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Rationale: Bauxite residue restoration success has been largely assessed on visual 

aboveground indicators and soil physico-chemical properties while microbial 25 

biomarkers have been mostly overlooked. The rationale of this study was to identify 

the status of bacterial communities in two restored bauxite residue deposit sites in 

comparison to a non-restored un-vegetated site and to identify potential bacterial 

biomarkers. The target audience for this study are readers dealing with bauxite residue 

and mine tailings restoration and bioremediation microbiologists.30 
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Abstract 

Bauxite residue is the alkaline by-product generated when alumina is extracted from 

bauxite ores and is commonly deposited in impoundments. These sites represent 

hostile environments with increased salinity and alkalinity and little prospect of re-50 

vegetation when left untreated. This study reports the establishment of bacterial 

communities in bauxite residues with and without restoration amendments (compost 

and gypsum addition, re-vegetation) in samples taken in 2009 and 2011 from 0-10 cm 

depth. DNA fingerprint analysis of bacterial communities based on 16S rRNA gene 

fragments revealed a significant separation of the untreated site and the amended sites 55 

in both sampling years. 16S amplicon analysis (454 FLX pyrosequencing) revealed 

significantly lower alpha diversities in the un-amended in comparison to the amended 

sites and hierarchical clustering separated the un-amended site from the amended site. 

The taxonomic analysis revealed that the restoration resulted in the accumulation of 

bacterial populations typical for soils including Acidobacteriaceae, 60 

Nitrosomonadaceae, and Caulobacteraceae. In contrast, the un-amended site was 

dominated by taxonomic groups including Beijerinckiaceae, Xanthomonadacae, 

Acetobacteraceae and Chitinophagaceae, repeatedly associated with alkaline salt 

lakes and sediments. While bacterial communities developed in the initially sterile 

bauxite residue, only the restoration treatments created diverse soil-like bacterial 65 

communities alongside diverse vegetation on the surface.  
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1. Introduction 

Globally, mineral and ore processing residues (tailings) can occupy significant areas 

of land. Tailings can exhibit properties such as toxic levels of heavy metals, pH 70 

extremes, high electrical conductivity, lack of nutrients and poor structure and are 

often devoid of vegetation [1, 2]. In the aluminium industry, an alkaline by-product 

called bauxite residue is generated when alumina is extracted from bauxite ores. Its 

production is estimated at about 120 mega tonnes (Mt) per annum [3] and these 

residues are commonly deposited in nearby engineered impoundments. These sites 75 

represent hostile environments with increased salinity and alkalinity and little 

prospect of re-vegetation when left untreated. These bare areas are susceptible to wind 

and water erosion and can be a potential source of contamination to surrounding 

environments [1]. 

Placement of non-polluted materials as a ‘soil’ cover for tailings may reduce 80 

environmental hazards, but can be expensive and impractical due to the large areas 

that tailings sites can occupy and is generally recommended for tailings with extreme 

properties e.g. acidic and high metal concentrations [2]. Generally, less extreme 

tailings, can be ameliorated and support vegetative growth [4, 5]. This re-vegetation 

can stabilize tailings’ surface and is often considered a suitable technique for 85 

achieving long term reclamation [2, 6]. Consequently, methodologies for ameliorating 

tailings and residues to promote vegetation establishment has received considerable 

attention [1, 2, 4]. 

Judging re-vegetation success has been largely based on visually distinguishable 

aboveground indicators and soil physico-chemical properties while microbial 90 

biomarkers have been mostly overlooked [7].  More recently, attention increasingly 

focuses on soil development within these habitats and the role of soil biota. 
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Microorganisms play crucial roles in soil formation, energy transfer, nutrient 

mobilization and cycling, vegetative reestablishment and long-term ecosystem 

stability [8] and a number of mine tailings studies have emphasized a strong 95 

association between the establishment of a stable plant community and the abundance 

and composition of soil microbiota [6]. A robust assessment of the sustainability of 

vegetative covers in restoration scenarios therefore requires information on the 

microbial community and its activity [9].  

Traditionally, soil microbiota activity has been studied by substrate respiration [10] or 100 

enzyme activity [11, 12]. Microbial diversity has been often investigated via specific 

substrate utilization, usually via cultivation steps [13] which are time-consuming [14] 

and provide an incomplete assessment as only cultivable organisms (estimated to 

account for ~1% ) are detected [15]. Recently, biochemical and molecular analytical 

tools have emerged to characterise soil microbial communities. These include 105 

phospholipid fatty acid (PLFA) analysis [14], community level physiological profiling 

(CLPP) [16] and nucleic acid based techniques, such as polymerase chain reaction 

(PCR) amplification combined with fingerprinting methods [17]. Microbial 

communities in restored and recovering natural soils have been characterised using 

PCR based techniques such as the denaturing gradient gel electrophoresis (DGGE), 110 

investigating sulphidic tailings [18], cloning and sequencing of 16S rRNA gene 

fragments in lead-zinc and copper tailings [19, 20], automated ribosomal intergenic 

spacer analysis [ARISA] on bauxite mining restoration sites [21], and microarray 

technology in coal spoil heaps [22]. However, second generation sequencing of sites 

with bauxite residues or mining waste has not been reported until now despite the 115 

advantages of these new high-throughput sequencing tools e.g. pyrosequencing [23]. 
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Establishing sustainable vegetation covers on bauxite residues are a significant 

challenge to alumina producers [4] and vegetation establishment is inhibited by the 

high pH and exchangeable sodium percentage (ESP) typical of un-amended residues. 

Although successful re-vegetation of these residues has been reported [1], knowledge 120 

of their microbial successional development and community structure is scarce [24].  

In a recent review, Gräfe and Klauber [3] highlighted the knowledge gap with respect 

to microbial populations capable of establishing on alkaline bauxite processing 

residues.   

The objective of this study was to investigate the bacterial communities of two 125 

restored bauxite residue sites in comparison to an un-amended site in order to find out 

a) if residue restoration and re-vegetation resulted into a sustainable below ground 

bacterial community structure similar to semi-natural soils and b) to identify potential 

bacterial restoration indicators absent in non-restored sites, using up to date molecular 

tools including pyrosequencing. 130 
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2. Materials and methods 

2.1 Sampling site  

Sampling took place at the Aughinish Alumina Ltd. bauxite residue disposal area 135 

(BRDA) in Co. Limerick, southwest Ireland. Here, a series of re-vegetation trials have 

been conducted to investigate closure techniques. An area of the BRDA where 

residues were deposited in 1993 was chosen for the current study. Three treatments 

were investigated. At site J, re-vegetation took place in 1997 with 120 t ha-1 compost 

and 45 tonnes ha-1 gypsum amendment. Site R was re-vegetated in 1999 with 120 t ha-140 

1 compost and 90 tonnes ha-1 gypsum amendment, while site M with bare residue was 

not amended with gypsum and compost and not seeded. During the refining process 

the residues are separated into a fine fraction (mud) and coarse fraction (sand) which 

are disposed of separately.  Amendment procedures involved incorporating the coarse 

fraction residue sand (25% w/w) back into the top 20 cm of the residue mud. This was 145 

followed with the gypsum and organic amendment. Following a weathering period of 

three months to sufficiently lower pH and ESP, treatments were seeded with a mixture 

of Lolium perenne, Festuca rubra, Agrostis stolonifera, Holcus lanatus, Trifolium 

repens and Trifolium pratense at 80 kg ha-1. Sites have been unmanaged since re-

vegetation. The pH, electrical conductivity (Ec), available cations sodium, calcium, 150 

potassium and magnesium, exchangeable sodium percentage (ESP), available 

phosphorus (Olsen P), total organic carbon and nitrogen content of the samples taken 

in 2011 from 0-10 cm were measured in triplicate (sites J, R, M) using methods as 

described recently by Courtney and colleagues [4]. 

 155 
2.2 DNA extraction and amplification 

Samples taken in triplicate in 2009 and 2011 from all three sites from 0-10 cm depth 

were subjected to DNA extraction and amplification. Each sample was a mixture of 
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sieved (4 mm) residue collected from five random locations within the radius of 1 m 

for each sampling site Samples were brought to the lab on the same day and cooled 160 

immediately.  

DNA extraction was carried out using the Ultra Clean Soil DNA extraction kit from 

MoBio (Carlsbad, CA) according to the manufacturer. Obtained DNA was quantified 

using a Nano Drop ND-1000 (Thermo Scientific, Waltham, MA). DNA from the J 

and R site was subsequently diluted 5 times to obtain DNA concentrations of 1-10 165 

ng/µl while the same DNA concentrations were obtained from the M site without 

further dilution. 

All PCRs were conducted in a G-Storm GS2 thermo-cycler (Somerset, UK) with 

primers obtained from Metabion (Munich, Germany). DNA was amplified via PCR 

for Denaturing Gradient Gel Electrophoresis analysis using established protocols with 170 

0.5 U of Dreamtaq polymerase, 1 x buffer with 2 mM Mg, 0.2mM dNTP each (all 

Fermentas, Germany) and 0.4µM primer each in a total volume of 25 µl. Primers for 

DGGE analysis were GC-341F and 518R (Muyzer et al., 1993), and a touchdown 

PCR protocol was employed with the following cycle conditions: 20 cycles 94°C 

denaturation (45s), 60-50°C (45s) annealing, 72°C extension (45s) and subsequent 18 175 

cycles as above with an annealing temperature of 50°C.  

For 454 FLX pyrosequencing, a nested PCR approach was employed using the 

universal primers V4F (5’AYTGGGYDTAAAGNG3’) and V5R 

(CCGTCAATTYYTTTRAGTTT3’) in the first PCR reaction with 0.5U of Robust 

Taq, 1x PCR buffer with 1.5 mM Mg, 0.2 mM dNTPs each (all Kappa Enzymes, 180 

Woburn, MA ), 0.4 µM primer each in a volume of 25 µl. The PCR conditions were 

as follows: 25 cycles of 94°C (45s) denaturing, 55°C annealing (45s) and 72°C 

extension (60s). The resulting PCR product was diluted 10 times in ultrapure sterile 
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water and used as template DNA for the nested PCR with tagged LibL primers using 

the same PCR conditions for 18 cycles. The primers incorporated a proprietary 19-185 

mer sequence (GCCTGCCAGCCCGCTCAG) at the 5′ end to allow emulsion-based 

clonal amplification for the 454 pyrosequencing system. Unique molecular identifier 

(MID) tags were incorporated between the adaptamer and the target-specific primer 

sequence (i.e. as for V4F and V5R), to allow identification of individual sequences 

from pooled amplicons. After purification with the Agencourt AMPure PCR 190 

purification system (Beckman Coulter, Indianapolis IN), the quantity of DNA 

extracted was assessed using the Quant-It Picogreen dsDNA reagent (Invitrogen, 

Carlsbad, CA) in accordance with the manufacturer's instructions and a Nanodrop 

3300 fluorospectrometer (Thermo Scientific). Amplicons were subsequently 

sequenced on a 454 Genome Sequencer FLX platform (Roche Diagnostics Ltd, 195 

Burgess Hill, UK) in line with 454 protocols at the Teagasc sequencing centre.  

 

2.3 Quantitative amplification 

Quantitative PCR was conducted to quantify the number of 16S rRNA gene copies 

per sample as described previously [25] with the primer pair 341F and 518R. Specific 200 

quantification of the Acidobacteriaceae was conducted with the primers Acid31 ([26] 

5’GATCCTGGCTCAGAATC) and 357R (reverse complement of 341F). PCRs were 

conducted with a 2x DyNAmo SYBR green master mix (Fermentas), 0.3 pmol primer 

each and 1 µl of DNA template in 10 µl reactions in a qPCR microtiter plate (Sarstedt, 

Nuembrecht, Germany) using a Lightcycler 2 480 (Roche). PCR conditions and the 205 

application of standards were as described previously [25] with 40 cycles of 95°C 

denaturing, 55°C annealing and 72°C extension temperatures and copy numbers 

ranging from 102 to 108 per reaction. 
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2.4 Gel electrophoresis 210 

Denaturing gradient gel electrophoresis (DGGE) was carried out on 200 x 200 x 1 

mm gels with a denaturant gradient of 35–65% using urea and formamide as 

denaturing agents with 10% 37.5:1 acrylamide, bis-acrylamide (Biorad, Hercules, 

CA) in 1 times TAE buffer in a Scie-Plas TV200 DGGE apparatus (Cambridge, UK). 

Electrophoresis was carried out for 16 h at 63 V and 60°C. Gels were stained with 215 

SybrGold (Invitrogen, Carlsbad, CA) for 30 minutes. 

 

2.5 Data analysis 

DGGE gels were digitalised and band patterns analysed with the software package 

Phoretix 1D (Nonlinear Dynamics, Newcastle, UK). Obtained band pattern matrixes 220 

were exported for detrended correspondence analysis (DCA) and permutation tests 

(Monte-Carlo with 9999 repeats) as described previously [27]. Correlations with the 

physico-chemical (environmental) data were tested using a canonical correspondence 

analysis (CCA) and verified using a permutation test approach. A one-way ANOVA 

(using the Tukey post hoc test) was carried out to test variances in the physico-225 

chemical data. 

 

Sequence reads from the 454 FLX pyrosequencer were first analysed using the Qiime 

pipeline [28]. Briefly, operational taxonomical units were clustered with a similarity 

cut off at 97% and diversity analysis was calculated, resulting in alpha and beta 230 

diversity analysis based on sequences that exceeded 54,000 reads in total. A 

phylogenetic tree, for calculation of Unifrac distances, was generated using the 

FastTree program [29]. Taxonomic analysis of sequences was implemented with a 
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combination of BLAST [30] against the 16S-specific SILVA database (version 100) 

and MEGAN 4 [31] with a bit-score cut-off of 86. Sequences of selected families 235 

were exported into Mega 5 [32] for alignment and import of related sequences using 

the BLAST tool. Re-aligned sequences were used for maximum likelihood tree 

generation (Jukes-Cantor). 

Quantitative PCR data were subjected to a univariate analysis of variance using SPSS 

(IBM, Armonk, NY) in order to test differences in sequence abundance as described 240 

previously [25]. 

Alpha diversity in the form of Shannon diversities and Chao1 index were subjected to 

comparative analysis using a non-paired T test (equal variances not assumed). 

Differences in abundances of sequences were tested (SPSS) for selected phylogenetic 

groups (family and phylum level) via i) a one-way ANOVA (using the Tukey post 245 

hoc test) to differentiate between sampling sites and ii) univariate analysis of variance 

(using the Tukey post hoc test) to differentiate between sampling sites and sampling 

years. Next generation sequences were deposited in the ENA sequence read archive 

(ERP002349). 

250 
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3. Results 

3.1 DNA fingerprinting 

The visual inspection of the DNA fingerprints allowed separation of the profiles 

according to the sampling site with the naked eye. The number of detectable bands 255 

from M site profiles was in the range of 40 while approximately 50 bands were 

detectable in profiles from the R and J site (Supporting Fig. S1). Detrended 

Correspondence Analysis (DCA) of the DNA fingerprints from samples taken in 2009 

and 2011 identified clear separations of the microbial communities in the un-amended 

and the amended sites and identified differences between the two amended types (Fig. 260 

1a, b). Monte-Carlo permutation tests revealed that in 2009 and 2011, the bacterial 

communities in the M site were significantly different from the R and J site (P<0.04). 

While in 2009 the J and R site communities were significantly different (P<0.04) this 

was not the case in 2011 (P=0.09). 

 265 

3.2 Alpha and beta diversity 

The 454 pyrosequencing of 16S amplicons allowed the estimation of  alpha and beta 

diversities of the M, J and R sites from 2009 and 2011 using Qiime [28]. The 

determined alpha diversity of the un-amended site was estimated to be in the region of 

447 to 492 (Chao1) and 6.42 to 6.43 (Shannon) while the alpha diversity of the R and 270 

J series varied from 1116 to 1836 (Chao1) and 7.94 to 8.46 (Shannon) (Supporting 

Table 1). The Shannon diversity and Chao1 index of the un-amended site was 

significantly lower when compared to the restored sites (P<0.01). Furthermore, the 

Shannon diversity and Chao 1 index in the restored site dropped significantly in 2011 

when compared to 2009 (P<0.01). Principal coordinate analysis (PCoA, unweighted 275 
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Unifrac distance matrix) (Fig. 2) separated the M site from the amended treatments (J, 

R) very clearly. However, the separation between the 2 amendment types was less 

pronounced than the separation by sampling year (2009 and 2011). Nevertheless, a 

clear separation of the M site by sampling year (2009 and 2011) was observed. 

 280 

3.3 Surface properties of bauxite residues 

Physico-chemical analysis of samples taken in 2011 confirmed significantly lower 

pH, Ec, ESP (P<0.05) in the restored bauxite residue sites, as published previously 

[4]. Furthermore, significant increases in organic carbon, magnesium and nitrogen 

(P<0.05) were revealed in the restored sites (Table 1). Canonical correspondence 285 

analysis (CCA) and permutation tests uncovered that DGGE fingerprints were 

significantly affected (P<0.05) by all environmental factors measured other than 

potassium and phosphorus (Supporting Fig. S2). 

 

3.4 Taxonomic analysis 290 

Taxonomic analysis revealed that remediation resulted in the accumulation of 

bacterial populations typical for soils in the J and R sites that include high numbers of 

Verrucomicrobia, Acidobacteria and Proteobacteria (Fig. 3). While Proteobacteria and 

Verrucomicrobia were also abundant in the un-amended site, several other taxonomic 

groups dominated the M site too, such as the Planctomycetes (2009 only), 295 

Bacteriodetes and Actinobacteria. The lowest abundances of Acidobacteria were 

recorded in the M site in both sampling years (below 5%) (Fig. 3).  

At the family level, significantly increased proportions of Chitinophagaceae, 

Beijerinckiaceae, Xanthomonadaceae and Acetobacteraceae were identified across 

the M site (P<0.05, Table 2). Significantly increased proportions of the candidate 300 
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group BRC1 (P<0.05, Table 2) were also observed. After the creation of phylogenetic 

trees of these individual family groups (data not shown), representative sequences 

from major clades were chosen for BLAST analysis. Closer inspection of the closest 

related sequences were found to be A) Chitinophagaceae sequences from alkaline and 

saline lakes such as Mono lake, California and Kulunda Steppe lakes, Siberia (e.g. 305 

AF449772, EF622438, [33]; B) Beijerinckiaceae sequences from Lonar soda lake, 

India (e.g. JQ480103) and alkaline, hypersaline lakes of the Wadi An Natrun, Egypt 

(e.g. DQ432346, [34]); C) Xanthomonadaceae sequences from alkaline, saline soil 

(e.g. JQ427801), alkaline ikaite columns, Greenland (DQ028387, [35]; D) 

Acetobacteraceae sequences from polluted Manzala Lakes, Egypt (AB355047, [36]); 310 

E) BRC1 sequences from the alkaline lake Alchichica, Mexico (JN825632, [37]) and 

Guerrero Negro hypersaline microbial mat, Mexico (JN512713, [38]). In contrast, 

sequences identified in higher percentages in the J and R sites only were associated 

with the families of the Nocardioidaceae, Acidobacteriaceae, Nitrosomonadaceae, 

Caulobacteraceae, Anaeroplasmataceae and on the phylum level the candidate group 315 

of WS3 (Table 2). These increases were significant for the Acidobacteriaceae, the 

proteobacteria Nitrosomonadaceae and Caulobacteraceae and the candidate phylum 

WS3 (P<0.05). Furthermore, significant increases in the Nocardioidaceae (J and R, 

P<0.05) and the Anaeroplasmataceae (R only, P<0.05) were identified in the restored 

sites in 2011 (Table 2). Many of the representative sequences from major clades 320 

(taken from calculated trees, data not shown) were associated with sequences isolated 

from A) cropland soils (e.g. EF651169, cotton, Australia), B) grassland (e.g. 

EU134658, tallgrass prairie, USA), C) crop (e.g. AM157250, maize, France) and D) 

tree rhizospheres (e.g. EF018650, aspen, USA). Interestingly, many of the sequences 

obtained from the Anaeroplasmataceae family in this study from the J and R site were 325 
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closely associated with sequences found in fungal endophytic bacteria (e.g. 

JN791233, Italy, AMF-colonized thalli of liverworts). High abundances of 

Acidobacteriaceae sequences were found in the J and R site, exceeding 20% of the 

total amount of assigned sequences. 

 330 

3.5 Quantitative PCR 

A quantitative PCR approach was used to verify the high numbers of 

Acidobacteriaceae in the J and R site when compared to the M site and a grassland 

reference soil. For the J and R site and the representative grassland site (unmanaged 

grassland, Woburn experimental farm, UK) 15-24, 17-24 and 18-28% of the total 16S 335 

rRNA gene copy numbers could be attributed to the Acidobacteriaceae, respectively 

(Table 3) which were all significantly higher (P<0.05) than the abundance of 

sequences associated to the Acidobacteriaceae from the M site (0.6-2.8%). 
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4. Discussion 340 

The analysis of the microbiota in restored or untreated bauxite residue has been 

sparsely investigated [1] even though sustained plant growth is largely dependent on 

microbes recycling and mobilizing soil macro-nutrients [39-42]. The use of 

microbiota as an indicator for successful restoration efforts has recently become of 

interest as the presence or absence of certain microbes could provide insight into the 345 

advancements of restoration efforts [43, 44]. This study investigated the restoration 

(bioremediation) progress of bauxite residues through the analysis of bacterial 

communities and compared it to a bare bauxite residue treatment. 

The analysis of the bacterial communities employing the PCR-DGGE technique 

revealed significant differences between the restored and bare sites in both sampling 350 

years and significant correlations between most environmental factors, including ESP, 

pH, total nitrogen and organic carbon content, and the fingerprints were detected. 

Earlier investigations of the bauxite residue site in 2005 and 2008 found similar 

diversities and maturity indices of plants and nematodes in the restored sites. 

However, the J site appeared to have a higher overall nematode diversity [4, 45]. 355 

Significant differences between the two restored sites were also detected in this study 

in 2009 but not in 2011. DCA biplots from bacterial communities in the M, J and R 

site in this study suggest that J may have moved towards the state of R in the 2009 to 

2011 period. Although site R was restored two years later than J, higher gypsum 

application rates were used at the R site. This may have resulted in improved physico-360 

chemical conditions [5, 46] thus accelerating the microbial activity further than in the 

J site. Indeed, calcium, magnesium and nitrogen content was significantly higher in 

the R site when compared to J, although pH and organic carbon were not (Table 1). 

The use of gypsum to reduce the alkalinity of bauxite residues to promote plant 
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growth and initiate restoration has been successfully used before [1, 5] but only rarely 365 

has microbiota been employed as an indicator or driver for restoration in remediated 

residues [24, 43]. Recently, microbes received higher attention in mine tailings, and 

soils and sediments polluted by mining operation [18, 19, 22, 47]. There, alkalinity 

can reduce or prevent microbial activity at pH levels of 10-12.  

The recent development in next generation sequencing including pyrosequencing is 370 

now often used to conduct in depth characterisation of microbial communities [48, 

49]. Alpha diversity analysis in this study showed that the Shannon diversity and 

Chao 1 index from sites R and J had values similar to a large selection of German 

soils [50], thus suggesting the presence of an alpha diversity in the restored sites 

similar to soils. A significant decrease of the Shannon diversity and Chao1 index in 375 

the restored sites in 2011 was detected when compared to 2009 (Supporting Table 1). 

This could be explained by an increased dominance of bacterial groups typically 

found in soils [51] at the expense of earlier residue colonisers. 

The beta diversity analyses clearly separated samples from the M site and the restored 

sites and between the two sampling dates in the case of the M site. However, 380 

separation of the R and J site was less pronounced than the effect of the sampling year 

(Fig. 2). Fingerprinting methods such as DGGE have been used successfully for 

nearly two decades to study microbial diversities [52, 53] but these methods have 

their limitations by displaying a finite number of different bands (different types of 

bacteria), usually less than 100 [17, 54]. Despite these limitations, analysis of the 385 

obtained DGGE profiles in this study revealed results strikingly similar to the beta 

diversity calculated on the basis of the pyrosequencing results. This congruence of 

beta level diversity from pyrosequencing and fingerprinting results was also observed 

recently in mangrove micro-sites [55]. These findings demonstrate that PCR-DGGE is 
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still a justifiable, economical preferred method of choice for basic comparative 390 

community analysis when sequence information is not initially required.  

The identification of the major bacterial phyla present in the three sites in 2009 and 

2011 clearly showcased the dramatic change achieved through the restoration efforts 

(Fig. 1-3). A detailed analysis of bacterial families representing at least 1% of the 

overall bacterial sequences in one of the 6 sample types revealed that some families 395 

were significantly higher in abundance in the M sites or in the J and R site or were 

most abundant in J and R in 2011 (Table 2). Chitinophagaceae, Beijerinckiaceae, 

Xanthomonadaceae, Acetobacteraceae and members of the candidate division BRC1 

sequences were only found in abundance in the M site and in the past have been 

closely associated with alkaline lakes, hypersaline mats and other environments of 400 

high salinity, high pH and often low carbon content [33-35, 37, 38]. These findings 

imply that over the years the initial sterile bauxite residue with a pH of around 12.5 

[4] was colonised by bacteria normally dominating aquatic environments with similar 

chemical characteristics. Indeed, the non-restored bauxite residue had a high clay and 

silt content with a low porosity and was prone to water logging, thus resembling 405 

sediments more than soils. Low levels of organic carbon and nitrogen in this 

environment may be responsible for the significantly higher abundance of the 

Chitinophagaceae, that include chitinolytic bacteria, and the Beijerinckiaceae, with its 

nitrogen fixing members, The lack of input of organic carbon and pH neutralization 

prevented the succession of the M site towards a soil like habitat. Nevertheless, 410 

organic acid producing Acetobacteraceae were significantly more abundant in the 

non-restored site, suggesting that modest pH reductions over the years in this site to 

pH 10 may have been accomplished in part through bacterial activity. Restoration 

efforts in the J and R site transformed the sites [1, 4] and their bacterial communities 
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that resembled semi-natural soil environments. Detailed analysis of bacterial families 415 

most abundant in the J and R site were found to be closest related to sequences found 

largely in soils and rhizospheres of grassland plants and crops.  

As noted above, the decrease of the alpha diversity in 2011 may be in part traced back 

to the emergence and higher abundance of key bacterial groups important in soils. 

More specifically, for instance, the amount of Acidobacteriaceae that make up a large 420 

part of the Acidobacteria in the J and R site exceeded 20% and was highest in 2011 in 

the R site. These findings were in accord with the quantitative PCR results obtained 

for the Acidobacteriaceae in the M, J and R site from 2011 that showed highest 

abundances in the R site and significantly higher abundances when compared to the M 

site (Table 3). The abundance of Acidobacteria in soils is correlated with soil pH [56]. 425 

Lauber and colleagues found that while Acidobacteria in soils with a pH of five and 

lower could make up more than half of all soil bacteria, Acidobacteria in soils with a 

pH of seven to eight may represent 20% of the total bacteria [57]. The results from 

this study were in accordance with the findings of Lauber and colleagues as pH levels 

of the R and J site were in the range of pH eight and the abundance of the 430 

Acidobacteria in R and J was in the range of 20%.  

Nitrosomonadaceae were significantly more abundant in the restored sites suggesting 

that nitrification may be an important process in these sites. The significant higher 

abundance of Caulobacteraceae in the restored sites is in accord with the chemical 

analysis of the sites as members of this family have a reportedly low tolerance to salts 435 

[58]. Anaeroplasmataceae of the phylum Tenericutes showed higher abundances in 

2011 in the J and R sites with highest numbers found in the R site in 2011 (significant, 

P<0.05, Table 2). A closer inspection of the sequences attributed to this family 

identified sequences closely related to endobacteria from arbuscular mycorrhizal fungi 
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(AMF; FJ984707 and others, [59];  FJ984707, [60]). The likelihood of increased 440 

AMF colonization in 2011 suggest that, in accordance with the other findings, both 

restored sites have developed into soil-like sites similar to a semi-natural soil with 

AMF activity, promoting plant growth [61] and thus completing the restoration 

development.  

While previous investigations into the sites from this study have found evidence of 445 

successful restoration including plant cover and nematode diversity in 2005 and 2008, 

respectively, this study on the bacterial diversity revealed that between 2009 and 2011 

both restored sites were still developing, becoming more like semi-natural soils 

exemplified by the most recent increased abundance of Acidobacteriaceae and 

Anaeroplasmataceae. While this study cannot precisely predict further developments 450 

in the restored bauxite residue sites, the provided evidence indicates that in 2011 site J 

and in particular site R were in a state that could be regarded equivalent to a semi-

natural soil. The omission of restoration treatment as exemplified in site M 

demonstrated that although bacterial colonization took place, there was no detectable 

trend of the M site towards becoming a semi-natural, soil-like environment anytime 455 

soon.  

Since no DNA samples prior to 2009 exist for this site, this study cannot reveal earlier 

microbiota states. In order to determine if restoration efforts could result in outcomes 

similar to the R site in 2011 but within a shorter period of time, new long-term (<10 

years) studies would be necessary.  460 

This project provided insight into the development of the bacterial community in 

restored and un-amended bauxite residue. While the application of soil microbes has 

been used in the past to improve bio-remediation of bauxite residue [1, 24], very little 

is known about bacterial communities in non-amended and restored bauxite residue 
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and this study is the first of its kind to provide in depth bacterial diversity analysis 465 

employing pyrosequencing. These and complementing data obtained from community 

fingerprinting and quantitative PCR detailed a picture of a successful restoration after 

a 12 year period with the use of gypsum and compost leading to a bacterial 

community rich in Acidobacteria and other typical soil bacteria including AMF 

endosymbionts. These bacterial groups may serve as indicator organisms for future 470 

restorations of bauxite residues and other mine processing wastes or tailings. 

 

5. Acknowledgements 

We would like to acknowledge Aughinish Alumina Ltd.  and FP7 PEOPLE 2011 CIG 

no. 293429 for co-funding this project, Steve McGrath for access to grassland soils 475 

from Woburn Experimental Farm, Douglas McIntosh for his involvement in the DNA 

extraction from the 2009 samples and John Breen for access to Canoco. 

 

Supporting Information Available 

Supporting information is provided in form of a supporting table with information 480 

about the alpha diversity indices, calculated. Two supporting figures are provided 

showing the DGGE fingerprints and the CCA of the environmental data with the 

DGGE fingerprints from the 2011 sampling. This information is available free of 

charge via the Internet at http://pubs.acs.org/. 

 485 



22 
 

 

References 
1. Jones, B. E. H.; Haynes, R. J., Bauxite processing residue: A critical review of 
its formation, properties, storage, and revegetation. Crit. Rev. Env. Sci. Tec. 2011, 41, 
(3), 271-315. 490 
2. Tordoff, G. M.; Baker, A. J. M.; Willis, A. J., Current approaches to the 
revegetation and reclamation of metalliferous mine wastes. Chemosphere 2000, 41, 
(1-2), 219-228. 
3. Graefe, M.; Klauber, C., Bauxite residue issues: IV. Old obstacles and new 
pathways for in situ residue bioremediation. Hydrometallurgy 2011, 108, (1-2), 46-59. 495 
4. Courtney, R.; Mullen, G.; Harrington, T., An evaluation of revegetation 
success on bauxite residue. Restor. Ecol. 2009, 17, (3), 350-358. 
5. Wong, J. W. C.; Ho, G. E., Effects of gypsum and sewage sludge mendment 
on physical properties of fine bauxite refining residue. Soil Sci. 1991, 152, (5), 326-
332. 500 
6. Mendez, M. O.; Maier, R. M., Phytostabilization of mine tailings in arid and 
semiarid environments - An emerging remediation technology. Environ. Health 
Persp. 2008, 116, (3), 278-283. 
7. Mummey, D. L.; Stahl, P. D.; Buyer, J. S., Microbial biomarkers as an 
indicator of ecosystem recovery following surface mine reclamation. Appl. Soil Ecol. 505 
2002, 21, (3), 251-259. 
8. Paul, E. A., Soil microbiology, ecology and biochemistry. 3 ed.; Academic 
Press, Elsevier: Amsterdam, 2007. 
9. Baker, L. R.; White, P. M.; Pierzynski, G. M., Changes in microbial properties 
after manure, lime, and bentonite application to a heavy metal-contaminated mine 510 
waste. Appl. Soil Ecol. 2011, 48, (1), 1-10. 
10. Anderson, J. P. E.; Domsch, K. H., A physiological method for the 
quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 1978, 10, 
(3), 215-221. 
11. Tabatabai, M. A.; Bremner, J. M., Use of p-nitrophenyl phosphate for assay of 515 
soil phosphatase activity. Soil Biol. Biochem. 1969, 1, (4), 301-307. 
12. Tabatabai, M. A.; Bremner, J. M., Arylsulfatase activity of soils. Proc. Soil 
Sci. Soc. Amer. 1970, 34, (2), 225-229. 
13. Mills, A. L.; Wassel, R. A., Aspects of diversity measurement for microbial 
communities. Appl. Environ. Microbiol. 1980, 40, (3), 578-586. 520 
14. Frostegard, A.; Baath, E., The use of phospholipid fatty acid analysis to 
estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 1996, 22, (1-2), 59-65. 
15. Amann, R. I.; Ludwig, W.; Schleifer, K. H., Phylogenetic identification and in 
situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 
59, (1), 143-69. 525 
16. Garland, J. L., Analysis and interpretation of community-level physiological 
profiles in microbial ecology. FEMS Microbiol. Ecol. 1997, 24, (4), 289-300. 
17. Muyzer, G.; Smalla, K., Application of denaturing gradient gel electrophoresis 
(DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. 
Anton. Leeuw. Int. J. G. 1998, 73, (1), 127-141. 530 
18. Wakelin, S. A.; Anand, R. R.; Reith, F.; Gregg, A. L.; Noble, R. R. P.; 
Goldfarb, K. C.; Andersen, G. L.; DeSantis, T. Z.; Piceno, Y. M.; Brodie, E. L., 
Bacterial communities associated with a mineral weathering profile at a sulphidic 



23 
 

mine tailings dump in arid Western Australia. FEMS Microbiol. Ecol. 2012, 79, (2), 
298-311. 535 
19. Pepper, I. L.; Zerzghi, H. G.; Bengson, S. A.; Iker, B. C.; Banerjee, M. J.; 
Brooks, J. P., Bacterial populations within copper mine tailings: long-term effects of 
amendment with Class A biosolids. J. Appl. Microbiol. 2012, 113, (3), 569-577. 
20. Zhang, H.-B.; Yang, M.-X.; Shi, W.; Zheng, Y.; Sha, T.; Zhao, Z.-W., 
Bacterial diversity in mine tailings compared by cultivation and cultivation-540 
independent methods and their resistance to lead and cadmium. Microbial Ecol. 2007, 
54, (4), 705-712. 
21. Banning, N. C.; Gleeson, D. B.; Grigg, A. H.; Grant, C. D.; Andersen, G. L.; 
Brodie, E. L.; Murphy, D. V., Soil microbial community successional patterns during 
forest ecosystem restoration. Appl. Environ. Microbiol. 2011, 77, (17), 6158-6164. 545 
22. Urbanová, M.; Kopecký, J.; Valášková, V.; Ságová-Marečková, M.; 
Elhottová, D.; Kyselková, M.; Moënne-Loccoz, Y.; Baldrian, P., Development of 
bacterial community during spontaneous succession on spoil heaps after brown coal 
mining. FEMS Microbiol. Ecol. 2011, 78, (1), 59-69. 
23. Roesch, L. F.; Fulthorpe, R. R.; Riva, A.; Casella, G.; Hadwin, A. K. M.; 550 
Kent, A. D.; Daroub, S. H.; Camargo, F. A. O.; Farmerie, W. G.; Triplett, E. W., 
Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 2007, 1, 
(4), 283-290. 
24. Banning, N. C.; Phillips, I. R.; Jones, D. L.; Murphy, D. V., Development of 
microbial diversity and functional potential in bauxite residue sand under 555 
rehabilitation. Restor. Ecol. 2011, 19, 78-87. 
25. Schmalenberger, A.; Hodge, S.; Bryant, A.; Hawkesford, M. J.; Singh, B. K.; 
Kertesz, M. A., The role of Variovorax and other Comamonadaceae in sulfur 
transformations by microbial wheat rhizosphere communities exposed to different 
sulfur fertilization regimes. Environ. Microbiol. 2008, 10, (6), 1486-1500. 560 
26. Barns, S. M.; Takala, S. L.; Kuske, C. R., Wide distribution and diversity of 
members of the bacterial kingdom Acidobacterium in the environment. Appl. Environ. 
Microbiol. 1999, 65, (4), 1731-1737. 
27. Schmalenberger, A.; Telford, A.; Kertesz, M. A., Sulfate treatment affects 
desulfonating bacterial community structures in Agrostis rhizospheres as revealed by 565 
functional gene analysis based on asfA. Eur. J. Soil Biol. 2010, 46, (3), 248-254. 
28. Caporaso, J. G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F. D.; 
Costello, E. K.; Fierer, N.; Pena, A. G.; Goodrich, J. K.; Gordon, J. I.; Huttley, G. A.; 
Kelley, S. T.; Knights, D.; Koenig, J. E.; Ley, R. E.; Lozupone, C. A.; McDonald, D.; 
Muegge, B. D.; Pirrung, M.; Reeder, J.; Sevinsky, J. R.; Turnbaugh, P. J.; Walters, W. 570 
A.; Widmann, J.; Yatsunenko, T.; Zaneveld, J.; Knight, R., QIIME allows analysis of 
high-throughput community sequencing data. Nat. Meth. 2010, 7, (5), 335-336. 
29. Price, M. N.; Dehal, P. S.; Arkin, A. P., FastTree: Computing large Minimum 
Evolution trees with profiles instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 
(7), 1641-1650. 575 
30. Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J., Basic local 
alignment search tool. J. Mol. Biol. 1990, 215, (3), 403-410. 
31. Huson, D. H.; Mitra, S.; Ruscheweyh, H.-J.; Weber, N.; Schuster, S. C., 
Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011, 
21, (9), 1552-1560. 580 
32. Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S., 
MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, 
Evolutionary Distance, and Maximum Parsimony methods. Mol. Biol. Evol. 2011. 



24 
 

33. Foti, M.; Sorokin, D.; Zacharova, E.; Pimenov, N.; Kuenen, J. G.; Muyzer, G., 
Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda 585 
Steppe (Altai, Russia). Extremophiles 2008, 12, (1), 133-145. 
34. Mesbah, N.; Abou-El-Ela, S.; Wiegel, J., Novel and unexpected prokaryotic 
diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An 
Natrun, Egypt. Microbial Ecol. 2007, 54, (4), 598-617. 
35. Schmidt, M.; Priemé, A.; Stougaard, P., Bacterial diversity in permanently 590 
cold and alkaline ikaite columns from Greenland. Extremophiles 2006, 10, (6), 551-
562. 
36. El Saied, H. E., Molecular genetic monitoring of bacterial communities in 
manzala lake, egypt, based on 16S rRNA gene analysis. Egyp. J. Aqua. Res. 2007, 33, 
(3), 179-194. 595 
37. Couradeau, E.; Benzerara, K.; Moreira, D.; Gerard, E.; Kazmierczak, J.; 
Tavera, R.; Lopez-Garcia, P., Prokaryotic and eukaryotic community structure in field 
and cultured microbialites from the alkaline lake Alchichica (Mexico). Plos One 
2011, 6, (12). 
38. Kirk Harris, J.; Gregory Caporaso, J.; Walker, J. J.; Spear, J. R.; Gold, N. J.; 600 
Robertson, C. E.; Hugenholtz, P.; Goodrich, J.; McDonald, D.; Knights, D.; Marshall, 
P.; Tufo, H.; Knight, R.; Pace, N. R., Phylogenetic stratigraphy in the Guerrero Negro 
hypersaline microbial mat. ISME J. 2013, 7, (1), 50-60. 
39. Kertesz, M. A.; Fellows, E.; Schmalenberger, A., Rhizobacteria and plant 
sulfur supply. Adv. Appl. Microbiology. 2007, 62, 235-268. 605 
40. Read, D. J.; Perez-Moreno, J., Mycorrhizas and nutrient cycling in ecosystems 
- A journey towards relevance? New Phytol. 2003, 157, (3), 475-492. 
41. Richardson, A. E., Prospects for using soil microorganisms to improve the 
acquisition of phosphorus by plants. Austral. J. Plant Physiol. 2001, 28, (9), 897-906. 
42. Steenhoudt, O.; Vanderleyden, J., Azospirillum, a free-living nitrogen-fixing 610 
bacterium closely associated with grasses: genetic, biochemical and ecological 
aspects. FEMS Microbiol. Rev. 2000, 24, (4), 487-506. 
43. Harris, J., Soil microbial communities and restoration ecology: Facilitators or 
followers? Science 2009, 325, (5940), 573-574. 
44. Lewis, D.; White, J.; Wafula, D.; Athar, R.; Dickerson, T.; Williams, H.; 615 
Chauhan, A., Soil functional diversity analysis of a bauxite-mined restoration 
chronosequence. Microbial Ecol. 2010, 59, (4), 710-723. 
45. Courtney, R.; Keith, A. M.; Harrington, T., Nematode assemblages in bauxite 
residue with different restoration histories. Restor. Ecol. 2011, 19, (6), 758-764. 
46. Jones, B. E. H.; Haynes, R. J.; Phillips, I. R., Influence of organic waste and 620 
residue mud additions on chemical, physical and microbial properties of bauxite 
residue sand. Environ. Sci. Pollut. R. 2011, 18, (2), 199-211. 
47. Zhang, W.-H.; Huang, Z.; He, L.-Y.; Sheng, X.-F., Assessment of bacterial 
communities and characterization of lead-resistant bacteria in the rhizosphere soils of 
metal-tolerant Chenopodium ambrosioides grown on lead–zinc mine tailings. 625 
Chemosphere 2012, 87, (10), 1171-1178. 
48. Liu, Z.; Lozupone, C.; Hamady, M.; Bushman, F. D.; Knight, R., Short 
pyrosequencing reads suffice for accurate microbial community analysis. Nucleic 
Acids Res. 2007, 35, (18). 
49. Ronaghi, M., Pyrosequencing sheds light on DNA sequencing. Genome Res. 630 
2001, 11, (1), 3-11. 
50. Nacke, H.; Thurmer, A.; Wollherr, A.; Will, C.; Hodac, L.; Herold, N.; 
Schoning, I.; Schrumpf, M.; Daniel, R., Pyrosequencing-based assessment of bacterial 



25 
 

community structure along different management types in German forest and 
grassland soils. Plos One 2011, 6, (2). 635 
51. Fierer, N.; Bradford, M. A.; Jackson, R. B., Toward an ecological 
classification of soil bacteria. Ecology 2007, 88, (6), 1354-1364. 
52. Muyzer, G.; Dewaal, E. C.; Uitterlinden, A. G., Profiling of complex 
microbial populations by denaturing gradient gel electrophoresis analysis of 
polymerase chain reaction - amplified genes coding for 16S ribosomal-RNA. Appl.  640 
Environ. Microbiol. 1993, 59, (3), 695-700. 
53. Nakatsu, C. H., Soil microbial community analysis using denaturing gradient 
gel electrophoresis. Soil Sci. Soc. Am. J. 2007, 71, (2), 562-571. 
54. Schmalenberger, A.; Tebbe, C. C.; Kertesz, M. A.; Drake, H. L.; Küsel, K., 
Two-dimensional single strand conformation polymorphism (SSCP) of 16S rRNA 645 
gene fragments reveals highly dissimilar bacterial communities in an acidic fen. Eur. 
J. Soil Biol. 2008, 44, (5-6), 495-500. 
55. Cleary, D. F. R.; Smalla, K.; Mendonca-Hagler, L. C. S.; Gomes, N. C. M., 
Assessment of variation in bacterial composition among microhabitats in a mangrove 
environment using DGGE fingerprints and barcoded pyrosequencing. Plos One 2012, 650 
7, (1). 
56. Jones, R. T.; Robeson, M. S.; Lauber, C. L.; Hamady, M.; Knight, R.; Fierer, 
N., A comprehensive survey of soil acidobacterial diversity using pyrosequencing and 
clone library analyses. ISME J. 2009, 3, (4), 442-453. 
57. Lauber, C. L.; Hamady, M.; Knight, R.; Fierer, N., Pyrosequencing-based 655 
assessment of soil pH as a predictor of soil bacterial community structure at the 
continental scale. Appl. Environ. Microbiol. 2009, 75, (15), 5111-5120. 
58. Garrity, G. M.; Bell , J. A., Class I. Alphaproteobacteria class. nov. In 
Bergey’s Manual of Systematic Bacteriology, Brenner, D. J.; Krieg, N. R.; Staley , J. 
T., Eds. Springer: NY, 2005; Vol. 2, part C. 660 
59. Desirò, A.; Naumann, M.; Epis, S.; Novero, M.; Bandi, C.; Genre, A.; 
Bonfante, P., Mollicutes-related endobacteria thrive inside liverwort-associated 
arbuscular mycorrhizal fungi. Environ. Microbiol. DOI: 10.1111/j.1462-
2920.2012.02833.x. 
60. Naumann, M.; Schusler, A.; Bonfante, P., The obligate endobacteria of 665 
arbuscular mycorrhizal fungi are ancient heritable components related to the 
Mollicutes. ISME J. 2010, 4, (7), 862-871. 
61. Johnson, N. C.; Graham, J. H.; Smith, F. A., Functioning of mycorrhizal 
associations along the mutualism-parasitism continuum. New Phytol. 1997, 135, (4), 
575-586. 670 
 
 



26 
 

Figures and tables 
 675 

 Figure legends 

 Figure 1 

 Figure 2 

 Figure 3 

 Table 1  680 

 Table 2  

 Table 3 

 Supporting information 



27 
 

 685 

Figure legends 

 
Figure 1 
Detrended Correspondence Analysis (DCA) of Denaturing Gradient Gel 
Electrophoresis (DGGE) matrices of bacterial 16S rRNA gene fragments from bauxite 690 
residue sites M (white box), J (grey box) and R (black box) sampled at Aughinish 
Aluminia, County Limerick, Ireland in a) 2009 and b) 2011. Error bars indicate 
standard deviation. 
 
Figure 2 695 
Principal Coordinate Analysis (PCoA) of bacterial community sequences based on 
16S rRNA gene amplicons from bauxite residue sites sampled in 2009 (black) and 
2011 (grey) from site M (circle), R (diamonds) and J (squares). PCoA was calculated 
using an unweighted Unifrac distance matrix and visualised with King. 
 700 
Figure 3 
Abundance of sequences allocated to major bacterial phyla after taxonomic analysis 
of 16S rRNA gene amplicons from bauxite residue sites M (black bars), J (dotted 
bars) and R (checked bars) from samples taken in a) 2009 and b) 2011. 
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Table 1 Physico-chemical properties (0-10 cm) from restored (J, R) and bare (M) bauxite 
residue sites 

    M +/- J +/- R +/- 

 
pH 10.32A 0.02 7.86B 0.22 7.73B 0.02 

mS cm-1 Ec 2.88A 0.88 0.26B 0.04 0.48B 0.07 

cmol kg-1 

Na 20.69A 5.41 1.06B 0.17 1.24B 0.10 

Mg 0.03A 0.00 0.52B 0.23 1.17C 0.22 

Ca 2.97A 0.18 9.34B 1.09 17.41C 3.23 

K 0.32A 0.10 0.4A 0.11 0.39A 0.10 

% 

ESP 78.85A 10.26 9.79B 1.89 6.52B 1.55 

org C 0.18A 0.00 2.52B 1.62 3.49B 1.44 

N 0.03A 0.00 0.24B 0.09 0.53C 0.05 
mg kg-1 Available P 2.83A 0.30 8.57B  0.89  9.93B 0.84 

Ec = electroconductivity; ESP = exchangeable sodium percentage; mS = milli Siemens; 
cmol = centimole 
ABC= Significantly different (P<0.05); +/- = standard deviation 
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Table 2: Relative abundance [%] of major bacterial phyla and families in  

   16S rRNA gene fragment amplicon library 
      

        Phylum Family M2009 M2011 J2009 J2011 R2009 R2011 
Actinobacteria Propionibacteriaceae 0.08 1.46 n.d. 0.06 n.d. 0.06 

 
Nocardioidaceae n.d. 0.16 0.12 1.25 0.10 1.44 

Armatimonadetes  
 

2.32 0.55 n.d. n.d. 0.28 0.16 
Bacteriodetes Chitinophagaceae 7.74 4.94 0.95 n.d. 1.04 0.13 

 
Rhodothermaceae 1.17 0.20 n.d. n.d. n.d. n.d. 

 
Cyclobacteriaceae 2.26 0.76 n.d. n.d. n.d. n.d. 

 
Cytophagaceae 1.41 0.13 1.19 0.19 1.27 0.29 

Chlorobia Chlorobiales 0.98 0.47 4.70 1.01 1.25 0.85 
Lentisphaerae 

 
0.45 13.33 0.37 n.d. n.d. 0.09 

Chlamydiae Unclass. Chlamydiales n.d. 0.16 0.51 0.16 1.28 0.27 
Verrucomicrobia Opitutaceae 4.60 2.20 2.54 1.29 1.86 1.05 

 
Methylacidophiliaceae n.d. 1.23 n.d. n.d. n.d. 0.09 

 
Verrucomicrobia sub div 3 0.73 2.20 1.36 0.48 1.22 0.89 

 
Verrucomicrobiaceae 0.93 1.00 1.42 0.49 0.80 0.68 

 
Spartobacteria (class) 1.19 3.75 5.29 6.65 3.82 4.22 

Chloroflexi Anaerolinae (class) 0.10 n.d. 1.09 1.47 1.59 2.38 
Fibrobacteres Fibrobacteraceae 0.26 0.74 1.72 0.34 1.48 0.95 
Acidobacteria Acidobacteriaceae 4.38 2.54 21.70 23.20 20.76 26.38 

 
Holophagae (class) n.d. n.d. 0.24 0.64 3.60 0.95 

Gemmatimonadetes Gemmatimonadaceae 2.04 1.24 2.96 2.27 3.35 3.14 
Planctomycetes Phycisphaeraceae 11.20 1.22 1.94 0.53 1.19 0.66 

 
Planctomycetaceae 1.07 0.70 1.09 2.40 1.53 2.05 

Proteobacteria Beijerinckiaceae 1.99 3.86 n.d. n.d. n.d. n.d. 
 Rhodospirillaceae 0.53 0.30 0.99 0.49 0.40 0.60 

 
Caulobacteraceae n.d. n.d. 1.28 0.86 1.25 1.26 

 
Acetobacteraceae 1.24 1.09 0.22 0.21 0.23 0.25 

 
Nitrosomonadaceae 0.61 0.45 3.07 2.63 2.95 3.19 

 
Xanthomonadaceae 4.77 2.17 0.24 0.07 n.d. 0.07 

 
Enterobacteriaceae n.d. 0.06 n.d. n.d. 2.28 0.17 

 
Halomonadaceae 1.35 n.d. n.d. 0.00 n.d. n.d. 

 
Coxiellaceae 0.61 2.40 0.86 0.80 1.68 0.72 

 Nitrospinaceae n.d. n.d. 0.36 0.76 1.01 0.68 
Tenericutes Acholeplasmataceae n.d. 2.15 n.d. 0.00 0.00 n.d. 

 
Anaeroplasmataceae n.d. n.d. 0.20 0.68 0.37 1.45 

BRC1 
 

1.22 2.84 0.43 0.09 0.37 0.27 
OD1 

 
2.58 4.00 4.05 1.03 4.50 1.85 

WS3 
 

n.d. n.d. 4.10 3.32 2.59 3.36 
n.d. = not detected 

       Highlighted numbers indicate significant differences (P<0.05) 
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 720 
Table 3: Quantitative PCR of bauxite residue sites in 
2011 
 (M, J, R) and a reference soil (S) 

Acidobacteriaceae Standard Univariate 
Bauxite  / 16S deviation  analysis 
residue 

site 
[% gene copy 

number] [+/-] [P=0.05] 

M 0.29 0.31 A 
J 13.55 3.98 B 
R 15.85 5.01 B 
S 15.11 7.98 B 
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