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Abstract 17 

The objective of the present study was to quantify the accuracy of imputing medium-density 18 

single nucleotide polymorphism (SNP) genotypes from lower-density panels (384 to 12,000 19 

SNPs) derived using alternative selection methods to select the most informative SNPs. Four 20 

different selection methods were used to select SNPs based on genomic characteristics (i.e. 21 

minor allele frequency (MAF) and linkage disequilibrium (LD)) within five sheep breeds 22 

(642 Belclare; 645 Charollais; 715 Suffolk; 440 Texel; and 620 Vendeen) separately. 23 

Selection methods evaluated included 1) random, 2) splitting the genome into blocks of equal 24 

length and selecting SNPs within block based on MAF and LD patterns, 3) equidistant 25 

location while optimising MAF, 4) a combination of MAF, distance from already selected 26 

SNPs, and weak LD with the SNP(s) already selected. All animals were genotyped on the 27 

Illumina OvineSNP50 Beadchip containing 51,135 SNPs of which 44,040 remained after 28 

edits. Within each breed separately, the youngest 100 animals were assumed to represent the 29 

validation population; the remaining animals represented reference population. Imputation 30 

was undertaken under three different conditions; 1) SNPs were selected within a given breed 31 

and imputed for all breeds individually; 2) all breeds were collectively used to select SNPs 32 

and were included as the reference population; and 3) the SNPs were selected for each breed 33 

separately and imputation was undertaken for all breeds but excluding from the reference 34 

population, the breed from which the SNPs were selected. Regardless of SNP selection 35 

method, mean animal allele concordance rate improved at a diminishing rate while the 36 

variability in mean animal allele concordance rate reduced as the panel density increased. The 37 

SNP selection method impacted the accuracy of imputation although the effect reduced as the 38 

density of the panel increased. Overall, the most accurate SNP selection method for panels 39 

with <9,000 SNPs was that based on MAF and LD pattern within genomic blocks. The mean 40 

animal allele concordance rate varied from 0.89 in Texel to 0.97 in Vendeen. Greater 41 



imputation accuracy was achieved when SNPs were selected and imputed within each breed 42 

individually compared to when SNPs were selected across all breeds and imputed using a 43 

multi-breed reference population. In all, results indicate that accurate genotype imputation to 44 

medium-density is achievable with low-density genotype panels with at least 6,000 SNPs.  45 

 46 

Key words linkage disequilibrium, minor allele frequency, multi-breed, single nucleotide 47 

polymorphism selection  48 

 49 

Introduction 50 

 The magnitude of return-on-investment is a major factor affecting the uptake of any 51 

technology and this can be improved by either increasing the return or by reducing the 52 

investment requirement. While the logistics underpinning the procurement of a biological 53 

sample contributes to the overall cost of acquiring a genotype on an individual, the cost of the 54 

genotype panel, as well as the cost of the genotyping service itself, whatever the chosen 55 

technology, also impacts the overall cost of generating a genotype. Therefore, any strategy to 56 

reduce the cost of individual components contributing to the overall cost of genotyping 57 

warrants investigation. One such strategy could be to reduce the number of necessary single 58 

nucleotide polymorphisms (SNPs) for genotyping without compromising the downstream 59 

analyses. The high uptake in the use of genomic technologies in ruminants is attributable to 60 

the desire for accurately identifying genetically elite animals in a process now termed 61 

genomic selection (Meuwissen et al., 2001). Genomic evaluations in both cattle and sheep are 62 

mostly based on traditional best linear unbiased prediction (BLUP) approaches but where the 63 

numerator relationship matrix, traditionally generated from solely pedigree information, is 64 



replaced by a relationship matrix derived from genotype information. The genomic 65 

relationship matrices in farmed species are usually developed using 38,000 to 50,000 SNPs 66 

scattered across the genome (cattle: Berry and Kearney, 2011; sheep: Aurvay et al., 2014; 67 

goats: Mucha et al., 2015; and pigs: Wellman et al., 2013); hence, any lower-density 68 

genotype panel develop should ideally be imputable to higher-density. The use of cheaper 69 

lower-density panels would be especially useful to increase the uptake of genotyping in low 70 

value animals such as sheep.  71 

The objective of the present study was to quantify the accuracy of imputing medium-72 

density SNP genotypes from lower-density genotyping panels derived using alternative 73 

approaches to select the most informative SNPs. As many sheep breeding programmes 74 

comprise more than a single breed, greater uptake of genomic technologies may materialise if 75 

the lower-density panels were applicable across multiple breeds (and populations) including 76 

those not represented in the development of the panel. This was also investigated in the 77 

present study.  78 

 79 

Materials and Methods 80 

Genotype data 81 

A total of 51,135 biallelic SNPs were available on 3,241 animals genotyped using the 82 

Illumina OvineSNP50 Beadchip. The animals all originated from five flockbook recorded 83 

sheep populations namely the Belclare (n=650), Charollais (n=674), Suffolk (n=783), Texel 84 

(n=494), and Vendeen (n=640); animals were retained if they had a call rate of ≥0.95. These 85 

animals originated from 20, 105, 68, 79, and 32 individual seedstock breeders for the 86 

Belclare, Charollais, Suffolk, Texel, and Vendeen, respectively. Only autosomal SNPs with a 87 



known genomic position, a call rate ≥0.95, and an Illumina GenCall (GC) score ≥0.55 88 

(http://www.illumina.com/documents/products/technotes/technote_infinium_genotyping_data89 

_analysis.pdf) were retained. Parentage analysis was undertaken using the edited SNP dataset 90 

based on the proportion of autosomal SNPs in each putative parent-offspring pair that did not 91 

adhere to expected Mendelian inheritance patterns; where the extent of Mendelian 92 

inconsistencies were >2%, the parent of the individual was set to missing for the subsequent 93 

analyses. Inconsistency in the Mendelian inheritance pattern of each SNP was subsequently 94 

determined based on the proportion of genotypes per SNP that were opposing homozygotes 95 

in a validated parent-offspring pair; a total of 986 parent-offspring pairs existed among the 96 

3,062 genotyped animals. A total of 321 of the remaining autosomal SNPs were discarded 97 

where >2% of the parent-offspring autosomal genotypes did not conform to normal 98 

Mendelian inheritance. Finally, the extent to which each SNP genotype deviated from Hardy-99 

Weinberg equilibrium was calculated within each of the five breeds separately; SNPs that 100 

deviated from Hardy-Weinberg equilibrium (P < 0.01 x 10-7) in any one of the five breeds 101 

were not considered further. Following edits, 44,040 autosomal SNPs from 3,062 animals 102 

remained across the five breeds (Belclare n=642; Charollais n=645; Suffolk n=715; Texel 103 

n=440; and Vendeen n=620). Within the population there were 101, 155, 177, 90, and 106 104 

paternal half-sibs families in the Belclare, Charollais, Suffolk, Texel and Vendeen, 105 

respectively; the respective mean size of the paternal half-sib families (range in parenthesis) 106 

was 5.960 (2 to 26), 3.129 (2 to 8), 3.248 (2 to 9), 3.044 (2 to 8), and 5.462 (2 to 23).  107 

To quantify the accuracy of imputation, animals were partitioned into either a 108 

reference or a validation imputation population based on their date of birth. Within each 109 

breed separately, the youngest 100 animals were assumed to represent the validation 110 

population; the remaining animals were assumed to be part of the reference population. The 111 

average (pedigree-based) relationship between the reference and validation per population 112 

http://www.illumina.com/documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf
http://www.illumina.com/documents/products/technotes/technote_infinium_genotyping_data_analysis.pdf


was 0.048, 0.011, 0.034, 0.018, and 0.029 for the Belclare, Charollais, Suffolk, Texel, and 113 

Vendeen, respectively.   114 

 115 

Development of low-density SNP panels  116 

SNP selection methods 117 

Low-density genotype panels were developed for each of the five breeds individually to 118 

imitate seven different panel densities namely; 384 SNPs, 1,000 SNPs, 2,000 SNPs, 3,000 119 

SNPs, 6,000 SNPs, 9,000 SNPs, and 12,000 SNPs. Four different methods were used to 120 

select the most informative SNP, within each breed separately, primarily based on the 121 

approaches used by Judge et al. (2016) for cattle. The number of SNPs selected per 122 

chromosome in the present study differed per panel density and was a function of the length 123 

of the chromosome; within panel size, the number of SNPs chosen per chromosome was the 124 

same for all four selection methods tested. The number of SNPs selected per chromosome for 125 

each low-density panel is in Supplementary Table 1. The four SNP selection methods were; 126 

1) Random SNP selection method: Single nucleotide polymorphisms were randomly 127 

selected within each chromosome until the pre-defined number of SNPs per chromosome 128 

was reached for the respective panel density. 129 

2) Block SNP selection method: Each chromosome was divided into blocks of equal length. 130 

Chromosome length was defined as the distance from the genomic position of the first 131 

SNP to the genomic position of the last SNP. The number of blocks per chromosome was 132 

equal to the predefined number of SNPs for that chromosome, less two, so that an extra 133 

SNP could be chosen in the blocks at the start and the end of each chromosome (heron 134 

referred to as the periphery blocks of the chromosome). All SNPs were ranked on an 135 



index consisting of the minor allele frequency (MAF) of the SNP plus the mean linkage 136 

disequilibrium (LD) between that SNP and all other candidate SNPs within that block; an 137 

equal weighting was placed on both average LD and MAF, and the highest ranking SNP 138 

was then chosen within each block. A second informative SNP was then selected from the 139 

periphery blocks of each chromosome. The partial correlation of each candidate SNP in 140 

the block with all other candidate SNPs in the block after adjustment for the correlation 141 

with the already chosen SNP was calculated as: 142 

𝑟(𝑆𝑁𝑃𝑖 , 𝑆𝑁𝑃𝑗|𝑆𝑁𝑃𝑠𝑒𝑙)143 

= [𝑟(𝑆𝑁𝑃𝑖 , 𝑆𝑁𝑃𝑗) − 𝑟(𝑆𝑁𝑃𝑖, 𝑆𝑁𝑃𝑠𝑒𝑙)𝑟(𝑆𝑁𝑃𝑗 , 𝑆𝑁𝑃𝑠𝑒𝑙)]144 

/{[1 −  𝑟2(𝑆𝑁𝑃𝑖, 𝑆𝑁𝑃𝑠𝑒𝑙)]
1
2[1 −  𝑟2(𝑆𝑁𝑃𝑗 , 𝑆𝑁𝑃𝑠𝑒𝑙)]

1
2} 145 

where 𝑟(𝑆𝑁𝑃𝑖 , 𝑆𝑁𝑃𝑗|𝑆𝑁𝑃𝑠𝑒𝑙) is the correlation of two candidate SNPs (𝑆𝑁𝑃𝑖 𝑎𝑛𝑑 𝑆𝑁𝑃𝑗) 146 

after adjusting for the relationship of these SNPs with the already selected SNP 147 

(𝑆𝑁𝑃𝑠𝑒𝑙). The highest ranked SNP on an index of MAF and the mean partial correlations 148 

between the SNP and all other remaining SNPs in that block (standardized to have equal 149 

variances) was selected as the second most informative SNP (Judge et al., 2016).  150 

3) EquiMAF SNP selection method: Each chromosome was divided equally in length 151 

depending on the predefined number of SNPs required per chromosome to identify an 152 

ideal distance between SNPs on the lower-density panel. Chromosome length was defined 153 

as above. Each SNP was assigned a number corresponding to the order of that SNP by its 154 

position within the chromosome. The ideal distance was then calculated by (
𝑙𝑒𝑛𝑔𝑡ℎ

𝑐𝑜𝑢𝑛𝑡
) ∗155 

𝑆𝑁𝑃 𝑛𝑢𝑚𝑏𝑒𝑟 where length is the total length of the chromosome and count is the number 156 

of predefined SNPs per chromosome desired. An index was then created using the 157 

following equation: 158 

(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑁𝑃𝑖 − 𝑖𝑑𝑒𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) ∗ (0.5 − 𝑀𝐴𝐹) 159 



where MAF is the minor allele frequency. The highest ranked SNP on an index of ideal 160 

distance and MAF was then selected (adapted from Corbin et al., 2014).  161 

4)  Wellman SNP selection method (Wellman et al., 2013): SNPs selected were favoured for 162 

high MAF, distance from already selected SNPs, and weak LD with the SNP(s) already 163 

selected as described in Wellman et al. (2013). Two SNPs were first chosen at each 164 

periphery (<0.5 Mb) of each chromosome as described previously. After the SNPs on the 165 

peripheries were selected, additional SNPs were selected using three steps. The purpose of 166 

the first step was to define a distance measure 𝑑 between two SNPs 𝑚𝑖 and 𝑚𝑗 on the 167 

same chromosome i.e., 𝐶ℎ𝑟𝑚𝑖
= 𝐶ℎ𝑟𝑚𝑗

 ; this distance was calculated as: 168 

 𝑑(𝑚𝑖,  𝑚𝑗) =  λ|𝑙𝑜𝑐𝑖 − 𝑙𝑜𝑐𝑗| + (1 − λ)K(1 − 0.99 ∗ |𝑟 (𝐺𝑚𝑖
, 𝐺𝑚𝑗

)|)  169 

where λ = min(1,
|𝑙𝑜𝑐𝑖−𝑙𝑜𝑐𝑗|

𝐾
) with K = 5 Mb; 𝑙𝑜𝑐𝑚𝑖

 and 𝑙𝑜𝑐𝑚𝑗
 represented the genomic 170 

location in megabases of the SNPs 𝑚𝑖 and 𝑚𝑗, respectively and 𝑟 (𝐺𝑚𝑖
, 𝐺𝑚𝑗

) was the 171 

correlation between genotypes for SNPS 𝑚𝑖 and 𝑚𝑗. For loci that are in close proximity 172 

(λ<1), the correlation between the genotypes contributed to the distance measure to enable 173 

two markers at similar genomic positions to be included in the low-density panel if the 174 

SNPs were not in LD. In the second step, a score was calculated for each SNP 𝑖 based on 175 

its minor allele frequency (𝑀𝐴𝐹𝑖): 176 

𝑆𝑐𝑜𝑟𝑒𝑚 = 𝑀𝐴𝐹𝑚𝑢𝑚 177 

where 𝑢𝑚 = 1 where the position of 𝑚𝑖 is known. In the final step, SNPs were selected 178 

based on their scores and the distance measure 𝑑. If 𝑛 markers had already been selected, 179 

then marker 𝑚𝑛+1 was chosen such that 𝑀𝐴𝐹𝑚𝑛+1
∗ min (𝑑(𝑚𝑛+1, 𝑚𝑘) ∶ 𝑘 = 1, … , 𝑛 was 180 

maximised. This method prioritizes SNPs of both higher MAF and at a large distance 181 



(both standardized to have equal weighting) from SNPs already chosen (Wellman et al., 182 

2013).  183 

 184 

Imputation  185 

All imputation was undertaken by chromosome across the entire genome simultaneously 186 

using FImpute version 2.2 (Sargolzaei et al., 2014) exploiting both family- and population-187 

based imputation. Pedigree information was supplied to FImpute version 2.2. Imputation 188 

from the low density panels was initially carried out for each breed separately. The reference 189 

population for imputation consisted solely of the breed for which the genotype panel was 190 

developed and, for validation; only the masked genotypes of animals of this breed were 191 

imputed. This method was repeated for each of the 5 breeds to determine the most accurate 192 

SNP selection method. 193 

Once the most accurate SNP selection method was identified, two further scenarios were 194 

investigated; these involved modifications to the method of selecting SNPs and reference 195 

population structure used for imputation:  196 

Scenario 1: Single nucleotide polymorphisms were selected in a multi-breed 197 

population containing all five breeds. When selecting SNPs for inclusion on the lower-198 

density panels, the MAF used was the minimum MAF of that SNP in any of the five breeds 199 

while the mean LD between all candidate SNPs used was the maximum of the within-breed 200 

mean LD estimated in any of the five breeds. The masked genotypes of the validation animals 201 

in all breeds were then imputed using a reference population that included all five breeds 202 

together.  203 



 Scenario 2: Single nucleotide polymorphisms were selected based on the genomic 204 

characteristics of each breed separately as described previously. The masked genotypes of 205 

validation animals from all breeds were then simultaneously imputed using a single-breed 206 

reference population. Every other breed was separately included in the reference population, 207 

except the breed from which the SNPs were selected. The whole process was repeated so that 208 

SNPs were selected based on the genomic characteristics of each breed individually with 209 

every other breed individually included in the reference population. For example, if the 210 

genomic characteristics of the Belclare breed were used to selected SNPs, masked genotypes 211 

of all validation animals would be imputed where just the Charollais (or the Suffolk, Texel or 212 

Vendeen) were individually included in the reference population. A summary of the 213 

imputation scenarios is in Appendix 1.  214 

 215 

Imputation accuracy statistics 216 

Measures of imputation accuracy were undertaken within each breed separately. Imputation 217 

accuracy was carried out on all SNPs on the higher-density genotype panel (i.e., 44,040 218 

SNPs). Five imputation accuracy statistics were estimated: 219 

1) The genotype concordance rate, defined as the mean proportion of correctly imputed 220 

genotypes within animal (Berry et al., 2014).  221 

2) The allele concordance rate defined as the mean proportion of correctly imputed 222 

alleles within animal; where a genotype was imputed to be heterozygote but was truly 223 

homozygote then it was assumed to have been imputed with an accuracy of 0.5 (Berry 224 

et al., 2014).  225 



3) The (raw) correlation between true and imputed genotypes; genotypes were denoted 226 

as 0, 1 or 2 to represent homozygous, heterozygous, and opposite homozygous, 227 

respectively.  228 

4) The adjusted genotype correlation between the actual and imputed genotype per 229 

animal. This measure adjusted each genotype for the respective SNP allele frequency 230 

to account for differing allelic frequency per SNP as previously described by Mulder 231 

et al. (2012) and Berry et al. (2017). The adjusted genotype was achieved by 232 

subtracting twice the SNP allele frequency of the allele represented by the 233 

homozygous 2 genotype from both the actual and imputed genotype of that SNP; the 234 

adjusted correlation was subsequently estimated. The allele frequency per SNP was 235 

estimated solely on the reference population used for imputation. All accuracy 236 

statistics were undertaken within each breed separately.  237 

5) The rare allele concordance rate for SNPs with a MAF >0 but ≤0.05 defined as the 238 

mean proportion of correctly imputed rare alleles per animal. Where a genotype was 239 

imputed to heterozygote but was truly homozygote for the minor allele (and vice 240 

versa) then it was assumed to have been imputed with an accuracy of 0.5. Genotypes 241 

that were truly homozygote for the major allele were not considered in the estimation 242 

of rare allele concordance rate.  243 

 244 

Results 245 

Regardless of SNP selection method or imputation scenario, the mean allele concordance rate 246 

was always greater than genotype concordance rate (Supplementary Figure 1) while the 247 

adjusted genotype correlation between true and imputed genotypes was consistently weaker 248 

than the raw genotype correlation (Supplementary Figure 2). The allele concordance rate and 249 

adjusted genotype correlation between true and imputed genotypes for different SNP 250 



selection methods are presented in Figure 1 and Figure 2, respectively. Hereafter, the only 251 

imputation statistics reported and discussed are allele concordance rate and the adjusted 252 

genotype correlation. 253 

 254 

Single nucleotide polymorphism selection method 255 

The impact of SNP selection method was only evaluated where the breed-specific genomic 256 

statistics (i.e., MAF and LD) used to select the SNPs that were from the same breed used in 257 

the reference and the validation population. Selection method impacted the accuracy of 258 

imputation achievable although the impact reduced as the density of the low-density panel 259 

increased. Imputation accuracy from SNP panels composed of SNPs selected using the block 260 

selection method outperformed all other SNP selection method across all breeds and panel 261 

densities up to 1,000 SNPs with, on average, a superior allele concordance rate compared to 262 

the next best method (i.e., Wellman method) across the five breeds of 0.008 and 0.004 for 263 

384 SNPs and 1,000 SNPs, respectively. For the Belclare, Charollais, Suffolk, and Texel 264 

breeds, the block SNP selection method also outperformed all other methods for the panel 265 

densities up to 6,000 SNPs in terms of both better allele concordance rate (an average better 266 

allele concordance rate of 0.003, 0.002, and 0.001 for 2,000, 3,000, and 6,000 SNPs, 267 

respectively compared to the next best method (i.e., Wellman)) and adjusted genotype 268 

correlation (on average 0.007, 0.005, and 0.002 superior for 2,000, 3,000, and 6,000 SNPs, 269 

respectively compared to the next best method). However, the Wellman SNP selection 270 

method proved to be slightly superior in the Suffolk breed for genotype panels containing 271 

2,000 and 3,000 SNPs with better allele concordance rate of 0.002 and 0.001, respectively 272 

compared to the block method. The differences in imputation accuracy between the block and 273 



the Wellman SNP selection methods were negligible on the 9,000 and 12,000 genotype 274 

panels, although both were consistently superior to both the random and equiMAF methods.  275 

Imputation accuracy from SNPs selected using the equiMAF method consistently 276 

resulted in the poorest imputation accuracy (both in terms of allele concordance rate and 277 

adjusted genotype correlation between true and imputed genotypes) across all breeds and 278 

panel densities with the exception of the 384 SNP panel in each of the five breeds (Figure 1; 279 

Figure 2). Compared with the next poorest method (i.e., the random method), the equiMAF 280 

method resulted in a poorer allele concordance rate of 0.033, 0.073, 0.092, 0.103, 0.095, and 281 

0.085, for genotype panels containing 1,000, 2,000, 3,000, 6,000, 9,000, and 12,000 SNPs, 282 

respectively. The difference in both allele concordance rate and adjusted genotype correlation 283 

between the equiMAF SNP selection method and the random SNP selection method was 284 

negligible when the genotype panel contained just 384 SNPs (Figure 1; Figure 2). 285 

The variability in both the allele concordance rate per animal and the adjusted 286 

genotype correlation between the true and imputed genotypes per animal was also affected by 287 

SNP selection method (Figure 1; Figure 2). The SNP selection methods that achieved the 288 

greatest mean imputation accuracy (i.e., block and Wellman methods) across all panels and 289 

breeds were also characterised by the least variability in both the mean allele concordance 290 

rate and adjusted genotype correlation between true and imputed genotypes per individual 291 

compared to the poorer methods (i.e., EquiMAF and random methods). When SNPs were 292 

selected for the 6,000 SNP panel, for example, in the Vendeen breed using the block SNP 293 

selection method, the mean allele concordance rate per animal for the 6,000 SNP panel was 294 

0.9651 with a standard deviation (SD) of 0.05 while for the same density panel, SNPs 295 

selected using the random method had a mean allele concordance rate of 0.9529 but with a 296 

SD of 0.06.  297 



The relationship between minor allele frequency (MAF) and imputation accuracy 298 

(i.e., allele concordance rate and adjusted genotype correlation between true and imputed 299 

genotypes) of masked genotypes in the 6,000 SNP panel when the block SNP selection 300 

method was used in all breeds is presented in Table 1. Both the allele concordance rate (when 301 

the minor allele frequency was ≤0.45) and the adjusted genotype correlation worsened as the 302 

MAF (bin) increased. For the Charollais, Suffolk, Texel and Vendeen breeds, allele 303 

concordance rate was better when MAF was between 0.45 and 0.50 than when MAF was 304 

between 0.40 and 0.45; this was primarily due to fewer SNPs in having a MAF between 0.45 305 

and 0.50 compared to other MAF bins.  306 

The rare allele concordance rate (Figure 5) was only undertaken for the block SNP 307 

selection method where SNPs were selected within a single breed and only that breed was 308 

included in both the reference and validation populations. The number of SNPs with a MAF 309 

>0 but ≤ 0.05 present in the Belclare, Charollais, Suffolk, Texel, and Vendeen were 3,562, 310 

3,437, 6,802, 4,658, and 5,214, respectively.  As the panel density increased, the rare allele 311 

concordance rate also increased albeit at a diminishing rate; however, large variability in rare 312 

allele concordance rate per animal existed across breeds and SNP panel density. The 313 

imputation of rare alleles in the Vendeen and Texel were consistently better and worse, 314 

respectively than other breeds for all panel densities. For the 6,000 SNP panel, the allele 315 

concordance for rare alleles was 0.487 and 0.374 for the Vendeen and Texel, respectively.  316 

 317 

Single nucleotide polymorphism panel density 318 

Regardless of the SNP selection method used, the mean animal allele concordance rate 319 

improved at a diminishing rate as the panel density increased (Figure 1). When SNPs were 320 

selected using the block method, and imputation was undertaken solely within the same 321 



breed, the mean animal allele concordance rate was better, on average, by 4.88 percentage 322 

units across all breeds (maximum of 6.95 percentage units and minimum of 3.01 percentage 323 

units in the Charollais and Vendeen, respectively) when the panel density doubled from 1,000 324 

to 2,000 SNPs. Subsequently, when the SNP panel density doubled from 3,000 to 6,000, the 325 

mean animal allele concordance rate improved by, on average, by 2.21%; a maximum 326 

difference of 4.00% and a minimum difference of 0.84% were observed in the Texel and 327 

Vendeen breeds, respectively.  328 

The variability in the mean allele concordance rate per animal also reduced as the 329 

SNP panel density increased, independent of the SNP selection method used. When SNPs 330 

were selected within each breed individually using the block method, and imputation was 331 

undertaken within a single breed, the mean allele concordance rate per animal across each of 332 

the five breeds was 0.818 for 384 SNPs selected (average minimum 0.740 and average 333 

maximum 0.923), whereas for 9,000 selected SNPs, the mean allele concordance rate per 334 

animal across each of the five breeds was 0.98 (average minimum 0.899 and average 335 

maximum 0.998).  336 

 337 

Imputation scenario 338 

The block method was the most accurate SNP selection method and was therefore the only 339 

SNP selection method used in the remaining imputation scenarios. The imputation accuracy 340 

of the two scenarios where the breed composition of the reference and validation population 341 

differed as well as the genomic characteristics used to generate the panels are summarised in 342 

Figure 3 and Figure 4. The accuracy of imputation was affected by the composition of the 343 

reference population (i.e., whether the reference population contained only a single breed or 344 

all five breeds simultaneously). For all breeds, greater imputation accuracy was observed for 345 



genotype panels containing <3,000 SNPs when just one breed was used to develop the 346 

genotype panel and imputation undertaken with only that breed included in the reference and 347 

validation populations compared to when the genomic characteristics of all breeds were used 348 

both to develop the genotype panels and included in the reference population. On average, 349 

across all five breeds, a better allele concordance rate of 0.075, 0.072, 0.045, and 0.029, was 350 

observed for SNP panels containing 384, 1,000, 2,000, and 3,000 SNPs, respectively when 351 

imputation was undertaken with breeds individually included in the reference population 352 

compared with when all five breeds were simultaneously included in the reference 353 

population. Within the Vendeen breed, the effect of the composition of the reference 354 

population was negligible when the low-density panels contained ≥ 6,000 SNPs. The allele 355 

concordance rate for the remaining four breeds increased by, on average, 0.138 for the 6,000 356 

SNP genotype panel when the reference population for imputation contained only the breed 357 

in which the low-density panels were developed (Figure 3). For the Belclare and Suffolk 358 

breeds, differences between the accuracy of imputation when all five breeds were 359 

simultaneously included in the reference population compared to when just the Belclare and 360 

Suffolk breed were, respectively included in the reference population for the 9,000 SNP panel 361 

were negligible (<0.001 for allele concordance rate). For all breeds, with the exception of the 362 

Texel breed, the effect of the composition of the reference population was negligible for the 363 

12,000 SNP panel; a stronger adjusted genotype correlation between true and imputed 364 

genotypes of 0.012 was observed for the Texel breed when imputation was undertaken with 365 

just the Texel breed included in the reference population.  366 

When the SNP genotype panels were developed within an individual breed and a 367 

single breed was used as the reference population, the impact on accuracy of imputation of 368 

which breed was actually included in the reference population was large (Figure 3 and 4). 369 

Where a 6,000 SNP panel was built in the Belclare using the block method, and only the 370 



Belclare animals were included in the reference population, an allele concordance rate of 371 

0.988 was achieved for the Belclare breed compared to allele concordance rates of 0.762, 372 

0.743, and 0.752 when the reference population was composed solely of Charollais, Suffolk 373 

or Vendeen, respectively. When the genotype panels were built within the Belclare breed, and 374 

the Texel breed was the only breed included in the reference population, a stronger 375 

correlation between the true and imputed genotypes of 0.831 was observed for the 6,000 SNP 376 

panel compared to the average adjusted genotype correlation of the Charollais, Suffolk or 377 

Vendeen. Better imputation accuracy was also observed across all panel densities when the 378 

genotype panels were built in the Texel population and Texel reference population was 379 

imputed using a reference population that only included the Belclare. Similar improvements 380 

in imputation accuracy were observed for the Charollais when the Vendeen breed was solely 381 

included in the reference population and vice versa (Figure 3; Figure 4). 382 

 383 

Discussion 384 

While many studies have quantified the accuracy of imputation from lower-density genotype 385 

panels to higher-density genotype panels in cattle (Zhang and Druet, 2010; Berry and 386 

Kearney, 2011; Judge et al., 2016), fewer such studies exist in sheep (Hayes et al., 2012; 387 

Bolormaa et al., 2015; Moghaddar et al., 2015). Previous imputation-based studies in sheep 388 

have mainly been confined to wool and meat sheep breeds in Australia and New Zealand 389 

(Hayes et al., 2012; Bolormaa et al., 2015; Ventura et al., 2016). Furthermore, studies to date 390 

on the use of lower-density genotype panels in sheep have focused primarily on factors 391 

affecting imputation accuracy; these factors include the multi- or single-breed structure of the 392 

reference and validation populations (Bolormaa et al., 2015; Ventura et al., 2016), the degree 393 

of relatedness among and between animals in the reference and validation populations 394 



(Bolormaa et al., 2015; Moghaddar et al., 2015), and the size of the reference population 395 

(Moghaddar et al., 2015; Ventura et al., 2016). Imputation studies quantifying the impact of 396 

alternative approaches to selecting the SNPs for genotyping panels differing in SNP densities 397 

in sheep do not exist. Several alternative approaches to select such SNPs in cattle have been 398 

evaluated including random selection (Szyda et al., 2013), a combination of equidistant 399 

physical location and high MAF (Boichard et al., 2012) as well as dividing each chromosome 400 

into equally sized segments and selecting SNPs within the segment with the greatest MAF 401 

(Mulder et al., 2012). Further SNP selection methods have been evaluated in other species; 402 

one such method in pigs involved selecting SNPs based on high MAF, relatively equally 403 

spaced and weak correlations with the SNPs already selected (Wellman et al., 2013). With 404 

the exception of the equiMAF method (adapted from Corbin et al., 2014) evaluated in the 405 

present study, all other strategies to SNP selection evaluated in the present study have been 406 

documented in dairy and beef cattle (Judge et al., 2016).  407 

When SNPs were selected in the present study using a combination of the LD and 408 

MAF of a single breed and that breed was itself solely included in the reference population, 409 

greater imputation accuracy for the 12,000 SNP genotype panel was achieved compared to 410 

that reported by Bolormaa et al. (2015) when a 11,267 SNP panel was imputed to 48,599 411 

SNPs. Bolormaa et al. (2015) reported a range in mean animal allele concordance rate of 0.88 412 

to 0.94 in multiple Australian sheep breeds (i.e., Border Leicester, Poll Dorset, White 413 

Suffolk, Merino and crossbreds) with a weighted mean allele concordance rate across breeds 414 

of 0.89. The range in allele concordance rate in the present study (with SNPs selected using 415 

the block method) was 0.983 to 0.996 with a weighted average of 0.992. However, with the 416 

exception of the Merino breed, the size of the reference populations of the individual breeds 417 

reported by Bolormaa et al. (2015) was smaller (157 to 341 animals) than those in the present 418 

study (with the exception of the Texel breed). Furthermore, a range in allele concordance rate 419 



of 0.90 to 0.94 was reported by Bolormaa et al. (2015) when imputation was carried out using 420 

a multi-breed population on a 11,267 SNP panel was undertaken; the range in allele 421 

concordance rate for imputation where SNPs were selected using the block method within all 422 

breeds and all breeds were included in the reference population was still greater in the present 423 

study (0.976 to 0.996). In both the present study and that of Bolormaa et al. (2015), the 424 

lower-density panel was developed within the same multi-breed population as that included 425 

in the reference population.   426 

The SNPs included on the low-density sheep panels proposed by Hayes et al. (2012) 427 

were chosen from 48,640 SNPs as every nth marker by chromosome position. Hayes et al. 428 

(2012) used the fastPHASE imputation method (Scheet and Stephens, 2006), and achieved 429 

imputation accuracy comparable to that achieved in the present study from the genotype 430 

panels developed using randomly selected SNPs. Hayes et al. (2012) reported the genotype 431 

concordance rate for all breeds was <0.80 (i.e., Border Leicester, Merino, and Poll Dorset and 432 

White Suffolk combined) when 5,000 SNPs were imputed to 48,640 SNPs using a single 433 

breed reference population. While the 5,000 SNP panel used by Hayes et al. (2012) is closer 434 

in density to the 6,000 SNP panel in the present study, the genotype concordance rate 435 

obtained by Hayes et al. (2012) is more similar to the average genotype concordance rate 436 

(0.884) reported for genotype panel containing 3,000 randomly selected SNPs in the present 437 

study.  438 

The trend observed for a declining allele concordance rate as MAF increased 439 

corroborates other studies in sheep (Bolormaa et al., 2015) and cattle (Berry and Kearney, 440 

2011; Judge et al., 2016). While Bolormaa et al. (2015) observed an increase in raw genotype 441 

correlation between true and imputed genotypes as MAF increased, this trend was not 442 

observed in the present study.  443 



Where possible, the approaches taken in the present study aimed to produce results 444 

that reflect real-life. As it tends to be the younger animals that are genotyped on a lower-445 

density panel, the youngest 100 animals per breed were chosen to be the validation 446 

population. Furthermore, the inclusion of the unmasked genotypes (i.e., 100% concordance 447 

with the real genotypes) in the estimation of imputation accuracy was also to simulate a real-448 

life scenario. The allele concordance rate (ACR) of the unmasked genotypes for example of 449 

the 6,000 SNP panel can be easily calculated using the formula 
𝐴𝐶𝑅(44,040)−1.0(6,000)

44,040−6,000
  where 450 

44,040 is the number of SNPs on the higher-density panel and the assumed allele 451 

concordance rate of the 6,000 unmasked SNPs was 1.0. Taking the Belclare breed as an 452 

example, where SNPs were selected using the block method within the Belclare breed and 453 

only the Belclare breed was included in the reference and validation population. The allele 454 

concordance rate for all SNPs (masked and unmasked) imputed from the 6,000 SNP panel 455 

was 0.988 while the allele concordance rate of the 38,040 masked SNPs only calculated using 456 

the above formula was 0.986. 457 

 458 

Single nucleotide polymorphism selection method  459 

While the random method was expected to perform the poorest, the poor performance of the 460 

equiMAF method is in direct contrast to the findings of Corbin et al. (2014) who also selected 461 

SNPs based on equidistance, optimized for MAF in Thoroughbred horses. Corbin et al. 462 

(2014) reported greater imputation accuracy for a 6,000 SNP panel (genotype concordance 463 

rate of 0.98) compared to SNPs selected based solely on equidistance across the genome 464 

(genotype concordance rate of 0.97) or selected based on a combination of LD pattern and 465 

MAF (genotype concordance rate of 0.95). Carvalheiro et al. (2014) reported that SNPs 466 

selected based on a combination of MAF and LD resulted in better imputation accuracy in 467 



Nelore cattle when compared to SNPs selected using either MAF or LD. Of the SNP 468 

selection strategies evaluated in the present study, both the block method and the Wellman 469 

method placed equal emphasis on both high MAF and weak LD when selecting SNPs for 470 

inclusion on a lower-density genotype panel with the block method and the Wellman method 471 

outperforming all other methods in all breeds for all panel densities. The overall superiority 472 

of the block method was not entirely unexpected as is consistent with its superiority in 473 

selecting SNPs for imputation to higher-density in cattle (Judge et al., 2016). Judge et al. 474 

(2016) evaluated six alternative SNP selection approaches, three of which (i.e., random, 475 

Wellman and block) were common to those evaluated in the present study. 476 

Where SNPs were selected using the block method based on LD and MAF statistics 477 

from one breed with that breed being included in the reference population, the imputation 478 

accuracies in the present study were poorer than those reported by Judge et al. (2016) for 479 

genotyping panels containing ≤3,000 SNPs. However, the size of the reference population 480 

(range of 340 to 615 animals) in the present study was much smaller than used by Judge et al. 481 

(2016; 1,484 animals). Nevertheless, the range in allele concordance rate for SNP panels 482 

developed using the block method in a single breed with that breed being solely included in 483 

the reference population in the present study containing 6,000 (0.963 to 0.993) and 12,000 484 

(0.983 to 0.996) was similar to the allele concordance rate reported by Judge et al. (2016) for 485 

their 6,000 (0.988) and 12,000 (0.994) panels. The genotype concordance rate 486 

(Supplementary Figure 1) achieved for the 3,000 SNP panel in the Vendeen breed (0.966) 487 

when the Wellman SNP selection method was used is similar to that reported by Wellman et 488 

al. (2013; 0.96) for the same density using the same SNP selection method in German 489 

Piétrain boars. However, genotype allele concordance rates in the remaining breeds using the 490 

same SNP selection method were lower than that reported by Wellman et al. (2013) for the 491 

3,000 panel. Judge et al. (2016) suggested that the reason for the superior performance of the 492 



block method compared to the Wellman method may be due to the positioning of SNPs 493 

across the genome. Single nucleotide polymorphisms selected using the block method were 494 

forced to be more evenly distributed across the genome as only one SNP could be selected 495 

per segment (or block). The Wellman method however enabled neighbouring SNPs to be 496 

selected if the LD between them was low (and SNPs in other regions of the chromosomes had 497 

already been selected; Judge et al., 2016). The mean SD in distance between neighbouring 498 

SNPs on the 6,000 SNP panel was 177kb for the block SNP selection method (minimum SD 499 

in the Texel 176kb; maximum SD in the Charollais 180kb) compared to 425kb for the 500 

Wellman method (minimum SD in the Charollais 409kb; maximum SD in the Texel 444kb). 501 

This therefore indicates that SNPs selected using the block method were more evenly spaced 502 

across the genome.  503 

 504 

Single nucleotide polymorphism panel density 505 

The improvement in imputation accuracy (both allele concordance rate and adjusted genotype 506 

correlation) with increasing panel density was expected and has previously been documented 507 

in both sheep (Hayes et al., 2012) and cattle (Judge et al., 2016). While few sheep studies 508 

have investigated the imputation accuracy of genotyping panels containing less than 6,000 509 

SNPs, Hayes et al. (2012) reported a genotype concordance rate of >0.80 for a genotype 510 

panel containing 5,000 SNPs. In a population of 6,369 dairy cattle, Judge et al. (2016) 511 

reported allele concordance rates to from lower-density panels containing 384 (0.849), 1,000 512 

(0.881), 2,000 (0.963), 3,000 (0.976), 6,000 (0.988), 12,000 (0.994) SNPs  to higher-density 513 

similar to those obtained (using panels containing SNPs selected using the block method) in 514 

the present study; allele concordance rates averaged across breeds in the present study were 515 



0.817, 0.889, 0.938, 0.959, 0.981, and 0.991 for panels containing 384, 1,000, 2,000, 3,000, 516 

6,000, 12,000 SNPs, respectively. 517 

When averaged across all breeds (when SNPs were selected using the block method 518 

within a single breed and that breed alone was included in the reference population), the 519 

adjusted genotype correlation between true and imputed genotypes improved by 0.130 when 520 

the density increased from 1,000 to 2,000 SNPs compared with an improvement of only 521 

0.055 and 0.025 when density increased from 3,000 to 6,000 and from 6,000 to 12,000, 522 

respectively. The reduced improvement in imputation accuracy when panel density increased 523 

was primarily because allele concordance rate was already high across all breeds (>0.90) with 524 

the exception of the Texel breed (>0.85).  525 

 526 

Reference population 527 

The improved imputation accuracy when just the animals of the breed being imputed were 528 

included in the population compared to a multi-breed reference population was more evident 529 

in the lower-density panels (i.e., ≤3,000 SNPs); this corroborates results reported by Hayes et 530 

al. (2012) in sheep. However, the impact of the breed representation in the reference 531 

population was negligible once the lower-density panel contained at least 9,000 SNPs (with 532 

the exception of the Texel breed). The improved imputation accuracy for genotype panels 533 

<9,000 SNPs when just a single-breed reference population was used for imputation in the 534 

present study is, nonetheless, in contrast with those of Bolormaa et al. (2015) who reported a 535 

marked increase in imputation accuracy of Australian sheep when a multi-breed reference 536 

population was used. The increase in imputation accuracy using a multi-breed reference 537 

population compared to a single-breed reference population in Bolormaa et al. (2015) may be 538 

due to the smaller reference population size for the individual single-breed reference 539 



population. Nonetheless, Bolormaa et al. (2015) documented that failure to include the breed 540 

being imputed in the reference population contributed to substantial erosion in imputation 541 

accuracy (e.g., the mean genotype correlation between true and imputed genotypes per 542 

animal of the Merino breed reduced from 0.91 to 0.80 when 11,267 SNPs were imputed to 543 

48,599 SNPs); a conclusion also deduced from the present study. 544 

The purpose of imputation scenario two was to the investigate the effects of 1) the 545 

application of a panel built in one breed and applied to another, and 2) the composition of the 546 

reference population. While there was a marked reduction in imputation accuracy when the 547 

breed being imputed was not included in the reference population, there were exceptions. The 548 

reduction in imputation accuracy was not as severe when the Texel breed was included in the 549 

reference population with the Belclare breed being the breed imputed, or vice versa. This is 550 

most likely be due to the Texel being one of the breeds included in the Belclare composite 551 

breed. When the Belclare breed was initially formed, the Galway, Finnish Landrace, and 552 

Lleyn breeds served as the founder breeds while the Texel was later introduced. Similarly, the 553 

reduction in imputation accuracy from not having the breed to be imputed also included in 554 

the reference population was not as severe when the Charollais was included in the reference 555 

population and the Vendeen was being imputed and vice versa. As both the Charollais and 556 

the Vendeen are French breeds, they may have a closer genetic relationship that any of the 557 

other breeds.  558 

The association between a larger imputation reference population and greater 559 

imputation accuracy has been well documented in both sheep (Bolormaa et al., 2012; Ventura 560 

et al., 2016) and cattle (Hozé et al., 2013). The smaller reference population of the Texel 561 

breed in the present study (n=340) may help explain the poorer imputation accuracy across all 562 

imputation scenarios in this breed relative to the other breeds. Within the Texel breed, 16 563 

validation animals had a parent in the reference population; no Texel animals in the 564 



validation population had both parents in the reference population. The mean allele 565 

concordance rate of the 16 Texel animals with a parent in the reference population for the 566 

6,000 SNP panel (selected using the block method) was superior (0.983) compared to those 567 

that did not have any parent in the reference population (0.958). While the Vendeen did not 568 

have the largest reference population, the greatest imputation accuracy was observed in the 569 

Vendeen. This is most likely due to a large number of Vendeen animals in the validation 570 

population (n=91) that had at least one parental genotype in the reference population. Where 571 

Vendeen animals had at least one parent in the reference population, the allele concordance 572 

rate for the 6,000 SNP panel (selected using the block method) was 0.993 compared to an 573 

allele concordance rate of 0.987 where the validation animals did not have either parent in the 574 

reference population. While the Suffolk had both the greatest number of animals in the 575 

reference population and the strongest mean linkage disequilibrium (LD) between adjacent 576 

SNPs of 0.377 (compared to the next breed which was the Texel with an LD of 0.356) on the 577 

medium density panel (i.e., 44,040 SNPs), it did not result in the greatest imputation 578 

accuracy. Other studies have reported that stronger LD between SNPs on the higher-density 579 

panels lends itself to greater imputation accuracy (Hickey et al., 2012; Pimentel et al., 2013; 580 

Corbin et al., 2014). Linkage disequilibrium was calculated between the SNPs included in the 581 

6,000 genotype panel for all breeds and SNP selection method. Where 6,000 SNPs were 582 

selected in Suffolks using the block method, a stronger LD (0.406) between SNPs existed 583 

compared to other breeds (closest breed was Vendeen with weighted mean LD between 584 

neighbouring SNPs of 0.331 between SNPs). The mean MAF of SNPs on the higher-density 585 

panel (i.e., 44,040 SNPs) in the Suffolk breed was lower (0.239) compared to the all other 586 

breeds; the Vendeen (i.e., the next closest breed) had a mean MAF of 0.254. The SNPs 587 

selected to be on the lower-density panels should, in theory, be in weaker LD with the other 588 

selected SNPs. Therefore, because the mean MAF of the candidate SNPs for the Suffolk 589 



6,000 SNP panel was greater than other breeds, the block selection method was forced to 590 

choose SNPs with a greater MAF thereby reducing the weight on LD.  591 

 592 

Conclusion 593 

Accurate genotype imputation is achievable using genotype panels as low as 6,000 SNPs. 594 

Careful SNP selection for inclusion on the lower-density panel is, however, paramount to 595 

achieve accurate imputation. The block SNP selection method which combines relatively 596 

equally positioning of SNPs, MAF and LD outperformed the other methods in imputation 597 

accuracy. However, the Wellman method which combines MAF, distance from already 598 

selected SNPs, and weak LD with the SNP(s) already selected would be a suitable alternative. 599 

With 6,000 SNPs chosen using the block method, the mean allele concordance rate per 600 

animal per breed varied from 0.975 to 0.992; the minimum mean allele concordance rate of 601 

any animal achieved with a 6,000 panel was 0.847. Imputation accuracy could possibly be 602 

improved with larger reference populations. If possible, the breed included in the target 603 

imputation population should always be included in the reference population to mitigate any 604 

erosion in imputation accuracy.  605 
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Literature cited 607 

Auvray, B., J.C. McEwan, S-A.N. Newman, M. Lee, K.G. Dodds. 2014. Genomic prediction 608 

of breeding values in the New Zealand sheep industry using a 50K SNP chip. J. Anim. Sci. 609 

2014.92:4375 – 4389. doi:10.2527/jas.2014-7801. 610 



Berry, D.P., and J.F. Kearney. 2011. Imputation of genotypes from low- to high-density 611 

genotyping platforms and implications for genomic selection. Animal (2011), 5:8, pp 1162 – 612 

1169. doi:10.1017/S1751731111000309. 613 

Berry, D.P., M.C. McClure, M.P. Mullen. 2014. Within- and across-breed imputation of 614 

high-density genotypes in dairy and beef cattle from medium- and low-density genotypes. 615 

Anim Breed. Genet 131 (2014) 165 – 172. doi:10.1111/jbg.12067. 616 

Berry D.P., N. McHugh, S. Randles, E. Wall, K. McDermott, M. Sargolzaei, A.C. O’Brien. 617 

2017. Imputation of non-genotyped sheep from genotypes of their mates and resulting 618 

progeny. Animal (2017) 12:2, pp 191 – 198. doi:10.1017/S1751731117001653. 619 

Boichard D., H. Chung, R. Dassonnville, X. David, A. Effen, S. Fritz, K.J. Gietzen, B.J. 620 

Hayes, C.T. Lawley, T.S. Sonstegard, C.P. Van Tassell, P.M. VanRaden, K.A. Viaud-621 

Martinez, G.R. Wiggans, for the Bovine LD Consortium. 2012. Design of a Bovine Low-622 

Density SNP Array Optimized for Imputation. PLos ONE 7:3. 623 

doi:10.1371/journal.pone.0034130. 624 

Bolormaa S., K. Gore, J.H.J. van der Werf, B.J. Hayes, H.D. Daetwyler. 2015. Design of a 625 

low-density SNP chip for the main Australian sheep breeds and its effect on imputation and 626 

genomic prediction accuracy. Animal Genetics, 46, 544 – 556. doi:10.1111/age.12340. 627 

Carvalheiro R., S.A. Boison, H.H.R. Neves, M. Sargolzaei, F.S. Schenkel, Y.T. Utsunomiya, 628 

A.M. Pérez O’ Brien, J. Sölkner, J.C. McEwan, C.P. Van Tassell, T.S. Sonstegard, J. 629 

Fernando Garcia. 2014. Accuracy of genotype imputation in Nelore cattle. Genet. Sel. Evol. 630 

2014, 46:69. doi:10.1186/s12711-014-0069-1. 631 



Corbin L.J., A. Kranis, S.C. Blott, J.E. Swinburne, M. Vaudin, S.C. Bishop, J.A. Woolliams. 632 

2014. The utility of low-density genotyping for imputation in the Thoroughbred horse. Genet. 633 

Sel. Evol. 2014, 46:9. doi:10.1186/1297-9686-46-9. 634 

Habier D., R.L. Fernando, J.C. Dekkers. 2009. Genomic Selection using low-density marker 635 

panels. Genetics 182(1):343 – 353. doi:10.1534/genetics.108.100289. 636 

Hayes B.J., P.J. Bowman, H.D. Daetwyler, J.W. Kijas, J.H.J. van der Werf. 2012. Accuracy 637 

of genotype imputation in sheep breeds. Animal Genetics, 43, 72 – 80. doi:10.1111/j.1365-638 

2052.2011.02208.x. 639 

Hickey J.M., J. Crossa, R. Babu, G. de los Campos. 2012. Factors Affecting the Accuracy of 640 

Genotype Imputation in Populations from Several Maize Breeding Programs. Crop Science 641 

(2012) 52:654 – 663. doi:10.2135/cropsci2011.07.0358. 642 

Hozé C.,  M-N. Fouilloux, E. Venot, F. Guillaume, R. Dassonneville, S. Fritz, V. Ducrocq, F. 643 

Phocas, D. Boichard, P. Croiseau. 2013. High-density marker imputation accuracy in sixteen 644 

French cattle breeds. Genet. Sel. Evol. 2013, 45:33. doi:10.1186/1297-9686-45-33. 645 

Judge M.M., J.F. Kearney, M.C. McClure, R.D. Sleator, D.P. Berry. 2016. Evaluation of 646 

developed low-density genotype panels for imputation to higher density in independent dairy 647 

and beef cattle populations. J. Anim. Sci. 2016. 94:949 – 962. doi:10.2527/jas.2015-0044. 648 

Khatkar M.S., G. Moser, B.J. Hayes, H.W. Raadsma. 2012. Strategies and utility of imputed 649 

SNP genotypes for genomic analysis in dairy cattle. BMC Genomics 2012, 13:538. 650 

doi:10.1186/1471-2164-13-538.  651 

Meuwissen T.H.E., B.J. Hayes, M.E. Goddard. 2001. Prediction of total genetic value using 652 

genome-wide dense marker maps. Genetics 157:1819 – 1829. 653 

https://doi.org/10.1186/1471-2164-13-538


Moghaddar N., K.P. Gore, H.D. Daetwyler, B.J. Hayes, J.H.J. van der Werf. 2015. Accuracy 654 

of genotype imputation based on random and selected reference sets in purebred and 655 

crossbred sheep populations and its effect on accuracy of genomic prediction. Genet Sel Evol 656 

(2015) 47:97. doi:10.1186/s12711-015-0175-8.  657 

Mucha S., R. Mrode, I. MacLaren-Lee, M. Coffey, J. Conington. 2015. Estimation of 658 

genomic breeding values for milk yield in UK dairy goats. J. Dairy Sci. 98:8201 – 8208. 659 

doi:10.3168/jds.2015-9682. 660 

Mulder, H.A., M.P.L. Calus, T. Druet, C. Schrooten. 2012. Imputation of genotypes with 661 

low-density chips and its effect on reliability of direct genomic values in Dutch Holstein 662 

cattle. J. Dairy. Sci. 95:876 - 889. doi:10.3168/jds.2011-4490.  663 

Pimental, E.C.G., M. Wensch-Dorendorf, S. König, H.H. Swalve. 2013. Enlarging a training 664 

set for genomic selection by imputation of un-genotyped animals in population of varying 665 

genetic architecture. Genet. Sel. Evol. 2013, 45:12. doi:10.1186/1297-9686-45-12. 666 

Sargolzaei, M., J.P. Chesnais, F.S. Schenkel. 2014. A new approach for efficient genotype 667 

imputation using information from relatives. BMC Genomics 2014, 15:478. 668 

doi:10.1186/1471-2164-15-478. 669 

Scheet, P.and M. Stephens. 2006. A fast and flexible statistical model for large-scale 670 

population genotype data: applications to inferring missing genotypes and haplotypic phase. 671 

The American Journal of Human Genetics, 78, 629-644. doi: 10.1086/502802. 672 

Szyda, J., K. Żukowski, S. Kaminski, and A. Żarnecki. 2013. Testing different single 673 

nucleotide polymorphism selection for prediction of genomic breeding values in dairy cattle 674 

based on low density panels. Czech J. Anim. Sci. 58(3):136–145.  675 

https://doi.org/10.1186/s12711-015-0175-8
https://doi.org/10.3168/jds.2011-4490


Weigel, K.A., C.P. Van Tassell, J.R. O’ Connell, P.M. VanRaden, G.R. Wiggans. 2010. 676 

Prediction of unobserved single nucleotide polymorphism genotypes of Jersey cattle using 677 

reference panels and population-based imputation algorithms. J. Dairy. Sci. 93:2229 – 2238. 678 

doi:10.3168/jds.2009-2849. 679 

Wellman R., S. Preuß, E. Tholen, J. Heinkel, K. Wimmers, J. Bennewitz. 2013. Genomic 680 

selection using low density marker panels with application to a sire line in pigs. Genetics 681 

Selection Evolution 2013, 45:28. doi:10.1186/1297-9686-45-28.  682 

Ventura, R.V., S.P. Miller, K.G. Dodds, B. Aurvay, M. Lee, M. Bixley, S.M. Clarke, J.C. 683 

McEwan. 2016. Assessing accuracy of imputation using different SNP panel densities in a 684 

multi-breed sheep population. Genet. Sel. Evol. (2016) 48:71. doi:10.1186/s12711-016-0244-685 

7. 686 

Zhang, Z., and T, Druet. 2010. Marker imputation with low-density marker panels in Dutch 687 

Holstein cattle. J. Dairy Sci. 93:5487 – 5494. doi:10.3168/jds.2010-3501.688 

https://doi.org/10.1186/1297-9686-45-28


Table 1. Mean allele concordance rate (ACR) and adjusted genotype correlation (r) per masked single nucleotide polymorphism (SNP) for 689 

different minor allele frequency (MAF) bins in each of five sheep breeds on the 6,000 SNP panel where SNPs were selected using the block 690 

method.  691 

  Belclare   Charollais   Suffolk   Texel   Vendeen 

MAF bin ACR r   ACR r   ACR r   ACR r   ACR r 

>0.00: ≤0.05 0.993 0.993 

 

0.993 0.993 

 

0.997 0.995 

 

0.985 0.990 

 

0.998 0.996 

>0.05: ≤0.10 0.990 0.989 

 

0.984 0.986 

 

0.992 0.991 

 

0.971 0.978 

 

0.995 0.994 

>0.10: ≤0.15 0.989 0.984 

 

0.979 0.978 

 

0.989 0.986 

 

0.963 0.968 

 

0.993 0.990 

>0.15: ≤0.20 0.988 0.982 

 

0.974 0.970 

 

0.987 0.982 

 

0.956 0.954 

 

0.992 0.987 

>0.20: ≤0.25 0.988 0.977 

 

0.970 0.959 

 

0.985 0.976 

 

0.952 0.940 

 

0.991 0.982 

>0.25: ≤0.30 0.987 0.970 

 

0.969 0.947 

 

0.985 0.970 

 

0.950 0.921 

 

0.990 0.977 

>0.30: ≤0.35 0.987 0.965 

 

0.969 0.934 

 

0.985 0.963 

 

0.952 0.907 

 

0.991 0.971 

>0.35: ≤0.40 0.987 0.958 

 

0.970 0.921 

 

0.986 0.955 

 

0.954 0.885 

 

0.991 0.963 

>0.40: ≤0.45 0.987 0.952 

 

0.975 0.909 

 

0.990 0.951 

 

0.962 0.872 

 

0.992 0.959 

>0.45: ≤0.50 0.987 0.951   0.981 0.901   0.993 0.946   0.972 0.862   0.994 0.958 
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 697 

Figure 1. Mean allele concordance rate per animal across multiple single nucleotide 698 

polymorphism (SNP) panels for a) Belclare, b) Charollais, c) Suffolk, d) Texel and e) 699 

Vendeen. SNPs were selected randomly (white bar), using the block method (striped bar), 700 

using the EquiMAF method (dark grey bar) or using the Wellman method (spotted bar). SNP 701 

panels were created within each breed separately and the reference and validation populations 702 

were composed only of animals of that breed (Scenario 1). The error bars represent the best 703 

and worst mean allele concordance rate per animal.   704 
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Figure 2. Mean adjusted genotype correlation per animal across multiple single nucleotide 710 

polymorphism (SNP) panels for a) Belclare, b) Charollais, c) Suffolk, d) Texel and e) 711 

Vendeen. SNPs were selected randomly (white bar), using the block method (striped bar), 712 

using the EquiMAF method (dark grey bar) or using the Wellman method (spotted bar). SNP 713 

panels were created within each breed separately and the reference and validation populations 714 

were composed only of animals of that breed (Scenario 1). The error bars represent the best 715 

and worst mean allele concordance rate per animal.  716 
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 721 

Figure 3. Mean allele concordance rate per animal across multiple single nucleotide 722 

polymorphism (SNP) panels for a) Belclare, b) Charollais, c) Suffolk, d) Texel and e) 723 

Vendeen. SNPs were selected using the block method while the reference population used to 724 

impute the genotypes are denoted as Belclare (white bar), Charollais (black thin striped bar), 725 

Suffolk (light grey bar), Texel (spotted bar), Vendeen (dark grey bar). Multi-breed imputation 726 

was undertaken including all breeds in the SNP selection and the reference population (grey 727 

thick striped bar). The error bars represent the best and worst mean allele concordance rate 728 

per animal.  729 
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 734 

Figure 4. Mean adjusted genotype correlation between true and imputed genotype per animal 735 

across multiple single nucleotide polymorphism (SNP) panels densities for a) Belclare, b) 736 

Charollais, c) Suffolk, d) Texel and e) Vendeen. Single nucleotide polymorphisms were 737 

selected using the block method while the reference population used to impute the genotypes 738 

are denoted as Belclare (white bar), Charollais (black thin striped bar), Suffolk (light grey 739 

bar), Texel (spotted bar), Vendeen (dark grey bar). Multi-breed imputation was undertaken 740 

including all breeds in the SNP selection and the reference population (grey thick striped 741 

bar). The error bars represent the best and worst mean allele concordance rate per animal. 742 
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 743 

Figure 5. The mean rare allele concordance rate per animal across genotype panels of 744 

multiple densities selected using the block method within each breed individually; only the 745 

breed within which the single nucleotide polymorphisms (SNPs) were selected were included 746 

solely in the reference and validation population. The number of SNPs with a MAF ≤ 0.05 747 

differed between breeds; Belclare (3,526 SNPs; white bars), Charollais (3,437 SNPs; striped 748 

bar), Suffolk (6,802 SNPs; light grey bar), Texel (4,652 SNPs; spotted bar), and Vendeen 749 

(5,214 SNPs; dark grey bar). The error bars represent the best and worst mean rare allele 750 

concordance rate per animal. 751 
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 752 

Appendix 1. Summary of the imputation scenarios used in the present study.  753 

 754 


	High imputation accuracy from informative low-to-medium density single nucleotide polymorphism genotypes is achievable in sheep

