each breed
individually compared to when SNPs were selected across all breeds and imputed using a
multi-breed reference population. In all, results indicate that accurate genotype imputation to

medium-density is achievable with low-density genotype panels with at least 6,000 SNPs.

Key words linkage disequilibrium, minor allele frequency, multi-breed, single nucleotide

polymorphism selection

Introduction

The magnitude of return-on-investment is a major factor affecting the uptake of any
technology and this can be improved by either increasing the return or by reducing the
investment requirement. While the logistics underpinning the procurement of a biological
sample contributes to the overall cost of acquiring a genotype on an individual, the cost of the
genotype panel, as well as the cost of the genotyping service itself, whatever the chosen
technology, also impacts the overall cost of generating a genotype. Therefore, any strategy to
reduce the cost of individual components contributing to the overall cost of genotyping
warrants investigation. One such strategy could be to reduce the number of necessary single
nucleotide polymorphisms (SNPs) for genotyping without compromising the downstream
analyses. The high uptake in the use of genomic technologies in ruminants is attributable to
the desire for accurately identifying genetically elite animals in a process now termed
genomic selection (Meuwissen et al., 2001). Genomic evaluations in both cattle and sheep are
mostly based on traditional best linear unbiased prediction (BLUP) approaches but where the

numerator relationship matrix, traditionally generated from solely pedigree information, is
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replaced by a relationship matrix derived from genotype information. The genomic
relationship matrices in farmed species are usually developed using 38,000 to 50,000 SNPs
scattered across the genome (cattle: Berry and Kearney, 2011; sheep: Aurvay et al., 2014;
goats: Mucha et al., 2015; and pigs: Wellman et al., 2013); hence, any lower-density
genotype panel develop should ideally be imputable to higher-density. The use of cheaper
lower-density panels would be especially useful to increase the uptake of genotyping in low

value animals such as sheep.

The objective of the present study was to quantify the accuracy of imputing medium-
density SNP genotypes from lower-density genotyping panels derived using alternative
approaches to select the most informative SNPs. As many sheep breeding programmes
comprise more than a single breed, greater uptake of genomic technologies may materialise if
the lower-density panels were applicable across multiple breeds (and populations) including
those not represented in the development of the panel. This was also investigated in the

present study.

Materials and Methods

Genotype data

A total of 51,135 biallelic SNPs were available on 3,241 animals genotyped using the
[llumina OvineSNP50 Beadchip. The animals all originated from five flockbook recorded
sheep populations namely the Belclare (n=650), Charollais (n=674), Suffolk (n=783), Texel
(n=494), and Vendeen (n=640); animals were retained if they had a call rate of >0.95. These
animals originated from 20, 105, 68, 79, and 32 individual seedstock breeders for the

Belclare, Charollais, Suffolk, Texel, and Vendeen, respectively. Only autosomal SNPs with a
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known genomic position, a call rate >0.95, and an Illumina GenCall (GC) score >0.55

(http://www.illumina.com/documents/products/technotes/technote infinium genotyping data

analysis.pdf) were retained. Parentage analysis was undertaken using the edited SNP dataset
based on the proportion of autosomal SNPs in each putative parent-offspring pair that did not
adhere to expected Mendelian inheritance patterns; where the extent of Mendelian
inconsistencies were >2%, the parent of the individual was set to missing for the subsequent
analyses. Inconsistency in the Mendelian inheritance pattern of each SNP was subsequently
determined based on the proportion of genotypes per SNP that were opposing homozygotes
in a validated parent-offspring pair; a total of 986 parent-offspring pairs existed among the
3,062 genotyped animals. A total of 321 of the remaining autosomal SNPs were discarded
where >2% of the parent-offspring autosomal genotypes did not conform to normal
Mendelian inheritance. Finally, the extent to which each SNP genotype deviated from Hardy-
Weinberg equilibrium was calculated within each of the five breeds separately; SNPs that
deviated from Hardy-Weinberg equilibrium (P < 0.01 x 10”) in any one of the five breeds
were not considered further. Following edits, 44,040 autosomal SNPs from 3,062 animals
remained across the five breeds (Belclare n=642; Charollais n=645; Suffolk n=715; Texel
n=440; and Vendeen n=620). Within the population there were 101, 155, 177, 90, and 106
paternal half-sibs families in the Belclare, Charollais, Suffolk, Texel and Vendeen,
respectively; the respective mean size of the paternal half-sib families (range in parenthesis)

was 5.960 (2 to 26), 3.129 (2 to 8), 3.248 (2 to 9), 3.044 (2 to 8), and 5.462 (2 to 23).

To quantify the accuracy of imputation, animals were partitioned into either a
reference or a validation imputation population based on their date of birth. Within each
breed separately, the youngest 100 animals were assumed to represent the validation
population; the remaining animals were assumed to be part of the reference population. The

average (pedigree-based) relationship between the reference and validation per population


http://www.illumina.com/documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf
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was 0.048, 0.011, 0.034, 0.018, and 0.029 for the Belclare, Charollais, Suffolk, Texel, and

Vendeen, respectively.

Development of low-density SNP panels

SNP selection methods

Low-density genotype panels were developed for each of the five breeds individually to
imitate seven different panel densities namely; 384 SNPs, 1,000 SNPs, 2,000 SNPs, 3,000
SNPs, 6,000 SNPs, 9,000 SNPs, and 12,000 SNPs. Four different methods were used to
select the most informative SNP, within each breed separately, primarily based on the
approaches used by Judge et al. (2016) for cattle. The number of SNPs selected per
chromosome in the present study differed per panel density and was a function of the length
of the chromosome; within panel size, the number of SNPs chosen per chromosome was the
same for all four selection methods tested. The number of SNPs selected per chromosome for

each low-density panel is in Supplementary Table 1. The four SNP selection methods were;

1) Random SNP selection method: Single nucleotide polymorphisms were randomly
selected within each chromosome until the pre-defined number of SNPs per chromosome
was reached for the respective panel density.

2) Block SNP selection method: Each chromosome was divided into blocks of equal length.
Chromosome length was defined as the distance from the genomic position of the first
SNP to the genomic position of the last SNP. The number of blocks per chromosome was
equal to the predefined number of SNPs for that chromosome, less two, so that an extra
SNP could be chosen in the blocks at the start and the end of each chromosome (heron

referred to as the periphery blocks of the chromosome). All SNPs were ranked on an
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3)

index consisting of the minor allele frequency (MAF) of the SNP plus the mean linkage
disequilibrium (LD) between that SNP and all other candidate SNPs within that block; an
equal weighting was placed on both average LD and MAF, and the highest ranking SNP
was then chosen within each block. A second informative SNP was then selected from the
periphery blocks of each chromosome. The partial correlation of each candidate SNP in
the block with all other candidate SNPs in the block after adjustment for the correlation
with the already chosen SNP was calculated as:

r(SNP;, SNP;|SNPs,;)

= [r(SNP;,SNP;) — r(SNP;, SNPs, )1 (SNP;, SNP;))]

/{11~ T(SNP, SNPL)TE[L — r2(SNP, SNPoo)2)
where r(SNP;, SNP;|SNPy,,) is the correlation of two candidate SNPs (SNP; and SNP;)
after adjusting for the relationship of these SNPs with the already selected SNP
(SNP,;). The highest ranked SNP on an index of MAF and the mean partial correlations
between the SNP and all other remaining SNPs in that block (standardized to have equal
variances) was selected as the second most informative SNP (Judge et al., 2016).
EquiMAF SNP selection method: Each chromosome was divided equally in length
depending on the predefined number of SNPs required per chromosome to identify an
ideal distance between SNPs on the lower-density panel. Chromosome length was defined

as above. Each SNP was assigned a number corresponding to the order of that SNP by its

position within the chromosome. The ideal distance was then calculated by (le”gth) ¥

count

SNP number where length is the total length of the chromosome and count is the number
of predefined SNPs per chromosome desired. An index was then created using the
following equation:

(positionSNP; — ideal distance) * (0.5 — MAF)
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where MAF is the minor allele frequency. The highest ranked SNP on an index of ideal

distance and MAF was then selected (adapted from Corbin et al., 2014).

4) Wellman SNP selection method (Wellman et al., 2013): SNPs selected were favoured for

high MAF, distance from already selected SNPs, and weak LD with the SNP(s) already
selected as described in Wellman et al. (2013). Two SNPs were first chosen at each
periphery (<0.5 Mb) of each chromosome as described previously. After the SNPs on the
peripheries were selected, additional SNPs were selected using three steps. The purpose of

the first step was to define a distance measure d between two SNPs m; and m; on the

same chromosome i.e., Chty,, = Chrmj ; this distance was calculated as:

d(mi, mj) = )\|locl- — locj| + (1 —2)K(1 —0.99 *

r (Gmi’ ij)|)

|loci—loc;]

where A = min(1, —

) with K = 5 Mb; loc,,, and locmj represented the genomic

location in megabases of the SNPs m; and m;, respectively and r (Gmi, ij) was the

correlation between genotypes for SNPS m; and m;. For loci that are in close proximity
(A<1), the correlation between the genotypes contributed to the distance measure to enable
two markers at similar genomic positions to be included in the low-density panel if the
SNPs were not in LD. In the second step, a score was calculated for each SNP i based on

its minor allele frequency (MAF;):
Score,, = MAE, u,

where u,,, = 1 where the position of m; is known. In the final step, SNPs were selected
based on their scores and the distance measure d. If n markers had already been selected,
then marker m,,., was chosen such that MAF,, . *min(d(mp4q,my) : k =1,...,nwas

maximised. This method prioritizes SNPs of both higher MAF and at a large distance



182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

(both standardized to have equal weighting) from SNPs already chosen (Wellman et al.,

2013).

Imputation

All imputation was undertaken by chromosome across the entire genome simultaneously
using FImpute version 2.2 (Sargolzaei et al., 2014) exploiting both family- and population-
based imputation. Pedigree information was supplied to FImpute version 2.2. Imputation
from the low density panels was initially carried out for each breed separately. The reference
population for imputation consisted solely of the breed for which the genotype panel was
developed and, for validation; only the masked genotypes of animals of this breed were
imputed. This method was repeated for each of the 5 breeds to determine the most accurate

SNP selection method.

Once the most accurate SNP selection method was identified, two further scenarios were
investigated; these involved modifications to the method of selecting SNPs and reference

population structure used for imputation:

Scenario 1: Single nucleotide polymorphisms were selected in a multi-breed
population containing all five breeds. When selecting SNPs for inclusion on the lower-
density panels, the MAF used was the minimum MAF of that SNP in any of the five breeds
while the mean LD between all candidate SNPs used was the maximum of the within-breed
mean LD estimated in any of the five breeds. The masked genotypes of the validation animals
in all breeds were then imputed using a reference population that included all five breeds

together.
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Scenario 2: Single nucleotide polymorphisms were selected based on the genomic
characteristics of each breed separately as described previously. The masked genotypes of
validation animals from all breeds were then simultaneously imputed using a single-breed
reference population. Every other breed was separately included in the reference population,
except the breed from which the SNPs were selected. The whole process was repeated so that
SNPs were selected based on the genomic characteristics of each breed individually with
every other breed individually included in the reference population. For example, if the
genomic characteristics of the Belclare breed were used to selected SNPs, masked genotypes
of all validation animals would be imputed where just the Charollais (or the Suffolk, Texel or
Vendeen) were individually included in the reference population. A summary of the

imputation scenarios is in Appendix 1.

Imputation accuracy statistics

Measures of imputation accuracy were undertaken within each breed separately. Imputation
accuracy was carried out on all SNPs on the higher-density genotype panel (i.e., 44,040

SNPs). Five imputation accuracy statistics were estimated:

1) The genotype concordance rate, defined as the mean proportion of correctly imputed
genotypes within animal (Berry et al., 2014).

2) The allele concordance rate defined as the mean proportion of correctly imputed
alleles within animal; where a genotype was imputed to be heterozygote but was truly
homozygote then it was assumed to have been imputed with an accuracy of 0.5 (Berry

etal., 2014).
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3)

4)

5)

The (raw) correlation between true and imputed genotypes; genotypes were denoted
as 0, 1 or 2 to represent homozygous, heterozygous, and opposite homozygous,
respectively.

The adjusted genotype correlation between the actual and imputed genotype per
animal. This measure adjusted each genotype for the respective SNP allele frequency
to account for differing allelic frequency per SNP as previously described by Mulder
et al. (2012) and Berry et al. (2017). The adjusted genotype was achieved by
subtracting twice the SNP allele frequency of the allele represented by the
homozygous 2 genotype from both the actual and imputed genotype of that SNP; the
adjusted correlation was subsequently estimated. The allele frequency per SNP was
estimated solely on the reference population used for imputation. All accuracy
statistics were undertaken within each breed separately.

The rare allele concordance rate for SNPs with a MAF >0 but <0.05 defined as the
mean proportion of correctly imputed rare alleles per animal. Where a genotype was
imputed to heterozygote but was truly homozygote for the minor allele (and vice
versa) then it was assumed to have been imputed with an accuracy of 0.5. Genotypes
that were truly homozygote for the major allele were not considered in the estimation

of rare allele concordance rate.

Results

Regardless of SNP selection method or imputation scenario, the mean allele concordance rate
was always greater than genotype concordance rate (Supplementary Figure 1) while the
adjusted genotype correlation between true and imputed genotypes was consistently weaker
than the raw genotype correlation (Supplementary Figure 2). The allele concordance rate and

adjusted genotype correlation between true and imputed genotypes for different SNP



251  selection methods are presented in Figure 1 and Figure 2, respectively. Hereafter, the only
252 imputation statistics reported and discussed are allele concordance rate and the adjusted

253 genotype correlation.

254

255  Single nucleotide polymorphism selection method

256  The impact of SNP selection method was only evaluated where the breed-specific genomic
257  statistics (i.e., MAF and LD) used to select the SNPs that were from the same breed used in
258  the reference and the validation population. Selection method impacted the accuracy of

259  imputation achievable although the impact reduced as the density of the low-density panel
260 increased. Imputation accuracy from SNP panels composed of SNPs selected using the block
261  selection method outperformed all other SNP selection method across all breeds and panel
262  densities up to 1,000 SNPs with, on average, a superior allele concordance rate compared to
263  the next best method (i.e., Wellman method) across the five breeds of 0.008 and 0.004 for
264 384 SNPs and 1,000 SNPs, respectively. For the Belclare, Charollais, Suffolk, and Texel
265  breeds, the block SNP selection method also outperformed all other methods for the panel
266  densities up to 6,000 SNPs in terms of both better allele concordance rate (an average better
267  allele concordance rate of 0.003, 0.002, and 0.001 for 2,000, 3,000, and 6,000 SNPs,

268  respectively compared to the next best method (i.e., Wellman)) and adjusted genotype

269  correlation (on average 0.007, 0.005, and 0.002 superior for 2,000, 3,000, and 6,000 SNPs,
270  respectively compared to the next best method). However, the Wellman SNP selection

271 method proved to be slightly superior in the Suffolk breed for genotype panels containing
272 2,000 and 3,000 SNPs with better allele concordance rate of 0.002 and 0.001, respectively

273 compared to the block method. The differences in imputation accuracy between the block and
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the Wellman SNP selection methods were negligible on the 9,000 and 12,000 genotype

panels, although both were consistently superior to both the random and equiMAF methods.

Imputation accuracy from SNPs selected using the equiMAF method consistently
resulted in the poorest imputation accuracy (both in terms of allele concordance rate and
adjusted genotype correlation between true and imputed genotypes) across all breeds and
panel densities with the exception of the 384 SNP panel in each of the five breeds (Figure 1;
Figure 2). Compared with the next poorest method (i.e., the random method), the equiMAF
method resulted in a poorer allele concordance rate of 0.033, 0.073, 0.092, 0.103, 0.095, and
0.085, for genotype panels containing 1,000, 2,000, 3,000, 6,000, 9,000, and 12,000 SNPs,
respectively. The difference in both allele concordance rate and adjusted genotype correlation
between the equiMAF SNP selection method and the random SNP selection method was

negligible when the genotype panel contained just 384 SNPs (Figure 1; Figure 2).

The variability in both the allele concordance rate per animal and the adjusted
genotype correlation between the true and imputed genotypes per animal was also affected by
SNP selection method (Figure 1; Figure 2). The SNP selection methods that achieved the
greatest mean imputation accuracy (i.e., block and Wellman methods) across all panels and
breeds were also characterised by the least variability in both the mean allele concordance
rate and adjusted genotype correlation between true and imputed genotypes per individual
compared to the poorer methods (i.e., EQUIMAF and random methods). When SNPs were
selected for the 6,000 SNP panel, for example, in the Vendeen breed using the block SNP
selection method, the mean allele concordance rate per animal for the 6,000 SNP panel was
0.9651 with a standard deviation (SD) of 0.05 while for the same density panel, SNPs
selected using the random method had a mean allele concordance rate of 0.9529 but with a

SD of 0.06.
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The relationship between minor allele frequency (MAF) and imputation accuracy
(i.e., allele concordance rate and adjusted genotype correlation between true and imputed
genotypes) of masked genotypes in the 6,000 SNP panel when the block SNP selection
method was used in all breeds is presented in Table 1. Both the allele concordance rate (when
the minor allele frequency was <0.45) and the adjusted genotype correlation worsened as the
MAF (bin) increased. For the Charollais, Suffolk, Texel and Vendeen breeds, allele
concordance rate was better when MAF was between 0.45 and 0.50 than when MAF was
between 0.40 and 0.45; this was primarily due to fewer SNPs in having a MAF between 0.45

and 0.50 compared to other MAF bins.

The rare allele concordance rate (Figure 5) was only undertaken for the block SNP
selection method where SNPs were selected within a single breed and only that breed was
included in both the reference and validation populations. The number of SNPs with a MAF
>0 but < 0.05 present in the Belclare, Charollais, Suffolk, Texel, and Vendeen were 3,562,
3,437, 6,802, 4,658, and 5,214, respectively. As the panel density increased, the rare allele
concordance rate also increased albeit at a diminishing rate; however, large variability in rare
allele concordance rate per animal existed across breeds and SNP panel density. The
imputation of rare alleles in the Vendeen and Texel were consistently better and worse,
respectively than other breeds for all panel densities. For the 6,000 SNP panel, the allele

concordance for rare alleles was 0.487 and 0.374 for the VVendeen and Texel, respectively.

Single nucleotide polymorphism panel density

Regardless of the SNP selection method used, the mean animal allele concordance rate
improved at a diminishing rate as the panel density increased (Figure 1). When SNPs were

selected using the block method, and imputation was undertaken solely within the same
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breed, the mean animal allele concordance rate was better, on average, by 4.88 percentage
units across all breeds (maximum of 6.95 percentage units and minimum of 3.01 percentage
units in the Charollais and Vendeen, respectively) when the panel density doubled from 1,000
to 2,000 SNPs. Subsequently, when the SNP panel density doubled from 3,000 to 6,000, the
mean animal allele concordance rate improved by, on average, by 2.21%; a maximum
difference of 4.00% and a minimum difference of 0.84% were observed in the Texel and

Vendeen breeds, respectively.

The variability in the mean allele concordance rate per animal also reduced as the
SNP panel density increased, independent of the SNP selection method used. When SNPs
were selected within each breed individually using the block method, and imputation was
undertaken within a single breed, the mean allele concordance rate per animal across each of
the five breeds was 0.818 for 384 SNPs selected (average minimum 0.740 and average
maximum 0.923), whereas for 9,000 selected SNPs, the mean allele concordance rate per
animal across each of the five breeds was 0.98 (average minimum 0.899 and average

maximum 0.998).

Imputation scenario

The block method was the most accurate SNP selection method and was therefore the only
SNP selection method used in the remaining imputation scenarios. The imputation accuracy
of the two scenarios where the breed composition of the reference and validation population
differed as well as the genomic characteristics used to generate the panels are summarised in
Figure 3 and Figure 4. The accuracy of imputation was affected by the composition of the
reference population (i.e., whether the reference population contained only a single breed or

all five breeds simultaneously). For all breeds, greater imputation accuracy was observed for
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genotype panels containing <3,000 SNPs when just one breed was used to develop the
genotype panel and imputation undertaken with only that breed included in the reference and
validation populations compared to when the genomic characteristics of all breeds were used
both to develop the genotype panels and included in the reference population. On average,
across all five breeds, a better allele concordance rate of 0.075, 0.072, 0.045, and 0.029, was
observed for SNP panels containing 384, 1,000, 2,000, and 3,000 SNPs, respectively when
imputation was undertaken with breeds individually included in the reference population
compared with when all five breeds were simultaneously included in the reference
population. Within the Vendeen breed, the effect of the composition of the reference
population was negligible when the low-density panels contained > 6,000 SNPs. The allele
concordance rate for the remaining four breeds increased by, on average, 0.138 for the 6,000
SNP genotype panel when the reference population for imputation contained only the breed
in which the low-density panels were developed (Figure 3). For the Belclare and Suffolk
breeds, differences between the accuracy of imputation when all five breeds were
simultaneously included in the reference population compared to when just the Belclare and
Suffolk breed were, respectively included in the reference population for the 9,000 SNP panel
were negligible (<0.001 for allele concordance rate). For all breeds, with the exception of the
Texel breed, the effect of the composition of the reference population was negligible for the
12,000 SNP panel; a stronger adjusted genotype correlation between true and imputed
genotypes of 0.012 was observed for the Texel breed when imputation was undertaken with

just the Texel breed included in the reference population.

When the SNP genotype panels were developed within an individual breed and a
single breed was used as the reference population, the impact on accuracy of imputation of
which breed was actually included in the reference population was large (Figure 3 and 4).

Where a 6,000 SNP panel was built in the Belclare using the block method, and only the



371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

Belclare animals were included in the reference population, an allele concordance rate of
0.988 was achieved for the Belclare breed compared to allele concordance rates of 0.762,
0.743, and 0.752 when the reference population was composed solely of Charollais, Suffolk
or Vendeen, respectively. When the genotype panels were built within the Belclare breed, and
the Texel breed was the only breed included in the reference population, a stronger
correlation between the true and imputed genotypes of 0.831 was observed for the 6,000 SNP
panel compared to the average adjusted genotype correlation of the Charollais, Suffolk or
Vendeen. Better imputation accuracy was also observed across all panel densities when the
genotype panels were built in the Texel population and Texel reference population was
imputed using a reference population that only included the Belclare. Similar improvements
in imputation accuracy were observed for the Charollais when the VVendeen breed was solely

included in the reference population and vice versa (Figure 3; Figure 4).

Discussion

While many studies have quantified the accuracy of imputation from lower-density genotype
panels to higher-density genotype panels in cattle (Zhang and Druet, 2010; Berry and
Kearney, 2011; Judge et al., 2016), fewer such studies exist in sheep (Hayes et al., 2012;
Bolormaa et al., 2015; Moghaddar et al., 2015). Previous imputation-based studies in sheep
have mainly been confined to wool and meat sheep breeds in Australia and New Zealand
(Hayes et al., 2012; Bolormaa et al., 2015; Ventura et al., 2016). Furthermore, studies to date
on the use of lower-density genotype panels in sheep have focused primarily on factors
affecting imputation accuracy; these factors include the multi- or single-breed structure of the
reference and validation populations (Bolormaa et al., 2015; Ventura et al., 2016), the degree

of relatedness among and between animals in the reference and validation populations
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(Bolormaa et al., 2015; Moghaddar et al., 2015), and the size of the reference population
(Moghaddar et al., 2015; Ventura et al., 2016). Imputation studies quantifying the impact of
alternative approaches to selecting the SNPs for genotyping panels differing in SNP densities
in sheep do not exist. Several alternative approaches to select such SNPs in cattle have been
evaluated including random selection (Szyda et al., 2013), a combination of equidistant
physical location and high MAF (Boichard et al., 2012) as well as dividing each chromosome
into equally sized segments and selecting SNPs within the segment with the greatest MAF
(Mulder et al., 2012). Further SNP selection methods have been evaluated in other species;
one such method in pigs involved selecting SNPs based on high MAF, relatively equally
spaced and weak correlations with the SNPs already selected (Wellman et al., 2013). With
the exception of the equiMAF method (adapted from Corbin et al., 2014) evaluated in the
present study, all other strategies to SNP selection evaluated in the present study have been

documented in dairy and beef cattle (Judge et al., 2016).

When SNPs were selected in the present study using a combination of the LD and
MAF of a single breed and that breed was itself solely included in the reference population,
greater imputation accuracy for the 12,000 SNP genotype panel was achieved compared to
that reported by Bolormaa et al. (2015) when a 11,267 SNP panel was imputed to 48,599
SNPs. Bolormaa et al. (2015) reported a range in mean animal allele concordance rate of 0.88
to 0.94 in multiple Australian sheep breeds (i.e., Border Leicester, Poll Dorset, White
Suffolk, Merino and crossbreds) with a weighted mean allele concordance rate across breeds
of 0.89. The range in allele concordance rate in the present study (with SNPs selected using
the block method) was 0.983 to 0.996 with a weighted average of 0.992. However, with the
exception of the Merino breed, the size of the reference populations of the individual breeds
reported by Bolormaa et al. (2015) was smaller (157 to 341 animals) than those in the present

study (with the exception of the Texel breed). Furthermore, a range in allele concordance rate
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of 0.90 to 0.94 was reported by Bolormaa et al. (2015) when imputation was carried out using
a multi-breed population on a 11,267 SNP panel was undertaken; the range in allele
concordance rate for imputation where SNPs were selected using the block method within all
breeds and all breeds were included in the reference population was still greater in the present
study (0.976 to 0.996). In both the present study and that of Bolormaa et al. (2015), the
lower-density panel was developed within the same multi-breed population as that included

in the reference population.

The SNPs included on the low-density sheep panels proposed by Hayes et al. (2012)
were chosen from 48,640 SNPs as every nth marker by chromosome position. Hayes et al.
(2012) used the fastPHASE imputation method (Scheet and Stephens, 2006), and achieved
imputation accuracy comparable to that achieved in the present study from the genotype
panels developed using randomly selected SNPs. Hayes et al. (2012) reported the genotype
concordance rate for all breeds was <0.80 (i.e., Border Leicester, Merino, and Poll Dorset and
White Suffolk combined) when 5,000 SNPs were imputed to 48,640 SNPs using a single
breed reference population. While the 5,000 SNP panel used by Hayes et al. (2012) is closer
in density to the 6,000 SNP panel in the present study, the genotype concordance rate
obtained by Hayes et al. (2012) is more similar to the average genotype concordance rate
(0.884) reported for genotype panel containing 3,000 randomly selected SNPs in the present

study.

The trend observed for a declining allele concordance rate as MAF increased
corroborates other studies in sheep (Bolormaa et al., 2015) and cattle (Berry and Kearney,
2011; Judge et al., 2016). While Bolormaa et al. (2015) observed an increase in raw genotype
correlation between true and imputed genotypes as MAF increased, this trend was not

observed in the present study.
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Where possible, the approaches taken in the present study aimed to produce results
that reflect real-life. As it tends to be the younger animals that are genotyped on a lower-
density panel, the youngest 100 animals per breed were chosen to be the validation
population. Furthermore, the inclusion of the unmasked genotypes (i.e., 100% concordance
with the real genotypes) in the estimation of imputation accuracy was also to simulate a real-

life scenario. The allele concordance rate (ACR) of the unmasked genotypes for example of

ACR(44,040)—1.0(6,000)
44,040-6,000

where

the 6,000 SNP panel can be easily calculated using the formula

44,040 is the number of SNPs on the higher-density panel and the assumed allele
concordance rate of the 6,000 unmasked SNPs was 1.0. Taking the Belclare breed as an
example, where SNPs were selected using the block method within the Belclare breed and
only the Belclare breed was included in the reference and validation population. The allele
concordance rate for all SNPs (masked and unmasked) imputed from the 6,000 SNP panel
was 0.988 while the allele concordance rate of the 38,040 masked SNPs only calculated using

the above formula was 0.986.

Single nucleotide polymorphism selection method

While the random method was expected to perform the poorest, the poor performance of the
equiMAF method is in direct contrast to the findings of Corbin et al. (2014) who also selected
SNPs based on equidistance, optimized for MAF in Thoroughbred horses. Corbin et al.
(2014) reported greater imputation accuracy for a 6,000 SNP panel (genotype concordance
rate of 0.98) compared to SNPs selected based solely on equidistance across the genome
(genotype concordance rate of 0.97) or selected based on a combination of LD pattern and
MAF (genotype concordance rate of 0.95). Carvalheiro et al. (2014) reported that SNPs

selected based on a combination of MAF and LD resulted in better imputation accuracy in
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Nelore cattle when compared to SNPs selected using either MAF or LD. Of the SNP
selection strategies evaluated in the present study, both the block method and the Wellman
method placed equal emphasis on both high MAF and weak LD when selecting SNPs for
inclusion on a lower-density genotype panel with the block method and the Wellman method
outperforming all other methods in all breeds for all panel densities. The overall superiority
of the block method was not entirely unexpected as is consistent with its superiority in
selecting SNPs for imputation to higher-density in cattle (Judge et al., 2016). Judge et al.
(2016) evaluated six alternative SNP selection approaches, three of which (i.e., random,

Wellman and block) were common to those evaluated in the present study.

Where SNPs were selected using the block method based on LD and MAF statistics
from one breed with that breed being included in the reference population, the imputation
accuracies in the present study were poorer than those reported by Judge et al. (2016) for
genotyping panels containing <3,000 SNPs. However, the size of the reference population
(range of 340 to 615 animals) in the present study was much smaller than used by Judge et al.
(2016; 1,484 animals). Nevertheless, the range in allele concordance rate for SNP panels
developed using the block method in a single breed with that breed being solely included in
the reference population in the present study containing 6,000 (0.963 to 0.993) and 12,000
(0.983 to 0.996) was similar to the allele concordance rate reported by Judge et al. (2016) for
their 6,000 (0.988) and 12,000 (0.994) panels. The genotype concordance rate
(Supplementary Figure 1) achieved for the 3,000 SNP panel in the Vendeen breed (0.966)
when the Wellman SNP selection method was used is similar to that reported by Wellman et
al. (2013; 0.96) for the same density using the same SNP selection method in German
Piétrain boars. However, genotype allele concordance rates in the remaining breeds using the
same SNP selection method were lower than that reported by Wellman et al. (2013) for the

3,000 panel. Judge et al. (2016) suggested that the reason for the superior performance of the
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block method compared to the Wellman method may be due to the positioning of SNPs
across the genome. Single nucleotide polymorphisms selected using the block method were
forced to be more evenly distributed across the genome as only one SNP could be selected
per segment (or block). The Wellman method however enabled neighbouring SNPs to be
selected if the LD between them was low (and SNPs in other regions of the chromosomes had
already been selected; Judge et al., 2016). The mean SD in distance between neighbouring
SNPs on the 6,000 SNP panel was 177kb for the block SNP selection method (minimum SD
in the Texel 176kb; maximum SD in the Charollais 180kb) compared to 425kb for the
Wellman method (minimum SD in the Charollais 409kb; maximum SD in the Texel 444kb).
This therefore indicates that SNPs selected using the block method were more evenly spaced

across the genome.

Single nucleotide polymorphism panel density

The improvement in imputation accuracy (both allele concordance rate and adjusted genotype
correlation) with increasing panel density was expected and has previously been documented
in both sheep (Hayes et al., 2012) and cattle (Judge et al., 2016). While few sheep studies
have investigated the imputation accuracy of genotyping panels containing less than 6,000
SNPs, Hayes et al. (2012) reported a genotype concordance rate of >0.80 for a genotype
panel containing 5,000 SNPs. In a population of 6,369 dairy cattle, Judge et al. (2016)
reported allele concordance rates to from lower-density panels containing 384 (0.849), 1,000
(0.881), 2,000 (0.963), 3,000 (0.976), 6,000 (0.988), 12,000 (0.994) SNPs to higher-density
similar to those obtained (using panels containing SNPs selected using the block method) in

the present study; allele concordance rates averaged across breeds in the present study were
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0.817, 0.889, 0.938, 0.959, 0.981, and 0.991 for panels containing 384, 1,000, 2,000, 3,000,

6,000, 12,000 SNPs, respectively.

When averaged across all breeds (when SNPs were selected using the block method
within a single breed and that breed alone was included in the reference population), the
adjusted genotype correlation between true and imputed genotypes improved by 0.130 when
the density increased from 1,000 to 2,000 SNPs compared with an improvement of only
0.055 and 0.025 when density increased from 3,000 to 6,000 and from 6,000 to 12,000,
respectively. The reduced improvement in imputation accuracy when panel density increased
was primarily because allele concordance rate was already high across all breeds (>0.90) with

the exception of the Texel breed (>0.85).

Reference population

The improved imputation accuracy when just the animals of the breed being imputed were
included in the population compared to a multi-breed reference population was more evident
in the lower-density panels (i.e., <3,000 SNPs); this corroborates results reported by Hayes et
al. (2012) in sheep. However, the impact of the breed representation in the reference
population was negligible once the lower-density panel contained at least 9,000 SNPs (with
the exception of the Texel breed). The improved imputation accuracy for genotype panels
<9,000 SNPs when just a single-breed reference population was used for imputation in the
present study is, nonetheless, in contrast with those of Bolormaa et al. (2015) who reported a
marked increase in imputation accuracy of Australian sheep when a multi-breed reference
population was used. The increase in imputation accuracy using a multi-breed reference
population compared to a single-breed reference population in Bolormaa et al. (2015) may be

due to the smaller reference population size for the individual single-breed reference
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population. Nonetheless, Bolormaa et al. (2015) documented that failure to include the breed
being imputed in the reference population contributed to substantial erosion in imputation
accuracy (e.g., the mean genotype correlation between true and imputed genotypes per
animal of the Merino breed reduced from 0.91 to 0.80 when 11,267 SNPs were imputed to

48,599 SNPs); a conclusion also deduced from the present study.

The purpose of imputation scenario two was to the investigate the effects of 1) the
application of a panel built in one breed and applied to another, and 2) the composition of the
reference population. While there was a marked reduction in imputation accuracy when the
breed being imputed was not included in the reference population, there were exceptions. The
reduction in imputation accuracy was not as severe when the Texel breed was included in the
reference population with the Belclare breed being the breed imputed, or vice versa. This is
most likely be due to the Texel being one of the breeds included in the Belclare composite
breed. When the Belclare breed was initially formed, the Galway, Finnish Landrace, and
Lleyn breeds served as the founder breeds while the Texel was later introduced. Similarly, the
reduction in imputation accuracy from not having the breed to be imputed also included in
the reference population was not as severe when the Charollais was included in the reference
population and the Vendeen was being imputed and vice versa. As both the Charollais and
the Vendeen are French breeds, they may have a closer genetic relationship that any of the

other breeds.

The association between a larger imputation reference population and greater
imputation accuracy has been well documented in both sheep (Bolormaa et al., 2012; Ventura
et al., 2016) and cattle (Hozé et al., 2013). The smaller reference population of the Texel
breed in the present study (n=340) may help explain the poorer imputation accuracy across all
imputation scenarios in this breed relative to the other breeds. Within the Texel breed, 16

validation animals had a parent in the reference population; no Texel animals in the
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validation population had both parents in the reference population. The mean allele
concordance rate of the 16 Texel animals with a parent in the reference population for the
6,000 SNP panel (selected using the block method) was superior (0.983) compared to those
that did not have any parent in the reference population (0.958). While the Vendeen did not
have the largest reference population, the greatest imputation accuracy was observed in the
Vendeen. This is most likely due to a large number of Vendeen animals in the validation
population (n=91) that had at least one parental genotype in the reference population. Where
Vendeen animals had at least one parent in the reference population, the allele concordance
rate for the 6,000 SNP panel (selected using the block method) was 0.993 compared to an
allele concordance rate of 0.987 where the validation animals did not have either parent in the
reference population. While the Suffolk had both the greatest number of animals in the
reference population and the strongest mean linkage disequilibrium (LD) between adjacent
SNPs of 0.377 (compared to the next breed which was the Texel with an LD of 0.356) on the
medium density panel (i.e., 44,040 SNPs), it did not result in the greatest imputation
accuracy. Other studies have reported that stronger LD between SNPs on the higher-density
panels lends itself to greater imputation accuracy (Hickey et al., 2012; Pimentel et al., 2013;
Corbin et al., 2014). Linkage disequilibrium was calculated between the SNPs included in the
6,000 genotype panel for all breeds and SNP selection method. Where 6,000 SNPs were
selected in Suffolks using the block method, a stronger LD (0.406) between SNPs existed
compared to other breeds (closest breed was Vendeen with weighted mean LD between
neighbouring SNPs of 0.331 between SNPs). The mean MAF of SNPs on the higher-density
panel (i.e., 44,040 SNPs) in the Suffolk breed was lower (0.239) compared to the all other
breeds; the Vendeen (i.e., the next closest breed) had a mean MAF of 0.254. The SNPs
selected to be on the lower-density panels should, in theory, be in weaker LD with the other

selected SNPs. Therefore, because the mean MAF of the candidate SNPs for the Suffolk
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6,000 SNP panel was greater than other breeds, the block selection method was forced to

choose SNPs with a greater MAF thereby reducing the weight on LD.

Conclusion

Accurate genotype imputation is achievable using genotype panels as low as 6,000 SNPs.
Careful SNP selection for inclusion on the lower-density panel is, however, paramount to
achieve accurate imputation. The block SNP selection method which combines relatively
equally positioning of SNPs, MAF and LD outperformed the other methods in imputation
accuracy. However, the Wellman method which combines MAF, distance from already
selected SNPs, and weak LD with the SNP(s) already selected would be a suitable alternative.
With 6,000 SNPs chosen using the block method, the mean allele concordance rate per
animal per breed varied from 0.975 to 0.992; the minimum mean allele concordance rate of
any animal achieved with a 6,000 panel was 0.847. Imputation accuracy could possibly be
improved with larger reference populations. If possible, the breed included in the target
imputation population should always be included in the reference population to mitigate any

erosion in imputation accuracy.
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689  Table 1. Mean allele concordance rate (ACR) and adjusted genotype correlation (r) per masked single nucleotide polymorphism (SNP) for

690 different minor allele frequency (MAF) bins in each of five sheep breeds on the 6,000 SNP panel where SNPs were selected using the block

691  method.
Belclare Charollais Suffolk Texel Vendeen
MAF bin ACR r ACR r ACR r ACR r ACR r
>0.00: <0.05 0.993 0.993 0.993 0.993 0.997 0.995 0.985 0.990 0.998 0.996
>0.05: <0.10 0.990 0.989 0.984 0.986 0.992 0.991 0.971 0.978 0.995 0.994
>0.10: <0.15 0.989 0.984 0.979 0.978 0.989 0.986 0.963 0.968 0.993 0.990
>0.15: <0.20 0.988 0.982 0.974 0.970 0.987 0.982 0.956 0.954 0.992 0.987
>0.20: <0.25 0.988 0.977 0.970 0.959 0.985 0.976 0.952 0.940 0.991 0.982
>0.25: <0.30 0.987 0.970 0.969 0.947 0.985 0.970 0.950 0.921 0.990 0.977
>0.30: <0.35 0.987 0.965 0.969 0.934 0.985 0.963 0.952 0.907 0.991 0.971
>0.35: <0.40 0.987 0.958 0.970 0.921 0.986 0.955 0.954 0.885 0.991 0.963
>0.40: <0.45 0.987 0.952 0.975 0.909 0.990 0.951 0.962 0.872 0.992 0.959
>0.45: <0.50 0.987 0.951 0.981 0.901 0.993 0.946 0.972 0.862 0.994 0.958

692
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Figure 1. Mean allele concordance rate per animal across multiple single nucleotide
polymorphism (SNP) panels for a) Belclare, b) Charollais, ¢) Suffolk, d) Texel and e)
Vendeen. SNPs were selected randomly (white bar), using the block method (striped bar),
using the EquiMAF method (dark grey bar) or using the Wellman method (spotted bar). SNP
panels were created within each breed separately and the reference and validation populations
were composed only of animals of that breed (Scenario 1). The error bars represent the best

and worst mean allele concordance rate per animal.



12000

9000

6000

3000

2000

1000
Single nucleotide polymorphism panel density

84

3

_ffffffffﬁmﬁn

0.60 -

(5]

705

T T T
O O O O OO0 O O O O
S ®d oKk ©In < ®M®A A S
" O O O oo o o o o o

uone|a1109 adAjoush paisnlpy
=)

R R RGN

12000
12000

9000
9000

6000
6000

3000
3000

2000
2000

1000
Single nucleotide polymorphism panel density

1000
Single nucleotide polymorphism panel density

384
384

uoIne|a1109

706
707



708

709

710

711

712

713

714

715

716

d 1.00 -
5090 - i

& 0.80 - _

0.70 -

correl

e

©

D

o
1

§0.50 .
0.40 -
0.30 -
0.20 -
0.10 -
0.00

Adjusted genot

o s

i

384 1000 2000 3000 6000 9000 12000
Single nucleotide polymorphism panel density

e) 1.00 -
090 { T
0.80 -
0.70 -

on

o

(o2}

o
1

]

I

pe correlat

2 0.50 -
0.40 -
0.30 1 |+
0.20 -
0.10 -

b

0.00 =
384 1000 2000 3000 6000 9000 12000

Single nucleotide polymorphism panel density

Adjusted genot
)

Figure 2. Mean adjusted genotype correlation per animal across multiple single nucleotide
polymorphism (SNP) panels for a) Belclare, b) Charollais, ¢) Suffolk, d) Texel and e)
Vendeen. SNPs were selected randomly (white bar), using the block method (striped bar),
using the EquiMAF method (dark grey bar) or using the Wellman method (spotted bar). SNP
panels were created within each breed separately and the reference and validation populations
were composed only of animals of that breed (Scenario 1). The error bars represent the best

and worst mean allele concordance rate per animal.
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Figure 3. Mean allele concordance rate per animal across multiple single nucleotide
polymorphism (SNP) panels for a) Belclare, b) Charollais, ¢) Suffolk, d) Texel and e)
Vendeen. SNPs were selected using the block method while the reference population used to
impute the genotypes are denoted as Belclare (white bar), Charollais (black thin striped bar),
Suffolk (light grey bar), Texel (spotted bar), Vendeen (dark grey bar). Multi-breed imputation
was undertaken including all breeds in the SNP selection and the reference population (grey
thick striped bar). The error bars represent the best and worst mean allele concordance rate

per animal.
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Figure 4. Mean adjusted genotype correlation between true and imputed genotype per animal
across multiple single nucleotide polymorphism (SNP) panels densities for a) Belclare, b)
Charollais, c¢) Suffolk, d) Texel and €) Vendeen. Single nucleotide polymorphisms were
selected using the block method while the reference population used to impute the genotypes
are denoted as Belclare (white bar), Charollais (black thin striped bar), Suffolk (light grey
bar), Texel (spotted bar), Vendeen (dark grey bar). Multi-breed imputation was undertaken
including all breeds in the SNP selection and the reference population (grey thick striped

bar). The error bars represent the best and worst mean allele concordance rate per animal.
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Figure 5. The mean rare allele concordance rate per animal across genotype panels of
multiple densities selected using the block method within each breed individually; only the
breed within which the single nucleotide polymorphisms (SNPs) were selected were included
solely in the reference and validation population. The number of SNPs with a MAF < 0.05
differed between breeds; Belclare (3,526 SNPs; white bars), Charollais (3,437 SNPs; striped
bar), Suffolk (6,802 SNPs; light grey bar), Texel (4,652 SNPs; spotted bar), and Vendeen
(5,214 SNPs; dark grey bar). The error bars represent the best and worst mean rare allele

concordance rate per animal.



752

753

754

Determination of
aptimal SNP
selection method

Imputation
scenario 1

Imputation
scenario 2

SNPF selection 3 Reference 3 Validation
population population population
Breed;, =—————> [reed, >  Breed,

Belclare n=542
Charollais n=543
Suffolk n=613
Texel =340
Vendeen =520

Belclare n=542
Charollais n=>545
Suffolk =615
Texel n=340
Vendeen n=520

Belclare n=100
Charollais n=100
Suffolk n=100
Texel n=100
Vendeen n=100

3> Preed,

Belclare n=1{
Charollais n=100
Suffolk n=100
Texel n=100
Vendeen n=100

All breeds All breeds
. —
n=2562 n=2562
Breed,; > Breed;.;
where i= where j=

Belclare n=542
Charollais n=545
Suffolk n=a615
Texel n=340
Vendeen n=520

Bealelare n=542 or
Charollais n=545 or
Suffolk n=615 or
Texel n=340 or
Vendeen n=520

>  Breed;

where i=
Belelare n=100
Charollais n=100
Suftolk n=100
Texel n=100
Vendeen n=100

Appendix 1. Summary of the imputation scenarios used in the present study.
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