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Abstract

A process for rigorous inspection of concurrent systems using tabular specification

was developed and applied to the classic Readers/Writers concurrent program by Jin

in [15]. The process involved rewriting the program into a table and then performing

a manual “column-by-column” inspection for safety and clean completion properties.

The key element in the process is obtaining an invariant strong enough to prove

the properties of interest. This thesis presents partial automation of the proposed

approach by combining theorem proving and model checking. Model checking is first

used to validate a formal model of the system with a small, fixed number of concurrent

process instances. The verification of the system for an arbitrary number of processes

is then performed using theorem proving together with model checking on the earlier

model to quickly validate potential invariants before they are used in the formal

proof. This method was used to check the manual proof of the Readers/Writers

problem given in [15], discovering several random and one systematic mistake of the

proof. Then, a new, significantly automated proof was performed.
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Chapter 1

Introduction

1.1 Motivation

Inspection of concurrent programs still presents a challenge for software developers.

The atomic actions of the processes constituting a concurrent program can be inter-

leaved in many different ways. Furthermore, the concurrent software systems often

lack the regularity of hardware systems. Thus, the nature of concurrent systems can

make their state spaces large and irregular, making it extremely hard to ensure that

all the possible behaviors of the system have been analyzed.

A reliable and effective inspection approach for the inspection of concurrent pro-

grams is proposed in [15]. Inspection is made easier and reliable by inspecting each

of the components separately. Further, each component’s behavior is described using

program function tables [28]. However, as will be shown in this thesis, the manual

proof of the correctness criterion given in [15] failed to explore the whole transition

relation described by the program function table. Automated tool support, on the

other hand, helped discover the flaws of the manual proof easily and was invaluable

for properly proving both safety and liveness properties.

1.2 Our Approach

There are many different approaches to mechanized formal analysis of concurrent

systems represented with transition relations. Those include deduction (theorem

1



2 1. Introduction

proving), model checking, abstraction and model checking, automated abstraction,

bounded model checking [30, 11], and equivalence verification [19, 21, 20].

Model checking is a technique for verifying finite state concurrent systems [2].

First, a model of the program is to be built. Next, the properties of the system

are specified, usually in temporal logic. If the model fails to satisfy the property, a

counterexample is produced that demonstrates a behavior that satisfies the negation

of the property. The most important advantage of model checking over theorem

proving is that it is completely automatic. However, although the state explosion

problem has been addressed by many techniques (e.g., partial order reduction, infinite-

state model checking), model checking still cannot handle systems with an arbitrarily

large number of processes.

Deductive verification (theorem proving), on the other hand, can be used to an-

alyze very large or infinite systems. It still remains the most general way to reason

about complex systems. However, it can be a tedious and time-consuming process

that requires substantial human guidance.

This thesis represents an extension of the approach of [15], providing partial au-

tomaton of the proposed inspection process. The original program can be analyzed in

SPIN. SPIN is a model checking tool specialized for handling concurrent systems. Its

specification language provides the primitives for interprocess communication [14].

Model checking in SPIN can be particularly useful for purpose of refutation (gen-

erating a counterexample for a particular version of the system). Full verification,

however, requires the use of theorem proving, since the number of the processes can be

arbitrarily large, and the values of global or local process variables can be unbounded.

The starting point of the full verification is the program function table prepared

as in [15]. The transition relation of the concurrent system as given by the table

is rewritten into the SAL model checker and model checked for safety and liveness

properties. However, at this point, SAL supports neither tables, nor does it offer a full

typechecker. The table is then rewritten into the PVS specification language table

construct and checked for consistency and completeness. Safety properties are proved

in PVS using the inductive invariant approach [30]. The property P is inductive on

transition relation T and set of initial states I if it includes all the initial states (I(s) ⇒

P (s)) and is closed on all the transitions (P (s)∧T (s, t) ⇒ P (t)). We try to prove that

a safety property is an invariant of the system, by showing that it is satisfied in the
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initial state and preserved by any transition of the system. However, few properties

are inductive. Failed goals indicate the auxiliary invariants that we then use to

strengthen the initial property. Then, we try to prove that the strengthened invariant

(conjunction of the newly found ones and the desired invariant) is inductive. Before

being checked in theorem prover, every new, auxiliary invariant is model checked in

the SAL model-checker for a specific instance of the problem. This check is automatic

and fast. The process iterates until the inductive invariant is found or it is suggested

by the failed proof(s) that a proof of inductivity cannot be found. Proving liveness

property then requires the additional strengthening of the found inductive invariant.

1.3 Contribution of the Thesis

We believe that the contributions of this work are:

1. We provided partial automation of the inspection process of [15].

2. We illustrated the necessity of the computer-aided verification of the concurrent

systems in inspection of [15] by automating the manual proof of the safety

property of the Readers/Writers problem (as in [15]). Not only were we able to

significantly reduce the effort needed to complete the proof (the manual proof of

the safety property is 100 pages long), but we also discovered several inadvertent

and one systematic mistake in the manual proof. We managed to automate the

proof of the safety property almost completely using PVS strategies.

3. Theorem proving and model checking were successfully combined. Two model

checking tools (one of which is specialized for models of concurrency, the other

one with an input language very close that of the theorem prover) were used

for model checking the classical concurrent program. Model checking potential

invariants before using them in the theorem prover reduced the time required

to obtain an inductive invariant compared to using only the theorem prover.

4. The thesis provides a detailed example of the computer-aided verification of a

concurrent programs with an arbitrarily large number of processes.

Model checking tools were used for refutation purposes - for finding the bugs in

both the original program and the one rewritten into table. Moreover, SAL was used
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for checking the auxiliary invariants found in PVS. PVS provided almost complete

automation of the consistency and coverage checks of the tabular specification. Failed

goals generated in PVS indicated the auxiliary invariants. The proof was automated

using PVS strategies. The PVS user strategies are given in Appendix C.3, and PVS

built-in strategies are given in [33].

1.4 Structure of The Thesis

• Chapter 2 represents an overview of the inspection of the concurrent programs

with a detailed description of the inspection process of [15] applied to the clas-

sical concurrency problem, the Readers/Writers Problem [4].

• Chapter 3 provides an overview of the model-checking tools SPIN and SAL,

and the PVS specification and verification system.

• Chapters 4 and 5 represent our approach applied to the Readers/Writers prob-

lem, formulated as in [15].

• Chapter 6 reports on the conclusions of this project and makes suggestions for

future work.



Chapter 2

Inspection of Concurrent Programs

The material in this chapter is an important part of the background for the research

presented in this thesis. It provides the reader with essential information on inspection

of concurrent systems and inspection based on tables. Further, a detailed description

of the inspection of concurrent systems using tables is given. This inspection approach

and the example presented here form the basis of our research.

2.1 Formal Modeling of Concurrency

There are many different models of concurrency intended for the formal verification of

concurrent systems. Petri nets represent one well-known formalism [23]. Axiomatic

systems for concurrency are based on Hoare’s logic [13] or Dijkstra’s weakest precon-

dition logic [8]. Extensions of those include the Lamport extension of Hoare logic

[12], the Owicki-Gries extension of Hoare logic [24], and the Lamport extension of

Dijkstra’s weakest precondition logic [16].

A number of process algebras have been proposed. CCS (Calculus of Communicat-

ing Systems) and CSP (Communicating Sequential Processes) specify a concurrent

systems as consisting of processes that are completely independent except for the

communication between them [1]. CCS was developed as a formalism for describing

multiprocess systems and exploring the notions of equivalence of processes [20]. CSP

was initially developed as a programming language [12]. SCCS (Synchronous CCS)

was developed to extend the CCS with the notion of synchronization between agents

5



6 2. Inspection of Concurrent Programs

[3]. However, the cost of applying the mentioned methods in software engineering has

generally proven to be too high [1].

2.2 About Inspection Based on Tables

Tables are multi-dimensional mathematical expressions describing mathematical func-

tions and relations. They were proposed in [28]. Tables have proven to be a useful

method for software inspection, providing clarity in reading and understanding, and

easiness in ensuring input domain coverage and consistency.

Tables were first used at the U.S. Naval Research Laboratory in the 1970s for the

inspection process of the A-7E aircraft software [32]. Another inspection process based

on tables was developed and applied in the Darlington Nuclear Power Generating

Station and first reported in [29]. In [26] a rigorous inspection approach based on

program-function tables was presented.

The application of tool-supported tabular methods to the specification and verifi-

cation of safety-critical software for the Darlington Nuclear Power Generation Station

was described in [17, 18].

The Display method, a method of documenting well-structured programs, is de-

scribed in [27]. The application of the combination of this method and theorem

proving in PVS was used in [31] for the inspection of the source code implementing

the PPP protocol in Linux. We did not feel the need to use displays in this thesis,

since the example program used is not a long one.

The details on the semantics of tables and type of tables used in this thesis are

given in Section 3.3.

2.3 The Inspection of Concurrent Programs Using

Tables

Note: The material presented in this section is taken mostly from [15].
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2.3.1 Introduction to the Approach

In our model a concurrent program begins its execution from the initial state and

advances while interleaving with other components. The key idea of this approach

is the use of the “divide and conquer” principle: the correctness of the program

components implies the correctness of the whole program.

The process includes the following:

1. Auxiliary variables are introduced to capture all the information needed to

analyze the program.

2. The requirements of the program are formulated as a mathematical specifica-

tion.

3. The primitive operators are specified (e.g., synchronization primitives) — this

should have been done before the program was written.

4. The program is rewritten so that each primitive statement has a label. The

transfer of control from statement to statement is made explicit by assigning a

label value to an auxiliary variable (that functions as the program instruction

counter) for each statement. The value of this auxiliary variable is the condition

of the execution of each statement.

5. The program is described in a tabular representation.

6. Two properties of a concurrent program are to be proved:

• Invariant property — ensures that the requirement predicate holds in all

the reachable states of the program. A set of invariants that embodies the

essential properties of the execution and is inductive is formulated.

• Liveness property — ensures that all of the program’s constituent processes

can cleanly finish their execution.

The program is inspected to show that the invariant is satisfied in the initial state

of the system and the execution of every primitive statement maintains the invariant,

and that the liveness property holds.
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2.3.2 Example Application: Readers/Writers Problem

One typical concurrency problem is the Readers/Writers problem [4]. Two different

kinds of processes, readers and writers, access the common resource. An unlimited

number of readers can concurrently access the resource, whereas a writer must have

exclusive access to the resource. Among two variants of this problem presented in [4],

the one that gives readers priority over the writers is chosen (the readers’ preference is

weak - if at least one reader is accessing the critical section, and both another reader

and writer arrive, then the new reader gets preference over the writer. If, however,

the writer leaves the critical section, and there are both readers and writers waiting

to enter it, choice of which type of process is permitted to enter the critical section is

arbitrary).

The Original Program

The program used to solve the chosen variant from [4] is reproduced below:

integer rdcnt; (initial value = 0)

semaphore mutex, w: (initial value for both = 1)

READER: P(mutex); WRITER: P(w);

rdcnt := rdcnt+1; WRITE;

if rdcnt=1 then P(w); V(w);

V(mutex);

READ;

P(mutex);

rdcnt := rdcnt-1;

if rdcnt=0 then V(w);

V(mutex);

Two semaphores are used as synchronization primitives. Semaphore w is used as a

mutual exclusion semaphore for the first and the last reader, and any writer entering

the critical section, while semaphore mutex ensures that only one reader process can

enter or leave the critical section at a time. The variable rdcnt counts all the reader

processes who have entered the critical section (meaning, the section protected with

the w semaphore) or have asked for the permission to enter it.

Let rd and wt be the number of active reader and writer processes, respectively.
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The informal requirement of the program as stated at the beginning of the subsection

(at most one writer can write while no reader is reading, and any number of readers

can read concurrently) can be written as the safety property:

(rd = 0 ∨ wt = 0) ∧ wt < 2 (2.1)

Applying the proposed approach to the example application

Applying the steps of the proposed approach (as described in the Section 2.3.1), the

original Readers/Writers program can be rewritten as in Figure 2.1.

The stop symbol tells us when a process under execution can be interrupted, allow-

ing other processes to resume their execution, i.e., each line of Figure 2.1 represents

a primitive statement.

If more than one process is ready to execute, the choice of the process to be exe-

cuted is non-deterministic. The array variable next functions as an instruction counter

variable, locating the execution of each process — the value of next[i] represents

the current statement label of the ith process. The labels waitAtPm1, rlseAtPm1,

waitAtPm2, rlseAtPm2, waitAtPwr, rlseAtPwr, waitAtPww, rlseAtPww are in-

troduced so that synchronization primitives can be specified. A process can pass

P (sem) successfully (advance with its execution), it can be suspended (in which case

it gets labeled as waitAtPsem), or released by a V -operation, in which case it acquires

the label rlseAtPsem. The detailed specification of P/V operations of a semaphore

is taken from [15] and reproduced in Appendix A.

The program is then rewritten into the table given in the Appendix B, origi-

nally taken from [15]. For these purposes, a parameter k (0 < k ≤ M) is intro-

duced to denote the identification of a representative process. The pID represents

the identification of the currently executing process. Two additional boolean ex-

pressions are introduced: IsReader and IsWriter, that stand for 0 < k ≤ n and

n < k ≤ M , respectively, where n is the number of reader processes and 0 ≤ n ≤ M .

The interested reader is referred to [15] for the details on rewriting the program

as in Figure 2.1 to the table. The program state can be described as a 7-tuple

(rdcnt, rd, wt, mutex, w, next, pID).
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READER i:

1 Begin

2 if next[i]=r1 then P(mutex) stop

3 if next[i]=waitAtPm1 then next[i]:= waitAtPm1 stop

4 if next[i]=rlseAtPm1 then next[i]:=r2 stop

5 if next[i]=r2 then rdcnt := rdcnt+1; next[i]:=r3 stop

6 if next[i]=r3 then if rdcnt=1 then P(w); rd := rd+1; stop

7 if next[i]=waitAtPwr then next[i]:=waitAtPwr stop

8 if next[i]=rlseAtPwr then rd := rd+1; next[i]:=r4 stop

9 if next[i]=r4 then V(mutex) stop

10 if next[i]=r5 then READ; next[i]:=r5 stop

11 if next[i]=r6 then P(mutex) stop

12 if next[i]=waitAtPm2 then next[i]:=waitAtPm2 stop

13 if next[i]=rlseAtPm2 then next[i]:=r7 stop

14 if next[i]=r7 then rdcnt := rdcnt-1; next[i]:=r8 stop

15 if next[i]=r8 then if rdcnt=0 then V(w); rd := rd-1 stop

16 if next[i]=r9 then V(mutex) stop

17 End

WRITER j:

1 Begin

2 if next[j]=w1 then P(w); wt := wt+1; stop

3 if next[j]=waitAtPww then next[j]:=waitAtPww stop

4 if next[j]=rlseAtPww then wt := wt+1; next[j]:=w2 stop

5 if next[j]=w2 then WRITE; next[j]:=w3 stop

6 if next[j]=w3 then V(w); wt := wt-1 stop

7 End

Figure 2.1: Readers/Writers program rewritten
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Showing Clean Completion

We say that a program has a clean completion when all of its constituent processes

can finish the execution (the program counter of every process can reach the label

EOP). For the purposes of proving the clean completion of the program (liveness

property), the vector of decreasing quantity DQ is defined in [15]:

DQ = (Pros, IntRW (next[1]), IntRW (next[2]), . . . , IntRW (next[M ]))

where M is the total number of processes, Pros is the number of the processes that

have not reached the EOP label yet, and IntRW is the function mapping all the

values of next to integers, as indicated in the Table 2.1.

x IntRW (x)
r1 15

waitAtPm1 14
rlseAtPm1 13

r2 12
r3 11

waitAtPwr 10
rlseAtPwr 9

r4 8
r5 7
r6 6

waitAtPm2 5
rlseAtPm2 4

r7 3
r8 2
r9 1
w1 5

waitAtPww 4
rlseAtPww 3

w2 2
w3 1

EOP 0

Table 2.1: The IntRW function definition

Let l = 1, 2. Suppose that, at the state l, the nextl is the value of next, and Prosl
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is the number of processes (meaning, all the processes with a label assigned, except

for those with the label EOP). As before, n is the number of the reader processes

(0 ≤ n ≤ M). Let

∑

rl =

{

0, n = 0
∑n

i=1
IntRw(nextl[i]), 0 < n ≤ M

(2.2)

∑

wl =

{

0, n = M
∑M

i=n+1
IntRw(nextl[i]), 0 ≤ n < M

(2.3)

DQl = (Prosl, IntRW (nextl[i]), . . . , IntRW (nextl[i]) (2.4)

Then, the order property of DQ is given by the Table 2.2 where DQorder stands for

DQ1 > DQ2.

Pros1 = Pros2

Pros1 > Pros2
P

r1 +
P

w1 >
P

r2 +
P

w2

P

r1 +
P

w1 ≤
P

r2 +
P

w2

Pros1 < Pros2

DQorder TRUE TRUE FALSE FALSE

Table 2.2: The order property of DQ

Theorem of DQ 1 Assume that there are no new readers/writers arriving. Then:

1. If there is a change of state other than a simple change of the pID variable, DQ

decreases.

2. If there is no possible change of state other than a simple change of the pID

variable, DQ is zero.

3. If DQ is zero, there is no waiting process.

The decreasing quantity approach originates from the verification of the loops.

The idea of proving the clean completion using this approach is to find an integer

variable which, when initialized with positive value, will decrease if the program is

making progress; if there is no progress possible, the value of the decreasing quantity

variable should be zero, which in turn should mean that there is no waiting process.

In this particular case, the vector DQ was chosen to be such a variable.



Chapter 3

Introduction to SPIN, SAL, and

PVS

This chapter provides basic information on tools used for the research in this thesis:

the model-checking tools SPIN [14] and SAL [22], and the theorem prover PVS [25].

3.1 The SPIN Model Checker

Note: Material presented in this section is a summary of [14].

SPIN is a tool for model-checking concurrent systems. Systems are modeled using

a specification language called Promela (the name SPIN is an acronym for Simple

Promela Interpreter). The language is targeted to the description of concurrent soft-

ware systems, rather than the description of hardware circuits.

The basic building blocks of SPIN are asynchronous processes, buffered and un-

buffered message channels, synchronizing statements, and structured data. There

is no notion of time or clock; there are only a few computational functions and no

floating point numbers. The emphasis of the language is on the synchronization and

communication, not the computation.

SPIN is an “on-the-fly” model-checker: it does not precompute the entire global

state graph as a prerequisite for the verification. Correctness properties can be speci-

fied as system or process invariants (using assertions), as LTL requirements, as Buchi

13
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Automata, or as general omega-regular properties in the syntax of never claims.

Some liveness properties can be verified only by compiling the model with the corre-

sponding option.

SPIN can be used in two basic modes: as a simulator and as a verifier. As a

simulator, it provides a means of random, guided and interactive simulations. As

a verifier, it offers efficient checking of user specified requirements or validation of

very large models with maximal coverage of the state space. The proof techniques it

applies are based on either depth-first or breadth-first search, optimized with partial

order reduction techniques and BDD-like storage techniques.

3.2 SAL

Note: The material presented in this section is mostly taken from [22], [6], and [5].

SAL stands for Symbolic Analysis Laboratory. It is a framework for combining

different tools for abstraction, program analysis, theorem proving and model checking

towards the calculation of properties (symbolic analysis) of transition systems. The

key part of the SAL framework is a language for describing transition systems. The

language serves as a specification language and as the target for translators that

extract the transition system description for popular programming languages such as

Esterel and Java. The language also serves as a common source for driving different

analysis tools through translators from the SAL language to the input format for the

tools, and from the output of these tools back to the SAL language.

The basic unit of specification in SAL is a module. Modules can be separately

analyzed and composed synchronously or asynchronously. A module consists of a

state type, an invariant definition on this state type, an initialization condition on

this state type, and a binary transition relation on the state type. The state type is

defined by four pairwise disjoint sets of input, output, global, and local variables. The

transition rules are constraints on the current and next states of the transition, given

either as guarded commands or as invariant definitions.

The current SAL toolset provides explicit state, symbolic, bounded, infinite

bounded and witness model checkers for SAL. We will use the symbolic model checker

called sal-smc, which uses linear temporal logic (LTL) as its assertion language. More-
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over, properties can be specified in computation tree logic (CTL) if they are in the

intersection of these two languages, in which case they are internally converted into

LTL. However, the current version of SAL provides counterexamples only for LTL

properties.

3.3 PVS

This section provides the background information on PVS. We review PVS capabili-

ties, properties of the sequent calculus on which PVS is based, tabular specification

and their support in PVS.

3.3.1 The PVS Language and Proof Checker

Note: The material presented in this subsection is largely based on [9].

PVS stands for “Prototype Verification System”. It provides mechanized support

for specification and verification: it offers a specification language in which mathe-

matical theories and conjectures can be defined, and then, latter can be discharged

using the interactive theorem prover. The specification language of PVS is based on

higher-order logic, which is extended with predicate subtypes and dependent types,

and a theory system. Its type constructors include functions, tuples, records, recur-

sive datatypes (e.g., lists and trees), and enumerations; sets are represented by their

characteristic predicates. A prelude of hundreds of theories contains many definitions,

axioms and proved theorems; user-contributed libraries provide many additional the-

ories.

The PVS theorem prover is interactive. It is based on a sequent calculus presen-

tation. PVS offers the graphical representation of proofs in the form of proof trees.

Proofs can be saved as scripts and rerun either automatically, or in a single-step

mode. While basic proof commands are built-in, most are programmed as strategies.

The built-in commands provide very powerful automaton that include decision pro-

cedures for ground (unquantified) integer and linear arithmetic, automatic rewriting,

and BDD-based propositional simplification and symbolic model-checking.

Predicate subtypes offered by the PVS specification language allow for a great

deal of specification to be embedded in its types, contributing clarity and economy
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in specification. Since the predicate used for defining a predicate subtype can be

arbitrary, typechecking can become undecidable, and may lead to proof obligations

called type correctness conditions (TCCs). Typically, the proof strategies built into

the theorem prover can automatically discharge some of these obligations; the harder

ones are left for the user to guide the proof.

PVS in combination with SAL is chosen for the following reasons:

• PVS has a construct for tabular specification. The construct generates proof

obligations to ensure that the column conditions are disjoint and complete.

• Since the table construct is highly integrated with the other capabilities of PVS,

we were able to prove the invariant property and clean completion theorem

without first converting the tabular expressions to equivalent logical expressions.

• Although PVS has a model checker integrated with its theorem prover, it lacks

the counterexample generation capability and is not particularly fast.

• The specification language syntax of the model checking tool SAL is similar

to that of PVS. Although automatic translators from one tool to another are

not available yet, we found it easy to rewrite the SAL specification into a PVS

specification.

• SAL is an open system intended for the integration and cooperation of different

tools for symbolic analysis and will feature tighter integration with PVS in the

future [9].

3.3.2 The Sequent Calculus of PVS

Note: The material presented up to the end of this chapter is mostly based on [35]

and [17].

Let Pi, i = 1, . . . , n and Qj, j = 1, . . . , m be formulas in higher order logic

and ` is used to denote a syntactic entailment. Now, ¬P1, P1 ∧ Q1, P1 ∨ Q1 and

P1 ⇒ Q1 denote negation, conjunction, disjunction and implication respectively. In

general, assuming that the properties of the system inputs are all true (the Pi’s), we

want to prove that at least one of the output properties (one or more of the Qi’s)
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is true. We formally write, P1, P2, . . . , Pn ` Q1 ∨ Q2 ∨ . . . ∨ Qm, or equivalently,

P1 ∧ P2 ∧ . . . ∧ Pn ` Q1 ∨ Q2 ∨ . . . ∨ Qm. This expression is called a sequent. If the

proof for it can be found, the sequent is valid. In sequent calculus this is written as

in Figure 3.1.

P1, P2, . . . , Pn

Q1 ∨ Q2 ∨ . . . ∨ Qm

or

P1

P2

...
Pn

Q1

Q2

...
Qn

Figure 3.1: Sequents in sequent calculus

Proofs are done by transforming the sequent into one of these forms:

...
P

P
...

or

...

>
...

or

...
⊥
...

Here > and ⊥ denote TRUE and FALSE, respectively.

3.3.3 Tabular Specification of Functions

The function f : T1 × T2 × . . . × Tm → Tr has the following tabular representation:

f(x1, . . . , xm) =
c1 c2 . . . cn

e1 e2 . . . en

or

c1 e1

c2 e2

. . . . . .

cn en

(3.1)
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where each ci is a predicate and ei is a term of type Tr. The interpretation is

that when a given condition ci is true, f is equal to ei. For the table to properly

define a (total) function, two conditions should be satisfied:

1. Disjointness requires that each distinct pair of conditions ci, cj is disjoint, i.e.,

i 6= j ⇒ ¬(ci ∧ cj).

2. Completeness requires that the disjunction of all the ci’s is true, i.e., (c1 ∨ c2 ∨

. . . ∨ cn) evaluates to TRUE.

Therefore, for a given x1, . . . , xm only one ci can be true.

Consider the example, sign(x), for x ∈ R:

sign(x) =











−1, x < 0

0, x = 0

1, x > 0

which can be specified as a table:

x < 0 x = 0 x > 0

-1 0 1

3.3.4 The PVS COND Construct

For specification by cases the standard PVS language offers COND construct, as

indicated on the left side of Figure 3.2.

The right side of Figure 3.2 shows the equivalent IF-THEN-ELSE statements that

PVS uses as the internal interpretation of the COND statement. While much of the

typechecking required to ensure conservative extension of PVS logic can be done au-

tomatically, predicate subtypes (as mentioned earlier) and tabular specification of

functions can cause PVS to generate TCCs. Use of COND causes PVS to automat-

ically generate Disjointness and Completeness TCCs. These are often automatically

proved by built-in proof strategies. In case these strategies fail, the resulting unprov-

able sequents can often provide useful information regarding the incompleteness or

inconsistency of specifications.
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COND

c1− > e1, IF c1 THEN e1

c2− > e2, ELSIF c2 THEN e2

...
...

cn−1− > en−1, ELSIF cn−1 THEN en−1

cn− > en ELSE en

ENDCOND ENDIF

Figure 3.2: COND construct and PVS interpretation

The following is the PVS definition of sign(x) function using the PVS COND

construct:

signs: TYPE = { i: int | i >= -1 & i <= 1}

sign_cond(x: real): signs =

COND

x < 0 -> -1,

x = 0 -> 0,

x > 0 -> 1

ENDCOND

Typechecking the previous segment generates the following TCCs, which are au-

tomatically discharged.

% Disjointness TCC generated (at line 11, column 1) for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

sign_cond_TCC1: OBLIGATION

FORALL (x: real):

NOT (x < 0 AND x = 0) AND

NOT (x < 0 AND x > 0) AND NOT (x = 0 AND x > 0);

% Coverage TCC generated (at line 11, column 1) for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

sign_cond_TCC2: OBLIGATION FORALL (x: real): x < 0 OR x = 0 OR x > 0;
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3.3.5 The PVS TABLE Construct

PVS has various TABLE constructs that provide more readable prover input. They

are internally translated to PVS COND constructs for typechecking and proving

purposes. Consider the table in Figure 3.3.

sign_vtable(x: real): signs = TABLE

%-------------%

| x < 0 | -1 ||

%-------------%

| x = 0 | 0 ||

%-------------%

| x > 0 | 1 ||

%-------------%

ENDTABLE

Figure 3.3: One-dimensional vertical table in PVS

Horizontal lines in Figure 3.3 are simply comments. This specification is equiv-

alent to that of sign cond, it generates the same TCCs and is treated the same

as the equivalent IF-THEN-ELSE in the proofs. In this thesis we will use only one-

dimensional vertical tables. For detailed information on PVS’ support for other types

of tables (enumeration tables, data type tables, one-dimensional horizontal and two-

dimensional tables), the interested reader is referred to [35].



Chapter 4

Model Checking The

Readers/Writers Problem

In this chapter we show how the original version of the Readers/Writers concurrent

program with a fixed number of readers and writers can be formalized and model-

checked. We use the SPIN model checker (since it is specialized for concurrent pro-

grams) for refutation purposes: some potential bugs of the program can be discovered

in this early stage of the verification. Then, we formalize the program, rewritten as

a tabular specification, to match the SAL specification language, in order to model

check it for safety and liveness properties. This not only allows potential bugs of

the original program to be discovered, but also the potential errors in the rewritten

specification. We will use the SAL model as a prelude to theorem proving of the

general model with an arbitrary number of readers and writers (as will be shown in

the next chapter): every potential auxiliary invariant found by PVS is model checked

in SAL.

4.1 Model Checking The Original Version In SPIN

This section first presents the modeling of the original Readers/Writers program in

PROMELA, the specification language of SPIN. Then, the analysis of this model is

performed using the SPIN model checker.

21
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4.1.1 Specification in SPIN

SPIN supports rendezvous and buffered message passing, and communication through

shared memory.

The semaphores used for synchronization in the Reader/Writer problem are easily

modeled as shown in Figure 4.1. Semaphore mutex, which ensures that only one reader

mtype {p, v};

chan mutex = [0] of {mtype};

active proctype m1()

{

byte count=1;

do

:: (count == 1) ->

end: mutex!p; count = 0

:: (count == 0) ->

mutex?v; count = 1

od

}

Figure 4.1: Semaphore in SPIN

will enter or leave the critical section at the time, is modeled by the process of type m1

with the help of the rendezvous port mutex. (The semaphore w, the mutual exclusion

semaphore for the first and the last reader, is modeled in the same way.) A rendezvous

port is a channel of capacity zero, that can only pass, but cannot store messages [14].

Message interactions via such rendezvous ports are, by definition, synchronous. The

syntax for specifying a message transmission is borrowed from Hoare’s CSP language:

the send operator is represented with an exclamation mark and the receive operator

is represented by a question mark. The label end will be explained later.

The definition and instantiation of the writer processes (two of them) are given

in Figure 4.2. The label eopw will be explained later.

Compared to the original program, our SPIN model contains the additional global

variables rd and wt (as in [15]), whose values are updated as a part of the same atomic

sequence in which a process enters/leaves the critical section. The variables rd and

wt are used as the counters of all the active readers and writers, respectively, in the
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active [2] proctype writer()

{

atomic{

w?p; wt++

};

skip;

atomic{

wt--; w!v

};

}

Figure 4.2: Modeling writer processes in SPIN

read/write section. The complete SPIN code is given in Appendix C.1.

4.1.2 Analysis in SPIN

Safety Property: The safety property defined as

(rd = 0 ∨ wt = 0) ∧ wt < 2 ∧ rd ≥ 0 ∧ wt ≥ 0 (4.1)

can be checked in SPIN using a never claim. We note that the safety property as given

here is a modified version of the property defined in Equation 2.1 (originally taken

from [15]). Since the rd and wt variables are integers, adding the last two conjuncts

as in equation 4.1 requires that number of readers/writers cannot be negative). We

use a never claim to specify the behavior that should never happen, i.e., it is never

the case that equation 4.1 is false:

never

{

do

:: !((rd == 0 || wt == 0) && wt < 2 && rd >= 0 && wt >= 0) -> break

:: else

od

}
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The check can be done for the model in which processes repeatedly execute the

piece of code (do not terminate).

Liveness property: The liveness property defined in Section 2.3.1 requires that

every path of the system will eventually reach the state where all the reader/writer

processes have reached the end of their execution. This check can be done in SPIN

by checking for the absence of the invalid end states. By default, the only valid end

states in SPIN are those in which every process that was instantiated has reached the

“end” of its code. We used the labels end in the m1 and m2 processes so that a state in

which all the readers/writers have finished the execution would not be flagged as an

invalid one. So, without the end labels, in checking our model for invalid end states,

a state with all the readers/writers at the end of their execution would be marked

as an invalid one. In verification mode, SPIN checks for the invalid end states by

default.

The SPIN model checking results are given in Table 4.1. All the computations as

presented in this thesis were performed on a dual 2.4 GHz Xeon machine with 4 GB

of RAM running RedHat Linux 9.0.

safety/completion
states time(s)

3R/2W 3619 0.02
5R/5W 0.4·106 1.25
6R/6W 2.3·106 115
8R/8W 8.4·107 6555

10R/10W - >20h

Table 4.1: SPIN model checking results

From Table 4.1 it is obvious that checking the properties even for the system of 8

readers and 8 writers is very slow. We can use the SPIN’s approximation techniques

described in [14] (collapse compression, bitstate hashing, hash-compact) to make a

quick check, but these techniques do not guarantee the complete coverage, and are,

therefore, used only as a last resort. Moreover, even if the size of the state space

would be manageable, the maximal number of processes allowed in a PROMELA

model is 255.
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4.2 Formalization of Readers/Writers Problem in

SAL

In this section, the Readers/Writers problem is rewritten to match the table from

Appendix B. SAL does not support tables, so the table is rewritten into the transition

part of the SAL module: table headers are rewritten into the guards, and cells into the

assignment part of the guarded commands. Safety and liveness properties are model

checked using SAL’s symbolic model checker for refutation purposes since some bugs

might have been introduced while rewriting the program into tabular specification.

Then, the SAL model will be used for checking the auxiliary invariants found in PVS.

4.2.1 Specification in SAL

Figure 4.3 contains a part of the context rw with type declarations. The context rw

has two parameters: the number of processes M, and the number of reader processes

n. The system state is of record type state, which consists of the fields m, w, rdcnt,

next, rd, and wt. The fields m and w are of the sem record type. This type consists

of the cnt and set fields. The field m functions as a mutual exclusion semaphore for

readers to ensure that only one reader will enter or leave the critical section at a time.

The field w provides mutual exclusion in the critical section shared by both readers

and writers. The field rdcnt counts all the readers that have entered or are still

waiting to enter the critical section. The elements of the array next are used to store

the process states by specifying a process’s next executing statement (as explained in

Section 2.3.2). These elements are of type label.

Since we are using SAL’s symbolic model checker for finite state systems, the types

of the fields of the global state cannot be unbounded. That is why we needed the

subrange type semtype as the type of field cnt of type sem, fields rd and rdcnt of type

rdtype, and wt of type wttype. The types are given with the tightest bounds possible,

in order to minimize the number of BDD variables (model checking is faster), but also

to enable the check that the variables of these types never go over the bounds (see

the typecheck2 theorem in the next section). Users perform this typecheck because

the full typechecker for SAL is not available yet; the present one does not detect

overflows.



26 4. Model Checking The Readers/Writers Problem

rw{; M : nznat, n : nat}: CONTEXT =

BEGIN

Job_Idx: TYPE = [1..M];

label: TYPE = {r1, waitAtPm1, rlseAtPm1, r2, r3, waitAtPwr, rlseAtPwr,

r4, r5, r6, waitAtPm2, rlseAtPm2, r7, r8, r9, w1, w2, w3,

waitAtPww, rlseAtPww, EOP};

rdtype: TYPE = [-1..n+1];

wttype: TYPE = [-1..(M-n+1)];

semtype: TYPE = [-M..2];

index: TYPE = [1..M];

sem: TYPE = [#cnt: semtype,

set: setof #];

state: TYPE = [#

m: sem,

w: sem,

rdcnt: rdtype,

next: ARRAY index OF label,

rd: rdtype,

wt: wttype #]

.

.

.

Figure 4.3: The context rw
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Referring to the SAL input files in Appendix B, the parametric module process

is used to specify the behavior of a reader/writer process. We could have defined

two different parametric modules, one for readers, and one for writers. Instead, we

decided to use only one, so that the state machine it models more closely resembles

the original function table from [15] and more direct comparison to the manual proof

from [15] can be made. The process local bool variable IsReader is initialized with

TRUE if the pID ≤ n, and FALSE otherwise.

The transition relation is described in the TRANSITION part of the module. The

guard commands of the transition relation are labeled by the number of the column

they refer to in the Figure B.1 in Appendix B, originally taken from [15]. There is no

built-in support in SAL for the function that would specify that any process satisfying

some predicate can be chosen. Rather, this is solved by introducing nondeterminism

inside of the module as in Figure 4.4. In SAL, the symbol [] denotes asynchronous

composition. The use of [](p: index) provides the nondeterministic choice of

one process to be executed next among those processes whose corresponding guard

formula is satisfied.

[]

([] (p: index):

c17:

IsReader AND s.next[pID] = r4 AND

s.m.cnt < 0 AND s.m.set(p)

--> s’ = (((s WITH .m.cnt := s.m.cnt + 1)

WITH .next[pID] := r5)

WITH .next[p] :=

IF s.next[p] = waitAtPm1 THEN rlseAtPm1

ELSE rlseAtPm2

ENDIF)

WITH .m.set := remove(p, s.m.set))

[]

Figure 4.4: Nondeterminism inside of the process module

Our model of the Readers/Writers program as defined by the table in Appendix B

has terminal states corresponding to the situations when all of the processes have

reached the end of their code. However, some model checkers, including SAL, may
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produce unsound results when checking the liveness properties of a system where not

every state has at least one successor. That is why we add selfloops to those terminal

states by adding a transition to the initializator (as in Appendix C.2), which is

otherwise used for the initialization of the global variable state. The whole system

is obtained by an asynchronous composition of M of process modules and module

initializator as in Figure 4.5. The result of initialization is that each process

main: MODULE = initializator []

([] (pID : index): process[pID]);

Figure 4.5: The module main

process is instantiated with a different value of pID.

4.2.2 Analysis in SAL

As mentioned earlier, the current typecheck does not detect overflows. Therefore, we

first have to prove that the variables of an bounded type (e.g., semtype) will not go

over the bounds of this subrange type. This is done with the theorem typecheck2

reproduced below:

typecheck2: THEOREM main

|- G(s.m.cnt <= 1 AND s.m.cnt >= -M+1 AND

s.w.cnt <= 1 AND s.w.cnt >= -M+1);

Here, s.m.cnt and s.w.cnt are of semtype type, as in Figure 4.2.1. After this check

is done, we can continue the analysis with tighter bounds for the types.

The safety property from Equation 4.1 can be stated as follows:

safety: THEOREM main

|- G((s.wt = 0 OR s.rd = 0) AND s.wt < 2

AND s.rd >= 0 AND s.wt >= 0);

The assertion language is LTL. We decided to use a symbolic model checker, although

we had a choice of infinite bounded model-checker which handles infinite state systems

(unbounded types in the fields of a program state can be used, i.e., instead of the
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rdtype, wttype, and semtype we would use integers). The infinite model-checker

can provide counterexamples of a given depth or prove theorems using a generalized

induction rule known as k -induction [7]. This rule first requires proving that a certain

property holds in the first k steps of any execution. Then, the general step requires

that, if the property is satisfied in all the executions of length k, then it will be

preserved after the transition of the system to the next state. sal-inf-bmc was

not able to prove the theorem safety with k-induction for k=9, which took 6667

seconds. As model-checking in our verification process would be used for refutation

purposes and checking auxiliary invariants, we felt its benefits would be lost if we

used sal-inf-bmc.

The liveness property says that all the processes will eventually complete, i.e.,

reach the label EOP. First, we check whether the transition relation is total in order to

avoid unsound results. This is easily done using the SAL’s sal-deadlock-checker.

Then, we assume the weak fairness of the scheduler: if a process’s enablement con-

dition is continuously enabled, then the process will eventually execute. So, if we

assume that it cannot happen that one of the non-waiting processes’ enablement

condition is satisfied forever, all the processes will cleanly complete. Therefore, the

formalization of the liveness property under the assumption of weak fairness would

be:

dq: THEOREM main

|-(NOT EXISTS (i: index):

F(G(IsReader[i] AND s.next[i] = r1 AND s.m.cnt = 1)))

AND (NOT EXISTS (i: index):

F(G(IsReader[i] AND s.next[i] = r1 AND s.m.cnt < 1)))

AND ...

=> F(FORALL (k: index): IntRw(s.next[k]) = 0);

where the operand of the first G is the first “non-waiting” enablement condition from

the TRANSITION part of process module, the argument of the second G is the second

“non-waiting” enablement condition, etc.

However, the automaton for this property is too large, so that the computation

runs out of memory. Therefore, we prove the liveness property as suggested in Sec-

tion 2.3.2 by proving the theorem of decreasing quantity. However, for the proof
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of the theorem of decreasing quantity, we found no need to define a DQ vector as

suggested in Section 2.3.2 (originating from [15]), because of the assumption that no

new readers/writers arrive after the initialization of the system. Moreover, if Pos is

defined as the number of the reader/writer processes with a label other than EOP,

then the case of a process reaching the label EOP (Pos1 > Pos2) can be considered as

the case of decreasing one of the components of the vector IntRW defined as:

IntRW (next) = (IntRW (next[1]), . . . , IntRW (next[M ]))

Therefore, the vector IntRW can be used as the decreasing quantity. We say that

IntRW has decreased if there is at least one element of the IntRw that has decreased,

while all the others have decreased or remained the same:

DQdecrease(s, t: state): bool = (EXISTS (i: index):

IntRW(t.next[i]) < IntRW(s.next[i])) AND

FORALL (i: index):

(IntRW(t.next[i]) <= IntRW(s.next[i]));

Note, however, that the ordering defined by DQdecrease is not total. We later

prove that this ordering implies the DQorder, as originally formulated in [15] and

reproduced in Section 2.3.2.

Now, the theorem of decreasing quantity as stated in Section 2.3.2, is formalized

in SAL by the following three theorems:

dqa: THEOREM main

|- G(FORALL (u: state): (s = u AND X(s /= u))

=> X(DQdecrease(u, s)));

dqb : THEOREM main

|-AG((FORALL (t: state): (s = t => EX(s /= t)))

OR FORALL (i: index): IntRW(s.next[i]) = 0);

dqc: THEOREM main

|- G((FORALL (i:index): IntRW(s.next[i]) = 0) =>

FORALL (i: index): s.next[i] /= waitAtPm1 OR
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s.next[i] /= waitAtPm2 OR s.next[i] /= waitAtPwr OR

s.next[i] /= waitAtPww);

Again, the automaton for the theorem dqa is extremely large, so that symbolic

checker cannot handle it. We solve this problem by introducing the dqmonitor module

to store the previous system state:

dqmonitor : MODULE =

BEGIN

INPUT s : state

OUTPUT prev_state : state

INITIALIZATION

prev_state = ((# m := (# cnt := 1, set := {x:index | false} #),

w := (# cnt := 1, set := {x: index | false} #),

rdcnt := 0, next := [[i:index] IF i <= n THEN r1

ELSE w1

ENDIF],

rd := 0, wt := 0 #))

TRANSITION

prev_state’ = s;

END;

We then verify the appropriately modified theorem:

dqa_new: THEOREM main || dqmonitor

|- X(G(prev_state /= s => DQdecrease(prev_state, s)));

which is easily model-checked.

The theorem dqb is not expressible in LTL logic (because LTL cannot express

the existence of a path with certain properties), so it cannot be model checked by

SAL’s symbolic model checker. However, this is the most general form of the theorem

applicable to any concurrent system. If we bring the insight of our problem into it

(meaning, state change is possible if there is at least one non-waiting process that has

not reached the label EOP and has an enabled transition), the theorem can be model

checked by checking the deadlock absence property (which we have already done) and

the LTL formula:
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dqb_new1p : THEOREM main || dqmonitor

|- X(G((prev_state = s => (EXISTS (k: index):

(IsReader[k] AND s.next[k] = r1 AND s.m.cnt = 1) OR

(IsReader[k] AND s.next[k] = r1 AND s.m.cnt < 1) OR

....)) OR FORALL (i: index): IntRW(s.next[i]) = 0));

where, again, the operand of first G is the first “non-waiting” enablement condition

from the TRANSITION part of process module, the argument of the second G is the

second “non-waiting” enablement condition etc. The SAL model checking results are

given in Table 4.2. The computation for checking dqa and dqb runs out of memory

for the system consisting of 5 readers and 5 writers, and the check for safety property

and dqc is extremely slow for the system with 6 readers and 6 writers. SAL performs

worse than SPIN, due mostly to the higher complexity of SAL model and the greater

size of state variable vector.

safety dqa new dqb new1p dqc
states time(s) states time(s) states time(s) states time(s)

3R/2W 9961 40 34962 180 34962 190 9961 40
5R/5W 14.9·106 2326 - - - - 14.9·106 2780
6R/6W 0.3·109 4044 - - - - 0.3·109 4044
7R/7W 6.1·109 55627 - - - - 6.1·109 55627

15R/10W - - - - - - - -

Table 4.2: SAL model checking results

4.2.3 Summary

In summary, we were able to model-check our model for safety and clean completion

(using the theorem of decreasing quantity). For the theorem of decreasing quantity,

we had to modify the second part of the theorem, since it initially was not expressible

in LTL. Moreover, since the current version of SAL is missing a full typechecker, we

were not able to check our specification for coverage and consistency, and had to

perform some additional checks (e.g., that the variables of a certain subrange type

will not cross the bounds of that type).
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While SAL’s performance on the more detailed model of the problem lags behind

the performance of SPIN, we note that the SAL model as described here will be

used in the next chapter for model-checking all the auxiliary invariants discovered by

deduction in PVS.



Chapter 5

Theorem Proving in PVS

In the previous chapter, we formalized the Readers/Writers problem with a fixed

number of readers/writers, rewritten as in [15] using the SAL specification language.

Safety and liveness properties were automatically proven using the SAL symbolic

model checker. In this chapter, we first try to verify the hand-written proof of the

full system with an arbitrarily large number of readers/writers from [15] and then

give a significantly more automated proof of the same problem combining theorem

proving in PVS and model checking in SAL.

5.1 The Theory Hierarchy

The theory hierarchy diagram is given in Figure 5.1, where A B denotes “The-

ory A is imported by theory B”. The decl theory contains the type definitions, func-

tions, etc. The theory conds imports the decl and defines the headers of the table

given in the theory transition. The getinv theory contains mostly unprovable

theorems, used for reaching the inductive invariant. The invj, invj1, and cardsem

theories define the invariants and theorems needed to prove the safety property. The

dq, dqb, dqbfinal, and ordering contain the definitions of the invariants and theo-

rems needed to prove the clean completion property.

34
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dqbfinal

dqb

dq

cardsem

invj1

invj getinv

transition

conds

decl

Figure 5.1: The theory hierarchy

5.2 The decl Theory

The decl theory in Figure 5.2 contains the definitions of types, functions, etc. The

program state is defined as the record type state. However, we also needed the

predicate subtype stateneop, which we use to help reflect the fact that a process

that has terminated (reached the label EOP) cannot become the executing process.

The process chosen in the execution of the program is identified by an index

variable pID (the variables are taken from [15]). A global variable of the type state

contains the resources shared by all the processes: semaphores m and w, then counters

rd, wt, rdcnt, array of processes’ labels next and pID, the identifier of the currently

executing process. Indices of the array are the process identifiers. The predicate
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M: posnat

ntype: TYPE = {i: nat | i <= M}

index: TYPE = {i: ntype | i >= 1} CONTAINING 1

n: ntype

label: TYPE = {r1, waitAtPm1, rlseAtPm1, r2, r3, waitAtPwr,

rlseAtPwr, r4, r5, r6, waitAtPm2, rlseAtPm2,

r7, r8, r9, w1, w2, w3,

waitAtPww, rlseAtPww, EOP}

x: VAR label

rlabel?(x): bool = (x = r1 or x = waitAtPm1 or

x = rlseAtPm1 or x = r2 or

x = r3 or x = waitAtPwr or

x = rlseAtPwr or x = r4 or

x = r5 or x = r6 or

x = waitAtPm2 or x = rlseAtPm2 or

x = r7 or x = r8 or

x = r9 or x = EOP)

wlabel?(x): bool = (x = w1 or x = w2 or x = w3 or

x = waitAtPww or x = rlseAtPww or

x = EOP)

IsReader(i: index): bool = (i <= n)

ar: TYPE = {a: [index -> label] | forall (i: index):

((IsReader(i) => rlabel?(a(i))) and

(not IsReader(i) => wlabel?(a(i))))}

importing finite_sets[index]

sem: TYPE = [#cnt: integer, set: finite_set#]

state: TYPE = [#

pID: index,

m: sem,

w: sem,

rdcnt: int,

next: ar,

rd: int,

wt: int #]

stateneop: TYPE = {s: state | next(s)(pID(s)) /= EOP}

Figure 5.2: Theory decl
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IsReader takes as an argument a variable of type index and is true if the process

in question is a reader process (i ≤ n), and false if the process is a writer process

(n < i ≤ M), where (0 ≤ n ≤ M).

This theory also contains a definition of the function IntRW (also taken from [15]),

used for proving the clean completion of the program. It maps all the possible values

of the variable next to integers as in Figure 5.3.

IntRW(x: label): int =

COND

x=r1 -> 15,

x=waitAtPm1 -> 14,

x=rlseAtPm1 -> 13,

x=r2 -> 12,

x=r3 -> 11,

x=waitAtPwr -> 10,

x=rlseAtPwr -> 9,

x=r4 -> 8,

x=r5 -> 7,

x=r6 -> 6,

x=waitAtPm2 -> 5,

x=rlseAtPm2 -> 4,

x=r7 -> 3,

x=r8 -> 2,

x=r9 -> 1,

x=w1 -> 5,

x=waitAtPww -> 4,

x=rlseAtPww -> 3,

x=w2 -> 2,

x=w3 -> 1,

x=EOP -> 0

ENDCOND

Figure 5.3: PVS definition of the function IntRW
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5.3 The table Theory

The tabular representation of the Readers/Writers rewritten program in Appendix B

(originally taken from [15]) is represented as a theory in PVS. Part of this theory is

shown in Figure 5.4.

trans(s : {s:stateneop |

NOT (p1(s) or p7(s) or p10(s) or p12(s)

or p15(s) or p19(s) or p25(s) or p28(s) or p30(s)

or p33(s) or p39(s))}, t: state): bool =

LET k: index = pID(s) IN

table

%---------------------------------------------------------------||

|p1(s)| ||

%---------------------------------------------------------------||

|p2(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) - 1 and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall (j:index): (j= k and next(t)(j) = r2) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

.

.

.

Figure 5.4: Tabular representation of Readers/Writers problem in PVS

The table from [15] is modeled with a transition relation trans. The relation

trans(s, t) evaluates to TRUE if one of the guard conditions p1(s) to p41(s) (whose

definitions are given in Appendix C.3) holds and the program can make the transition

from state s to t. Note that the PVS table is the original table transposed for

readability in the PVS ASCII text input format.

The first argument of the trans is of the type stateneop. In order to make the

relation total, the first argument is subtyped to reflect the fact that some states sat-

isfying certain predicates (p1(s), p7(s), p10(s), p12(s), p15(s), p19(s), p25(s),



5. Theorem Proving in PVS 39

p30(s), p33(s), p39(s)) can never be reached. The table entries corresponding to

those predicates are left blank. PVS generates TCCs that requires a user to prove that

the states satisfying those predicates are indeed unreachable (see Subsection 5.5.1).

The disjointness obligation for the table trans is automatically discharged by

PVS, and the completeness obligation is discharged after making the type constraints

of next explicit.

5.4 Verifying the Hand-Written Proof

The requirements of the Readers/Writers program say that only one writer can be

active while no reader is reading or one or more readers can read concurrently while

no writer is writing. This can be stated as in [15]:

(rd = 0 or wt = 0) and wt < 2

This global invariant is defined in PVS as two invariants rp1 and rp2:

t: VAR state

rp1(t): bool = wt(t) = 0 or rd(t) = 0

rp2(t): bool = wt(t) < 2

The initial condition for the system is given by:

initcond(t): bool = cnt(m(t)) = 1 and empty?(set(m(t))) and

cnt(w(t)) = 1 and empty?(set(w(t))) and

rd(t) = 0 and wt(t) = 0 and rdcnt(t) = 0 and

(forall (i: index): (i <= n and next(t)(i) = r1)

or (i > n and next(t)(i) = w1))

In initial state, the semaphore m is available (cnt(m(t)) = 1), and there are no

processes waiting for it (empty?(set(m(t)))). The same holds for the semaphore w.

The initial values of rd, wt, and rdcnt are zero, and the reader and writer processes

are at the r1 and w1 label, respectively.

Strictly following the manual proof of [15], we first try to prove rp1, by proving

that it is true after initialization:
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initrp1: theorem initcond(t) => rp1(t)

and, row by row (or, column by column, for the original table), that it is preserved

after every statement in the program.

One of the theorems from the manual proof of [15] we are to prove is:

s: VAR stateneop

t: VAR state

cc14rp1: theorem p14(s) and rp1(s) and trans(s, t) implies rp1(t)

The previous theorem states that if the p14 guard condition is satisfied, rp1

predicate holds, and the system makes a valid transition, the rp1 should also hold in

the new state.

Starting the PVS theorem prover gives three unprovable sequents, one of which is

the following:

{-1} (pID(s!1) <= n)

{-2} rlseAtPwr?(next(s!1)(pID(s!1)))

{-3} rd(s!1) = 0

{-4} rdcnt(t!1) = rdcnt(s!1)

{-5} rd(t!1) = 1

{-6} wt(t!1) = wt(s!1)

{-7} cnt(m(t!1)) = cnt(m(s!1))

{-8} set(m(t!1)) = set(m(s!1))

{-9} cnt(w(t!1)) = cnt(w(s!1))

{-10} set(w(t!1)) = set(w(s!1))

{-11} pID(t!1) = pID(s!1)

{-12} r4?(next(t!1)(pID(s!1)))

|-------

{1} wt(s!1) = 0

By analyzing the sequent shown above, we realize that it is requiring us

to show that if a process can get a permission to enter a critical section

(rlseAtPwr?(next(s!1)(pID(s!1))) then it must be that the critical section is

empty; therefore, there are no writers already writing (wt(s!1) = 0). The same

thinking can be applied to the remaining two sequents.

Therefore, the proposed new, auxiliary invariant would be:
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inv14(t): bool = forall (i: index): next(t)(i) = rlseAtPwr

=> wt(t) = 0

It states that if a reader process has acquired permission to enter critical section, it

must be the case that there are no writers in it; otherwise, it would happen that both

readers are reading and a writer is writing in the critical section at the same time.

The manual proof from [15] used two different invariants, denoted V8 and V10

(whose definitions can be found in the list of invariants from the manual proof in

Appendix C.5):

c14rp1: theorem p14(s) and rp1(s) and V8(s) and V10(s) and

trans(s, t) implies rp1(t)

This theorem, however, could not be proven in PVS. The unprovable sequent

indicated the inv14 invariant again. By investigating the manual proof, we came

to the conclusion that the error was made because one branch of the proof was not

explored at all: the first disjunct of the consequent of formula V8 was left out during

the course of the proof. This corresponds to the case when there is a writer writing,

and a reader got permission to enter the same critical section. Obviously, this is not

possible, but this conclusion does not follow from the facts provided in the theorem

c14rp1.

If we continue proving rp1 for the remaining rows, discovering more invariants,

then those discovered invariants should be proven themselves. However, proving the

auxiliary invariants of the form (∃i : (i = pID(t) ∧ next(t)(i) = l)) ⇒ P (t), where P

is a predicate on the global state of the system t, and l is some label, discovered a more

serious flaw of the proof: only part of the transition relation was explored. Model

checking in SAL confirmed this conclusion. The manual proof actually considered

the relation from the table with an additional assumption: the pID of the currently

executing process does not change after the transition of the program to the next state.

(Even for this modified relation we found two invariants in [15] needed strengthening

(V10, V15)). Since only a part of the relation was explored, some of the invariants

found by hand do not hold in all the states of the system with the full transition

relation. For instance, the invariant V12 from [15]:

V12(t): bool = (exists (i: index): i = pID(t) and
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(next(t)(i) = r1 or next(t)(i) = rlseAtPm1 or

next(t)(i) = r2 or next(t)(i) = r4 or

next(t)(i) = r5 or next(t)(i) = r6 or

next(t)(i) = rlseAtPm2 or next(t)(i) = r7 or

next(t)(i) = r9)) implies rd(t) = rdcnt(t)

claims that ‘if any reader when executed has a label of e.g. r1, then it must be

that rd is equal to rdcnt’. But, this is not the case. In fact, it can happen that

there is another process whose label is e.g. r3, so that at a state of executing the

process with r1 label, rdcnt would be greater than rd. The counterexample for the

system with two readers and two writers was generated by model checking a modified

version of the invariant in SAL. The invariant is modified, because we did not need to

explicitly model the pID of the currently executing process in SAL, since the model

checker explores all the possible subsequent states of a state, corresponding to different

processes being chosen to be executed next, the validity of the counterexample given

below is preserved. The modified invariant is:

V12(t): bool = (exists (i: index):

(next(t)(i) = r1 or next(t)(i) = rlseAtPm1 or

next(t)(i) = r2 or next(t)(i) = r4 or

next(t)(i) = r5 or next(t)(i) = r6 or

next(t)(i) = rlseAtPm2 or next(t)(i) = r7 or

next(t)(i) = r9)) implies rd(t) = rdcnt(t)

Counterexample generated by SAL is given below:

(r1, r1, w1, w1, 0, 0)
pID=1
→ (r2, r1, w1, w1, 0, 0)

pID=1
→ (r3, r1, w1, w1, 0, 1)

The 6-tuples represent the relevant part of the program state: (next[1],

next[2], next[3], next[4], rd, rdcnt).

To gain a better understanding of what the PVS version of the manual proof really

proved, take a look at the V9 invariant, also from [15]:

V9(t): bool = (exists (i: index): i = pID(t) and

next(t)(i) = r7) => rdcnt(t) > 0
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which should actually be

V9_new(t): bool = (exists (i: index):

next(t)(i) = r7) => rdcnt(t) > 0

The PVS version of the manual proof proved that the predicate V9 is invariant if

there is exactly one process with label r7 (a process having a label r7 is in the critical

section of semaphore m) in state s and that is the process currently executing, or there

are no processes at the r7 label in state s. It has not, however, discharged the proof

obligations in the case where e.g., there is at least one process with the r7 label in

state s, but any other process is chosen to be executed. In this case, there cannot

exist a process whose execution would decrease rdcnt. If this was the case, it would

mean that there exists another process with label r7, which is a contradiction, because

there cannot be two processes in the critical section of semaphore m. Therefore, we

need another invariant:

CS1(t): bool = (forall (i, j: index): CS1pred(t, i)

and CS1pred(t, j) => i = j)

where

i: VAR index

CS1pred(t, i): bool = next(t)(i) = rlseAtPm1 or

next(t)(i) = r2 or next(t)(i) = r3 or

next(t)(i) = r4 or next(t)(i) = rlseAtPm2 or

next(t)(i) = r7 or next(t)(i) = r8 or

next(t)(i) = r9 or next(t)(i) = waitAtPwr or

next(t)(i) = rlseAtPwr

It says that it cannot be the case that there is more than one process in the critical

section of semaphore m. The same thing, of course, holds for semaphore w. This will

be discovered by PVS, as suggested in the next section.

5.5 Verification in PVS Revisited

In this subsection we give a significantly automated proof for both safety and liveness

properties. While the PVS proof still mimics the manual proof’s “divide and conquer”
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technique by considering the proof in a row by row case, the process is significantly

automated. Rather than having to explicitly state and prove a theorem for each row

of the table, proof tactics have been developed that examine the structure of the table

and decompose the complete proof obligation into proof subgoals, one for each row

of the table.

5.5.1 Proof of the Safety Property

First, we change the requirement from [15] as indicated in Subsection 4.1.2:

rp(t): bool = (wt(t) = 0 or rd(t) = 0) and

wt(t) < 2 and rd(t) >= 0 and wt(t) >= 0

Secondly, we prove the global property for the whole table at once, rather than

using “a theorem per row” approach:

crp11: lemma forall t: (initcond(t) => rp(t))

and forall s, t: ((rp(s) and trans(s, t)) => rp(t))

Attempt to prove the crp11 theorem with (GRIND) after making the type con-

straints of next explicit and instantiating the corresponding formula with pID(s!1)

yields 210 subgoals (it takes less than 5 minutes), one of which is shown here:

crp11.2.1 :

{-1} pID(t!1) <= M

{-2} pID(t!1) >= 1

{-3} r1?(next(s!1)(pID(s!1)))

{-4} wt(s!1) = 0

{-5} rd(s!1) >= 0

{-6} rdcnt(t!1) = rdcnt(s!1)

{-7} rd(t!1) = rd(s!1)

{-8} set(m(t!1)) = set(m(s!1))

{-9} cnt(m(t!1)) = cnt(m(s!1))

{-10} cnt(w(t!1)) = 1 + cnt(w(s!1))

{-11} set(w(s!1))(pID(t!1))

{-12} set(w(t!1)) = remove(pID(t!1), set(w(s!1)))

{-13} wt(t!1) = -1

{-14} (p!1 = pID(t!1))
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{-15} waitAtPww?(next(s!1)(pID(t!1)))

{-16} rlseAtPww?(next(t!1)(pID(t!1)))

|-------

{1} pID(s!1) > n

{2} cnt(m(s!1)) = 1

{3} EOP?(next(t!1)(pID(t!1)))

{4} cnt(m(s!1)) < 1

{5} (pID(t!1) = pID(s!1))

The lines {2} and {3} of the previous sequent combined require that cnt(m(s!1))

cannot be greater than 1. This should always hold according to the specification of

the semaphore. So, we need to strengthen our property with S1(s): S1(s):

S1(t): bool = cnt(m(t)) <= 1

Most of the subgoals are repeated, so it is not as hard to analyze the sequents as

it may appear at first. The number of unprovable goals drastically decreases in the

next iterations.

After considering all of the 210 subgoals, we obtained a set of twelve invariants

given in Appendix C.3 to be used to strengthen the initial invariant, so we now prove

the stronger property:

s: VAR stateneop

t: VAR state

ind1(t): bool = rp(t) and S1(t) and S2(t) and S31(t)

and S32(t) and S41(t) and S5(t)

and S6(t) and S7(t) and S81(t)

and S82(t) and S91(t) and S101(t)

crpind1: lemma (forall t: initcond(t) => ind1(t))

and forall s, t: (ind1(s)

and trans(s, t) => ind1(t))

Using the knowledge gained from the analysis in the previous section, we designed

a strategy to prove this lemma, or, rather, gain new invariants. Branches of the

proof corresponding to the invariants that are universally quantified on i are split

into two cases. First case, for i!1 = pID(s!1), we apply GRIND, and contemplate
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the invariants from the unprovable sequents. However, we choose to skip the case for

i!1 /= pID(s!1), since the vast majority of the failed goals corresponding to this

branch can be subsumed into an invariant saying that there cannot be more than one

process in the critical section of semaphore m and semaphore w. One of the sequents

gained from these branches (i!1 /= pID(s!1)) is the following:

crpind1.2.4.2.2 :

{-1} r4?(next(s!1)(i!1))

{-2} r4?(next(s!1)(pID(s!1)))

{-3} wt(s!1) = 0

{-4} rd(s!1) >= 0

{-5} (cnt(w(s!1)) <= 1)

{-6} (rdcnt(s!1) >= 0)

{-7} cnt(m(s!1)) = 0

{-8} rdcnt(t!1) = rdcnt(s!1)

{-9} rd(t!1) = rd(s!1)

{-10} wt(t!1) = 0

{-11} cnt(m(t!1)) = 1

{-12} set(m(t!1)) = set(m(s!1))

{-13} cnt(w(t!1)) = cnt(w(s!1))

{-14} set(w(t!1)) = set(w(s!1))

{-15} next(t!1)(i!1) = next(s!1)(i!1)

|-------

[1] i!1 = pID(s!1)

{2} r1?(next(s!1)(pID(s!1)))

{3} waitAtPm1?(next(s!1)(pID(s!1)))

{4} rlseAtPm1?(next(s!1)(pID(s!1)))

{5} r2?(next(s!1)(pID(s!1)))

{6} r3?(next(s!1)(pID(s!1)))

{7} waitAtPwr?(next(s!1)(pID(s!1)))

{8} rlseAtPwr?(next(s!1)(pID(s!1)))

{9} pID(s!1) > n

{10} cnt(w(s!1)) = 1

The invariant corresponding to this sequent says that there cannot be two different

processes at one time with the label r4 (a process whose label is equal to r4 is in the

critical section of semaphore m). This invariant is a part of one of the two ‘semaphore’

invariants CS1 and CS2, whose definitions are given in Appendix C.4.
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We continue on with strengthening the property using the same tactic without

using semaphore invariants, until we prove that the conjunction of the global property

and the newly found invariants is inductive for the branches corresponding to i!1 =

pID(s!1). We needed six iterations to reach inductivity. Every iteration contains

the following steps:

1. We formalize the theorem in PVS that states that a property includes all the

initial states and is closed under all possible transitions.

2. If the proof fails, we obtain the new potential auxiliary invariants indicated by

unprovable sequents.

3. New invariants are model checked in SAL.

4. The desired property now becomes the conjunction of the old property and

newly found ones. However, we choose to prove only the properties that were

not proved (for i!1=pID(s!1)) in the previous iteration and the newly found

ones.

As indicated in step 3, all the auxiliary invariants are first model checked. The

list of those can be found in Appendix C.4. The verification using model checking

being fully automatic made the checking of the auxiliary invariants fast and easy. It

increased the confidence in our PVS deductive analysis and provided fast discovery of

“fake” invariants (proposed invariants originating in a mistake made while contem-

plating the invariant from the characteristic equation of an unprovable sequent). The

mistake would, obviously, be caught by PVS, but at best in the next iteration (which

is still time-consuming and not as obvious), and under the assumption that the SAL

and PVS models are equivalent.

Now, we are to prove that all those auxiliary invariants are invariants. We came

up with another four auxiliary invariants, corresponding to the cases where the label

of a process is changed by executing another process (a process is releasing semaphore,

and the other process can enter the critical section). We ended up with 42 invariants

all together. Proofs of the ‘semaphore’ invariants are divided into lemmas because of

the time and memory constraints. Special proof tactics were also written for those

lemmas.
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All the strategies are in Appendix C.3. They all use a “divide and conquer”

policy: every proof is split into 31 branches (where 31 is the number of non-blank

table columns). We did not use PVS’ built-in strategy bddsimp (propositional sim-

plification) to break down proof goals; in the general case, the use of bddsimp would

result in many more goals than the number of rows - those would correspond to the

disjuncts in the grid cells of the table. Obtained goals are then tackled with the same

tactic. This tactic is chosen so that the degree of the automaton of the process, and

memory and time consumption, are balanced. The vast majority of the invariant

proofs (around 80%) are completely automated using those strategies; for the rest,

after applying a corresponding strategy, the unprovable sequents of some branches

clearly indicate the further steps, so that a minimal level of human insight is needed

to help finish up the proofs. The achieved run-times of the proofs can be decreased

with more human interaction. The higher level of human guidance would involve

choosing the invariants needed for a particular auxiliary invariant proof (since not all

the invariants in the inductive invariant are needed to prove each auxiliary invariant)

and would substantially decrease the times.

At the end, we are to prove the proof obligations for each of the final lemmas, e.g.

for the S121 invariant:

% Subtype TCC generated (at line 266, column 38) for s

% expected type {s: state1 |

% NOT ( p1(s) OR p7(s) OR p10(s) OR p12(s)

% c\ OR p15(s) OR p19(s) OR p25(s) OR p28(s)

% OR p30(s) OR p33(s) OR p39(s))}

% untried

crpind121_TCC1: OBLIGATION

(FORALL t: initcond(t) => S121(t)) IMPLIES

(FORALL (s, t1):

indc(s) IMPLIES

NOT ( p1(s) OR p7(s) OR p10(s)

OR p12(s) OR p15(s) OR p19(s)

OR p25(s) OR p28(s) OR p30(s) OR p33(s) OR p39(s)));
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for which strategies are also written. These obligations require us to prove that

the system, so far described with the invariant indc, can never reach a state which

satisfies any of the p1 to p39 predicates.

The process of proving the safety property as proposed is largely an automated

one. First, the unprovable sequents as the indicators of the invariants needed are

obtained automatically, using specially written strategies. However, human insight

is needed to determine the invariants from these unprovable sequents. The pro-

cess of proving that those new invariants are invariants indeed is completely auto-

mated for the majority of invariants and takes 10 minutes on average (except for the

“semaphore” invariants which take few hours). The semaphore invariants are system

specific, but could, in the future be generalized in a “semaphore” theory.

5.5.2 Proof of the Theorem of Decreasing Quantity

We use the vector IntRW as a decreasing quantity as explained in Subsection 4.2.2.

We redefine the predicate DQdecrease in PVS as:

s:VAR stateneop

t: VAR state

DQdecrease(s, t): bool = (exists i: IntRW(next(s)(i)) >

IntRW(next(t)(i))) and

(forall i: IntRW(next(s)(i)) >=

IntRW(next(t)(i)))

The theorem of decreasing quantity is given in Section 2.3.2 (originally taken from

[15]).

We first formalize the first part of the theorem of decreasing quantity. We prove

that every two states, s and its next state t, that differ in at least one field other

than the pID field, satisfy DQdecrease(s, t):

s:VAR stateneop

t: VAR state

dqa: theorem indc4(s) => (trans(s, t) and not (m(s) = m(t) and

w(s) = w(t) and rdcnt(s) = rdcnt(t) and
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(forall i: next(s)(i) = next(t)(i)) and

rd(s) = rd(t) and wt(s) = wt(t)) => DQdecrease(s, t))

The predicate indc4 (defined in Appendix C.3 in the PVS file cardsem) is the in-

ductive invariant found in the safety property proof. Therefore, it contains all the

information on our state space that we have obtained so far.

Part b) of the theorem of decreasing quantity states that it is either the case that

the decreasing quantity has reached zero, or that there is a possible state change

(other than change of pID). We formalize it as:

s1, t, u: VAR state

dqb: lemma forall s1: (indc4(s1) =>

((forall i: IntRW(next(s1)(i)) = 0) or

(exists t: (trans(s1, t) and

(not (m(s1) = m(t) and

w(s1) = w(t) and rdcnt(s1) = rdcnt(t) and

(forall i: next(s1)(i) = next(t)(i)) and

rd(s1) = rd(t) and wt(s1) = wt(t)) or

(exists u: (trans(t, u) and not (m(t) = m(u) and

w(t) = w(u) and rdcnt(t) = rdcnt(u) and

(forall i: next(t)(i) = next(u)(i)) and

rd(t) = rd(u) and wt(t) = wt(u)))))))))

The dqc part of the decreasing quantity theorem says that if the decreasing quan-

tity has reached zero, then there are no waiting processes:

t: VAR state

dqc: theorem indc4(t) => (forall (i: index): IntRW(next(t)(i)) = 0)

implies (forall (i: index): (next(t)(i) /= waitAtPm1

and next(t)(i) /= waitAtPm2 and next(t)(i) /= waitAtPwr

and next(t)(i) /= waitAtPww))

Proving the dqb theorem required the additional strengthening of the invariant

that was found sufficient for proving the safety property. Reduction of the state

space from indc4 to indc8 (definition of indc8 is given in Appendix C.3 in the PVS
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file dqbfinal) would have required many iterations, if we were to use exclusively

the failed goals in PVS in order to come up with the invariants. These iterations

were skipped by human intervention with significant help of the SAL model checker.

We needed 12 new invariants. The proofs for those invariants are not completely

automated, since the proofs are distinct, so we did not feel that we would benefit

from writing strategies. On the other hand, the theorems dqa and dqc were easily

proven. Finally, we proved that the partial order DQdecrease implies the total order

DQorder from the original theorem of decreasing quantity from [15].

5.6 Summary

We formalized the Readers/Writers problem rewritten into a table as in [15] in PVS.

The verification of the manual proof of the safety property from [15] using a combina-

tion of theorem proving in PVS and model checking in SAL has discovered mistakes

in the manual proof. This was a rather useful guide to some of the problems one

might encounter in inspecting a concurrent problem using the method proposed in

[15], and provided an understanding of the importance of automation in the process.

Finally, a significantly automated proof of the safety property was given using PVS

proof tactics, while the proof of the clean completion property required significant

human assistance.



Chapter 6

Conclusion

6.1 Summary

The state explosion problem limits the scope of use of model checking. For large

state spaces theorem proving still remains the inevitable option. Many techniques

have tried to combine the automaton of model checking and generality of theorem

proving. The central role of our approach is given to theorem proving. Model-checking

is used for refutation purposes: as a debugging tool for the original program (SPIN),

or the program rewritten into a table (SAL) in case SPIN missed on finding some

bugs, or they were introduced while rewriting the program into a table. Moreover,

SAL proved to be extremely useful for checking the auxiliary invariants.

We believe that the contributions of our work are the following:

• We provided partial automaton of the inspection process of [15].

• We provided the basis for automated reasoning about concurrent programs

based on tabular expressions. We believe that many of the issues dealt in the

analysis of the Readers/Writers example in this thesis will reappear in the veri-

fication of other concurrent problems using the same inspection approach. E.g.,

the use of ’pregenerated’ invariants inherent to the synchronization (communi-

cation) mechanisms used would significantly reduce the time needed to obtain

the final, inductive invariant. Moreover, as the next variable is inherent to this

inspection process, the reappearance of the universally quantified implications

52



6. Conclusion 53

of the form ∀i : (next(t)(i) = l ⇒ P (t)), where P is a predicate on the global

state of the system t, and l is some label, is predictable. Therefore, the tactics

written for some types of invariant are reusable to a certain extent.

• We illustrated the necessity of the computer-aided verification of the concurrent

systems in inspection of [15] by automating the manual proof of the safety prop-

erty of the Readers/Writers problem (as in [15]). The proposed combination

of theorem proving and model checking discovered several inadvertent and one

systematic mistake in the manual proof. More precisely, model checking itself

indicated that some of the invariants found in manual proof were not the invari-

ants of the program. Theorem proving offered a better insight into the depth

of the systematic mistake made: it showed exactly what part of the transition

relation was left out by the mistake.

• A detailed example of the computer-aided verification of the concurrent pro-

grams with arbitrarily large number of processes is given.

• Theorem proving and model checking were successfully combined. Two model

checking tools (one of which is specialized for models of concurrency, the other

one with an input language very close to that of the theorem prover) were

used for model checking the classical concurrent program. Ideally, we would

want to have used only one model checking tool, which would be specialized

for concurrency and offer a successful combination with a theorem prover (e.g.,

capability to export from one to another).

• Our approach pointed out the need for a symbolic analysis framework that

would successfully integrate model checking, theorem proving, invariant gener-

ation and abstraction.

Although it provided for a fast and automatic finding of bugs, model checking

was not sufficient to prove the correctness of the systems with arbitrary number of

processes: only the instances of the system could be checked. This is why theorem

proving was needed.

We used a PVS construct for tabular specification in order to specify our program.

The construct generated a proof obligations to ensure that the row conditions are
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disjoint and complete. Since the construct is highly integrated with other capabilities

of PVS, we were able to prove the invariant property and the theorem of decreasing

quantity. Failed proofs indicated additional invariants needed to prove the invariant

of the program. Formalizing the same problem in SAL using the symbolic model-

checker provided checking the auxiliary invariants using the symbolic model-checker

(but, for the system with the fixed number of processes) and increased the confidence

in our deductive analysis.

6.2 Limitations and Future Work

In our verification of Readers/Writers program we used a specific implementation of

semaphore, as specified in Appendix A. For future work, we would suggest investi-

gating the possibility of using the specification of a synchronization primitive rather

than its implementation. This should enable us to use the same proof for different

implementations of a synchronization primitive, while only verifying its specification

axioms as given in [10], against a particular implementation.

The process of finding an invariant strong enough is crucial in order to prove safety

property and theorem of decreasing quantity, as already concluded in [15]. Finding

the auxiliary invariants and proving that those are indeed the invariants of the system

was automated as far as possible using special tactics based on PVS’ built-in decision

procedures. The proof of the majority of invariant lemmas is completely automated

and took as much as 10 minutes on average. Substantial human guidance can be

used to decrease the times. We believe that the planned integration of PVS and ICS

decision procedures [9] will significantly reduce the time needed to complete the proof.

Obviously, the translator from SAL to PVS would make the process more effec-

tive. The further development of SAL as a powerful tool combining the theorem

proving, model checking, abstraction and invariant generation will offer the means of

the enhanced analysis, including the automated invariant generation and the existen-

tial abstraction as suggested in [34]. We believe that the lessons learned during the

course of this thesis will offer a valuable guidance on combining tables and automated

verification for the successful inspection of concurrent systems.
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Appendix A

Specification of P/V Semaphore

Operations

The following tabular specification of P/V operations of a semaphore is taken from

[15].

Figure A.1 represent the tabular representation of P (sem) operation of sem

semaphore. x represents the label of currently executing process with pID equal

to i. The function NextLabel(x) returns the label of the next statement in the ex-

ecution of the process. ‘v and v′, where v is a variable, represent the value of that

variable before and after P/V operation, respectively. Figure A.2 contain the tabular

specification of V (sem) operation.

′sem.cnt > 1 ′sem.cnt = 1 ′sem.cnt < 1

sem.cnt′| false sem.cnt′ = ‘sem.cnt − 1 sem.cnt′ = ‘sem.cnt − 1

sem.set′| false sem.cnt′ = ‘sem.set sem.set′ = ‘sem.cnt ∪ {i}

next′| false Table a) Table b)

Table a): ∀j,

j = i j 6= i

next[j]′ = NextLabel(x)next[j]′ =′ next[j]

Table b): ∀j,

j = i j 6= i

next[j]′ = waitAtPsemnext[j]′ = ‘next[j]

Figure A.1: Specification of P (sem) operation
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′sem.cnt > 0 ‘sem.cnt = 0 ‘sem.cnt < 0

sem.cnt′| false sem.cnt′ = ‘sem.cnt + 1 sem.cnt′ = ‘sem.cnt + 1

sem.set′| false sem.cnt′ = ‘sem.set ∃t : (t ∈ ‘sem.set∧
sem.set′ = ‘sem.set − {t})

next′| false Table a) Table b)

Table a): ∀j,

j = i j 6= i

next[j]′ = NextLabel(x)next[j]′ = ‘next[j]

Table b): ∀j,

j = i j 6= i ∧ j ∈ (‘sem.set −
sem.set′) ∧ ‘next[j] =
waitAtPsem

j 6= i ∧ ¬(j ∈ (‘sem.set −
sem.set′) ∧ ‘next[j] =
waitAtPsem)

next[j]′ = NextLabel(x)next[j]′ = rlseAtPsem next[j]′ = ‘next[j]

Figure A.2: Specification of V(sem) operation



Appendix B

The Tabular Representation of the

Rewritten Readers/Writers

Program

The tabular representation of the rewritten program as given in [15] is given in fig-

ures B.1 and B.2.
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pID = k ∧ IsReader

‘next[k] = r1
‘next[k] =
waitAtPm1

‘next[k] =
rlseAtPm1 ‘next[k] = r2 ‘next[k] = r3

‘m.cnt >
1 ‘m.cnt = 1 ‘m.cnt < 1 ‘rdcnt = 1∧

‘rdcnt <
1 ‘rdcnt > 1∧

‘w.cnt >
1 ‘w.cnt = 1 ‘w.cnt < 1 ‘w.cnt < 1

‘w.cnt ≥
1

rdcnt′ = ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt + 1 ‘rdcnt ‘rdcnt ‘rdcnt

rd′ = ‘rd ‘rd ‘rd ‘rd ‘rd ‘rd + 1 ‘rd ‘rd + 1

wt′ = ‘wt ‘wt ‘wt ‘wt ‘wt ‘wt ‘wt ‘wt

m.cnt′ = ‘m.cnt − 1 ‘m.cnt − 1 ‘m.cnt ‘m.cnt ‘m.cnt ‘m.cnt ‘m.cnt ‘m.cnt

m.set′|
m.set′ =
‘m.set

m.set′ =
‘m.set ∪ {k}

m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ =
‘m.set

w.cnt′ = ‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt − 1 ‘w.cnt − 1 ‘w.cnt

w.set′|
w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set ∪ {k}

w.set′ =
‘w.set

pID′|
next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′| Tab2 Tab3 Tab4 Tab5 Tab6 Tab8 Tab9 Tab11
1 2 3 4 5 6 7 8 9 10 11 12

pID = k ∧ IsReader
′next[k] =
waitAtPwr

‘next[k] =
rlseAtPwr

‘next[k] = r4 ‘next[k] = r5 ‘next[k] = r6 ‘next[k] =
waitAtPm2

‘next[k] =
rlseAtPm2

‘m.cnt >
0

‘m.cnt = 0 ‘m.cnt < 0 ‘m.cnt >
1

‘m.cnt = 1 ‘m.cnt < 1

rdcnt′= ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt

rd′ = ‘rd ‘rd + 1 ‘rd ‘rd ‘rd ‘rd ‘rd ‘rd ‘rd

wt′ = ‘wt ‘wt ‘wt ‘wt ‘wt ‘wt ‘wt ‘wt ‘wt

m.cnt′ =‘m.cnt ‘m.cnt ‘m.cnt + 1 ‘m.cnt+1 ‘m.cnt ‘m.cnt − 1 ‘m.cnt − 1 ‘m.cnt ‘m.cnt

m.set′| m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ =
‘m.set

∃t : (t ∈
‘m.set∧m.set′ =
‘m.set − {t})

m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ =
‘m.set ∪ {k}

m.set′ =
‘m.set

m.set′ =
‘m.set

w.cnt′ =‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt

w.set′ | w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ = ‘w.set w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set

pID′| next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′| Tab13 Tab14 Tab16 Tab17 Tab18 Tab20 Tab21 Tab22 Tab23
13 14 15 16 17 18 19 20 21 22 23

Figure B.1: The tabular representation of the rewritten Readers/Writers Program
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pID = k ∧ IsReader
‘next[k] = r7 ‘next[k] = r8 ‘next[k] = r9

‘rdcnt = 0 ‘rdcnt < 0‘rdcnt > 0 ‘m.cnt > 0‘m.cnt = 0 ‘m.cnt < 0
‘w.cnt > 0‘w.cnt = 0 ‘w.cnt < 0

rdcnt′ =‘rdcnt − 1 ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt

rd′ = ‘rd ‘rd − 1 ‘rd − 1 ‘rd − 1 ‘rd ‘rd

wt′ = ‘wt ‘wt ‘wt ‘wt ‘wt ‘wt

m.cnt′ =‘m.cnt ‘m.cnt ‘m.cnt ‘m.cnt ‘m.cnt + 1 ‘m.cnt + 1

m.set′| m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ = ‘m.set m.set′ =
‘m.set

m.set′ = ‘m.set ∃t : (t ∈ ‘m.set ∧
m.set′ = ‘m.set −
{t})

w.cnt′ =‘w.cnt ‘w.cnt + 1 ‘w.cnt + 1 ‘w.cnt ‘w.cnt ‘w.cnt

w.set′ | w.set′ =
‘w.set

w.set′ =
‘w.set

∃t : (t ∈ ‘m.set ∧
m.set′ = ‘m.set −
{t})

w.set′ =
‘w.set

w.set′ = ‘w.set w.set′ = ‘w.set

pID′| next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6= EOP ∨
∀i : next′[i] = EOP

next′[pID′] 6=
EOP

next′| Tab24 Tab26 Tab27 Tab29 Tab31 Tab32
24 25 26 27 28 29 30 31 32

pID = k ∧ IsWriter
‘next[k] = w1 ‘next[k] =

waitAtPww
‘next[k] =
rlseAtPww

‘next[k] = w2 ‘next[k] = w3

‘w.cnt > 1‘w.cnt = 1 ‘w.cnt < 1 ‘w.cnt > 0‘w.cnt = 0 ‘w.cnt < 0
rdcnt′ = ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt ‘rdcnt

rd′ = ‘rd ‘rd ‘rd ‘rd ‘rd ‘rd ‘rd

wt′ = ‘wt + 1 ‘wt ‘wt ‘wt + 1 ‘wt ‘wt − 1 ‘wt − 1

m.cnt′ = ‘m.cnt ‘m.cnt ‘m.cnt ‘m.cnt ‘m.cnt ‘m.cnt ‘m.cnt

m.set′| m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ =
‘m.set

m.set′ = ‘m.set m.set′ = ‘m.set

w.cnt′ = ‘w.cnt − 1 ‘w.cnt − 1 ‘w.cnt ‘w.cnt ‘w.cnt ‘w.cnt + 1 ‘w.cnt + 1

w.set′ | w.set′ =
‘w.set

w.set′ =
‘w.set ∪ {k}

w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ =
‘w.set

w.set′ = ‘w.set ∃t : (t ∈ ‘w.set ∧
w.set′ = ‘w.set −
{t})

pID′| next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6=
EOP

next′[pID′] 6= EOP ∨
∀i : next′[i] = EOP

next′[pID′] 6=
EOP

next′| Tab34 Tab35 Tab36 Tab37 Tab38 Tab40 Tab41
1 2 3 4 5 6 7 8 9

Figure B.2: Figure B.1 continued
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Tab2: ∀j,

j = k j 6= k

next[j]′ = r2 next[j]′ =′ next[j]

Tab3: ∀j,

j = k j 6= k

next[j]′ = waitAtPm1 next[j]′ =′ next[j]

Tab4: ∀j,

j = k j 6= k

next[j]′ =′ next[j] next[j]′ =′ next[j]

Tab5: ∀j,

j = k j 6= k

next[j]′ = r2 next[j]′ =′ next[j]

Tab6: ∀j,

j = k j 6= k

next[j]′ = r3 next[j]′ =′ next[j]

Tab8: ∀j,

j = k j 6= k

next[j]′ = r4 next[j]′ =′ next[j]

Tab9: ∀j,

j = k j 6= k

next[j]′ = waitAtPwr next[j]′ =′ next[j]

Tab11: ∀j,

j = k j 6= k

next[j]′ = r4 next[j]′ =′ next[j]

Tab13: ∀j,

j = k j 6= k

next[j]′ =′ next[j] next[j]′ =′ next[j]

Tab14: ∀j,

j = k j 6= k

next[j]′ = r4 next[j]′ =′ next[j]

Tab16: ∀j,

j = k j 6= k

next[j]′ = r5 next[j]′ =′ next[j]

Tab17: ∀j,
j = k j 6= k ∧ j ∈ (′m.set − m.set′) j 6= k ∧ (j /∈ (′m.set − m.set′)∨

′next[j] = waitAtPm1 ′next[j] = waitAtPm2 ¬(′next[j] = waitAtPm1 ∨′ next[j] =
waitAtPm2))

next[j]′ = r5 next[j]′ = rlseAtPm1 next[j]′ = rlseAtPm2 next[j]′ =′ next[j]

Tab18: ∀j,

j = k j 6= k

next[j]′ = r6 next[j]′ =′ next[j]

Tab20: ∀j,

j = k j 6= k

next[j]′ = r7 next[j]′ =′ next[j]

Tab21: ∀j,

j = k j 6= k

next[j]′ = waitAtPm2 next[j]′ =′ next[j]

Tab22: ∀j,

j = k j 6= k

next[j]′ =′ next[j] next[j]′ =′ next[j]

Tab23: ∀j,

j = k j 6= k

next[j]′ = r7 next[j]′ =′ next[j]

Tab24: ∀j,

j = k j 6= k

next[j]′ = r8 next[j]′ =′ next[j]
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Tab26: ∀j,

j = k j 6= k

next[j]′ = r9 next[j]′ =′ next[j]

Tab27: ∀j,

j = k j 6= k ∧ j ∈ (′m.set − m.set′) j 6= k ∧ (j /∈ (′m.set − m.set′)∨
′next[j] = waitAtPww ¬′next[j] = waitAtPww)

next[j]′ = r9 next[j]′ = rlseAtPww next[j]′ =′ next[j]

Tab29: ∀j,

j = k j 6= k

next[j]′ = r9 next[j]′ =′ next[j]

Tab31: ∀j,

j = k j 6= k

next[j]′ = EOP next[j]′ =′ next[j]

Tab32: ∀j,
j = k j 6= k ∧ j ∈ (′m.set − m.set′) j 6= k ∧ (j /∈ (′m.set − m.set′)∨

′next[j] = waitAtPm1 ′next[j] = waitAtPm2 ¬(′next[j] = waitAtPm1 ∨′ next[j] = waitAtPm2))

next[j]′ = EOP next[j]′ = rlseAtPm1 next[j]′ = rlseAtPm2 next[j]′ =′ next[j]

Tab34: ∀j,

j = k j6= k

next[j]′ = w2 next[j]′ =′ next[j]

Tab35: ∀j,

j = k j 6= k

next[j]′ = waitAtPww next[j]′ =′ next[j]

Tab36: ∀j,

j = k j 6= k

next[j]′ =′ next[j] next[j]′ =′ next[j]

Tab37: ∀j,

j = k j 6= k

next[j]′ = w2 next[j]′ =′ next[j]

Tab38: ∀j,

j = k j 6= k

next[j]′ = w3 next[j]′ =′ next[j]

Tab40: ∀j,

j = k j 6= k

next[j]′ = EOP next[j]′ =′ next[j]

Tab41: ∀j,
j = k j 6= k ∧ j ∈ (′w.set − w.set′) j 6= k ∧ (j /∈ (′w.set − w.set′)∨

′next[j] = waitAtPww ′next[j] = waitAtPwr ¬(′next[j] = waitAtPww ∨′ next[j] = waitAtPwr))

next[j]′ = EOP next[j]′ = rlseAtPww next[j]′ = rlseAtPwr next[j]′ =′ next[j]



Appendix C

The Readers/Writers Model in

SPIN, SAL, and PVS

C.1 The Readers/Writers Model in SPIN

mtype {p, v};

chan mutex = [0] of {mtype};

chan w = [0] of {mtype};

int wt, rd, rdcnt = 0;

active proctype m1()

{

byte count=1;

do

:: (count == 1) ->

end: mutex!p; count = 0

:: (count == 0) ->

mutex?v; count = 1

od

}

active proctype m2()

{

byte count=1;

do

:: (count == 1) ->

end: w!p; count = 0

:: (count == 0) ->

w?v; count = 1

od

}

active [10] proctype reader()

{

mutex?p;

rdcnt++;

atomic{

if

:: rdcnt == 1 ->

w?p;

:: else ->

fi;

rd++}

mutex!v;

66
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critical: skip;

mutex?p;

rdcnt--;

atomic

{

rd--;

if

:: rdcnt == 0 -> w!v

:: else ->

fi

};

mutex!v;

}

active [10] proctype writer()

{

atomic{

w?p; wt++

};

critical: skip;

atomic{

wt--; w!v

};

}

C.2 Model of Readers/Writers Program in SAL

rwf3{; M : nznat, n : nat}: CONTEXT =

BEGIN

Job_Idx: TYPE = [1..M];

label: TYPE = {r1, waitAtPm1, rlseAtPm1, r2, r3, waitAtPwr, rlseAtPwr,

r4, r5, r6, waitAtPm2, rlseAtPm2, r7, r8, r9, w1, w2, w3,

waitAtPww, rlseAtPww, EOP};

rdtype: TYPE = [-1..n+1];

wttype: TYPE = [-1..(M-n+1)];

semtype: TYPE = [-M..2];

index: TYPE = [1..M];

setof: TYPE = [index -> bool];

member(x: index, a: setof): bool = a(x);

empty?(a: setof): bool = (FORALL (x: index): NOT member(x, a));

emptysetof: setof = {x: index | false};

union(a: setof, b: setof): setof = {x: index | member(x, a) OR member(x, b)};

remove(x: index, a: setof): setof = {y: index | x /= y AND member(y, a)};

sem: TYPE = [#cnt: semtype,

set: setof #];

IntRW(x: label): int =

IF x=r1 THEN 15

ELSIF x=waitAtPm1 THEN 14

ELSIF x=rlseAtPm1 THEN 13

ELSIF x=r2 THEN 12

ELSIF x=r3 THEN 11

ELSIF x=waitAtPwr THEN 10

ELSIF x=rlseAtPwr THEN 9

ELSIF x=r4 THEN 8

ELSIF x=r5 THEN 7

ELSIF x=r6 THEN 6

ELSIF x=waitAtPm2 THEN 5

ELSIF x=rlseAtPm2 THEN 4

ELSIF x=r7 THEN 3

ELSIF x=r8 THEN 2

ELSIF x=r9 THEN 1

ELSIF x=w1 THEN 5

ELSIF x=waitAtPww THEN 4

ELSIF x=rlseAtPww THEN 3

ELSIF x=w2 THEN 2



68 C. The Readers/Writers Model in SPIN, SAL, and PVS

ELSIF x=w3 THEN 1

ELSIF x=EOP THEN 0

ELSE 0

ENDIF;

state: TYPE = [#

m: sem,

w: sem,

rdcnt: rdtype,

next: ARRAY index OF label,

rd: rdtype,

wt: wttype #];

DQdecrease(s, t: state): bool = (EXISTS (i: index):

IntRW(t.next[i]) < IntRW(s.next[i])) AND

FORALL (i: index):

(IntRW(t.next[i]) <= IntRW(s.next[i]));

process [pID : index]: MODULE =

BEGIN

GLOBAL s : state

LOCAL IsReader : bool

INITIALIZATION

IsReader = IF (pID <= n)

THEN TRUE

ELSE FALSE ENDIF;

TRANSITION

[

c1:

IsReader AND s.next[pID] = r1 AND s.m.cnt > 1

-->

[]

c2:

IsReader AND s.next[pID] = r1 AND s.m.cnt = 1

--> s’ = ((s WITH .m.cnt := s.m.cnt - 1) WITH .next[pID] := r2)

[]

c3:

IsReader AND s.next[pID] = r1 AND s.m.cnt < 1

--> s’ = ((s WITH .m.cnt := s.m.cnt - 1) WITH

.m.set := union({x: index | x = pID}, s.m.set))

WITH .next[pID] := waitAtPm1

[]

c4:

IsReader AND s.next[pID] = waitAtPm1

--> s’ = s

[]

c5:

IsReader AND s.next[pID] = rlseAtPm1

--> s’ = (s WITH .next[pID] := r2)

[]

c6:

IsReader AND s.next[pID] = r2

--> s’ = (s WITH .rdcnt := s.rdcnt + 1)

WITH .next[pID] := r3

[]

c7:

IsReader AND s.next[pID] = r3 AND s.rdcnt = 1 AND s.w.cnt > 1

-->

[]

c8:

IsReader AND s.next[pID] = r3 AND s.rdcnt = 1 AND s.w.cnt = 1

--> s’ = ((s WITH .rd := s.rd + 1) WITH

.w.cnt := s.w.cnt - 1 )

WITH .next[pID] := r4

[]

C9:

IsReader AND s.next[pID] = r3 AND s.rdcnt = 1 AND s.w.cnt < 1

--> s’ = ((s WITH .w.cnt := s.w.cnt - 1) WITH

.w.set := union({x: index | x = pID}, s.w.set))

WITH .next[pID] := waitAtPwr

[]



C. The Readers/Writers Model in SPIN, SAL, and PVS 69

c10:

IsReader AND s.next[pID] = r3 AND s.rdcnt < 1

-->

[]

c11:

IsReader AND s.next[pID] = r3 AND s.rdcnt > 1 AND s.w.cnt < 1

--> s’ = (s WITH .rd := s.rd + 1)

WITH .next[pID] := r4

[]

c12:

IsReader AND s.next[pID] = r3 AND s.rdcnt > 1 AND s.w.cnt >= 1

-->

[]

c13:

IsReader AND s.next[pID] = waitAtPwr

--> s’ = s

[]

c14:

IsReader AND s.next[pID] = rlseAtPwr

--> s’ = (s WITH .rd := s.rd + 1)

WITH .next[pID] := r4

[]

c15:

IsReader AND s.next[pID] = r4 AND s.m.cnt > 0

-->

[]

c16:

IsReader AND s.next[pID] = r4 AND s.m.cnt = 0

--> s’ = (s WITH .m.cnt := s.m.cnt + 1)

WITH .next[pID] := r5

[]

([] (p: index):

%c17:

IsReader AND s.next[pID] = r4 AND

s.m.cnt < 0 AND s.m.set(p)

--> s’ = (((s WITH .m.cnt := s.m.cnt + 1)

WITH .next[pID] := r5)

WITH .next[p] :=

IF s.next[p] = waitAtPm1 THEN rlseAtPm1

ELSE rlseAtPm2

ENDIF)

WITH .m.set := remove(p, s.m.set))

[]

c18:

IsReader AND s.next[pID]= r5

--> s’ = (s WITH .next[pID] := r6)

[]

c19:

IsReader AND s.next[pID] = r6 AND s.m.cnt > 1

-->

[]

c20:

IsReader AND s.next[pID] = r6 AND s.m.cnt = 1

--> s’ = (s WITH .m.cnt := s.m.cnt - 1)

WITH .next[pID] := r7

[]

c21:

IsReader AND s.next[pID] = r6 AND s.m.cnt < 1

--> s’ = ((s WITH .m.cnt := s.m.cnt - 1) WITH

.m.set := union({x: index | x = pID}, s.m.set))

WITH .next[pID] := waitAtPm2

[]

c22:

IsReader AND s.next[pID] = waitAtPm2

--> s’ = s

[]

c23:

IsReader AND s.next[pID] = rlseAtPm2
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--> s’ = s WITH .next[pID] := r7

[]

c24:

IsReader AND s.next[pID] = r7

--> s’ = (s WITH .rdcnt := s.rdcnt - 1)

WITH .next[pID] := r8

[]

c25:

IsReader AND s.next[pID] = r8 AND s.rdcnt = 0 AND s.w.cnt > 0

-->

[]

c26:

IsReader AND s.next[pID] = r8 AND s.rdcnt = 0 AND s.w.cnt = 0

--> s’ = ((s WITH .rd := s.rd - 1)

WITH .w.cnt := s.w.cnt + 1)

WITH .next[pID] := r9

[]

([] (p: index):

c27:

IsReader AND s.next[pID] = r8 AND s.rdcnt = 0

AND s.w.cnt < 0 AND s.w.set(p) AND s.next[p] = waitAtPww

--> s’ =

((((s WITH .rd := s.rd - 1)

WITH .next[pID] := r9)

WITH .w.cnt := s.w.cnt + 1)

WITH .next[p] := rlseAtPww)

WITH .w.set := remove(p, s.w.set))

[]

c28:

IsReader AND s.next[pID] = r8 AND s.rdcnt < 0

-->

[]

c29:

IsReader AND s.next[pID] = r8 AND s.rdcnt > 0

--> s’ = (s WITH .rd := s.rd - 1)

WITH .next[pID] := r9

[]

c30:

IsReader AND s.next[pID] = r9 AND s.m.cnt > 0

-->

[]

c31:

IsReader AND s.next[pID] = r9 AND s.m.cnt = 0

--> s’ = (s WITH .m.cnt := s.m.cnt + 1)

WITH .next[pID] := EOP

[]

([] (p: index):

c32:

IsReader AND s.next[pID] = r9 AND

s.m.cnt < 0 AND s.m.set(p)

--> s’ =

(((s WITH .m.cnt := s.m.cnt + 1)

WITH .next[pID] := EOP)

WITH .next[p] :=

IF s.next[p] = waitAtPm1 THEN rlseAtPm1

ELSE rlseAtPm2

ENDIF)

WITH .m.set := remove(p, s.m.set))

[]

c33:

NOT IsReader AND s.next[pID] = w1 AND s.w.cnt > 1

-->

[]

c34:

NOT IsReader AND s.next[pID] = w1 AND s.w.cnt = 1

--> s’ = ((s WITH .wt := s.wt + 1) WITH

.w.cnt := s.w.cnt - 1)

WITH .next[pID] := w2
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[]

c35:

NOT IsReader AND s.next[pID] = w1 AND s.w.cnt < 1

--> s’ = ((s WITH .w.cnt := s.w.cnt - 1) WITH

.w.set := union({x: index | x = pID}, s.w.set))

WITH .next[pID] := waitAtPww

[]

c36:

NOT IsReader AND s.next[pID] = waitAtPww

--> s’ = s

[]

c37:

NOT IsReader AND s.next[pID] = rlseAtPww

--> s’ = (s WITH .wt := s.wt + 1)

WITH .next[pID] := w2

[]

c38:

NOT IsReader AND s.next[pID] = w2

--> s’ = s WITH .next[pID] := w3

[]

c39:

NOT IsReader AND s.next[pID] = w3 AND s.w.cnt > 0

-->

[]

c40:

NOT IsReader AND s.next[pID] = w3 AND s.w.cnt = 0

--> s’ = ((s WITH .wt := s.wt - 1) WITH

.w.cnt := s.w.cnt + 1)

WITH .next[pID] := EOP

[]

([] (p: index):

c41:

NOT IsReader AND s.next[pID] = w3 AND

s.w.cnt < 0 AND s.w.set(p)

--> s’ =

((((s WITH .wt := s.wt - 1)

WITH .next[pID] := EOP)

WITH .w.cnt := s.w.cnt + 1)

WITH .next[p] :=

IF s.next[p] = waitAtPww THEN rlseAtPww

ELSE rlseAtPwr

ENDIF)

WITH .w.set := remove(p, s.w.set))

]

END;

dqmonitor : MODULE =

BEGIN

INPUT s : state

OUTPUT prev_state : state

INITIALIZATION

prev_state = ((# m := (# cnt := 1, set := {x:index | false} #),

w := (# cnt := 1, set := {x: index | false} #),

rdcnt := 0, next := [[i:index] IF i <= n THEN r1

ELSE w1

ENDIF],

rd := 0, wt := 0 #))

TRANSITION

prev_state’ = s;

END;

initializator: MODULE =

BEGIN

GLOBAL s: state

INITIALIZATION

s = ((# m := (# cnt := 1, set := {x:index | false} #),

w := (# cnt := 1, set := {x: index | false} #),

rdcnt := 0, next := [[i:index] IF i <= n THEN r1

ELSE w1

ENDIF],
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rd := 0, wt := 0 #))

TRANSITION

[

FORALL (i: index): s.next[i] = EOP

--> s’ = s

]

END;

main: MODULE = initializator []

([] (pID : index): process[pID]);

C.3 PVS files
1. decl.pvs

decl: THEORY

BEGIN

%M is the number of processes, n is the number of readers

M: posnat

ntype: TYPE = {i: nat | i <= M}

index: TYPE = {i: ntype | i >= 1} CONTAINING 1

n: ntype

label: TYPE = {r1, waitAtPm1, rlseAtPm1, r2, r3, waitAtPwr,

rlseAtPwr, r4, r5, r6, waitAtPm2, rlseAtPm2,

r7, r8, r9, w1, w2, w3,

waitAtPww, rlseAtPww, EOP}

x: VAR label

rlabel?(x): bool = (x = r1 or x = waitAtPm1 or

x = rlseAtPm1 or x = r2 or

x = r3 or x = waitAtPwr or

x = rlseAtPwr or x = r4 or

x = r5 or x = r6 or

x = waitAtPm2 or x = rlseAtPm2 or

x = r7 or x = r8 or

x = r9 or x = EOP)

wlabel?(x): bool = (x = w1 or x = w2 or x = w3 or

x = waitAtPww or x = rlseAtPww or

x = EOP)

%we use finite sets, because we’ll need to play with cardinality

%in order to prove safety and clean completion

importing finite_sets[index]

ar: TYPE = {a: [index -> label] | forall (i: index):

((i <= n => rlabel?(a(i))) and

(i > n => wlabel?(a(i))))}

IsReader(i: index): bool = (i <= n)

IntRW(x): int =

COND

x=r1 ->15,

x=waitAtPm1 -> 14,

x=rlseAtPm1 ->13,

x=r2 ->12,

x=r3 ->11,

x=waitAtPwr ->10,

x=rlseAtPwr ->9,

x=r4 ->8,

x=r5 ->7,

x=r6 ->6,

x=waitAtPm2 ->5,

x=rlseAtPm2 ->4,

x=r7 -> 3,

x=r8 ->2,

x=r9 ->1,

x=w1 ->5,

x=waitAtPww ->4,
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x=rlseAtPww ->3,

x=w2 ->2,

x=w3 ->1,

x=EOP ->0

ENDCOND

sem: TYPE = [#cnt: integer, set: finite_set#]

state: TYPE = [#

pID: index,

m: sem,

w: sem,

rdcnt: int,

next: ar,

rd: int,

wt: int #]

%we need stateneop type to make sure that the next chosen cannot

%be the process who finished executing

stateneop: TYPE = {s: state | next(s)(pID(s)) /= EOP}

END decl

2. conds.pvs

conds: THEORY

BEGIN

importing decl

s: VAR stateneop

p1(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r1 and cnt(m(s)) > 1

p2(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r1 and cnt(m(s)) = 1

p3(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r1 and cnt(m(s)) < 1

p4(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = waitAtPm1

p5(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = rlseAtPm1

p6(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r2

p7(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r3 and

rdcnt(s) = 1 and cnt(w(s)) > 1

p8(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r3 and

rdcnt(s) = 1 and cnt(w(s)) = 1

p9(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r3 and

rdcnt(s) = 1 and cnt(w(s)) < 1

p10(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r3 and rdcnt(s) < 1

p11(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r3 and

rdcnt(s) > 1 and cnt(w(s)) < 1

p12(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r3 and

rdcnt(s) > 1 and cnt(w(s)) >= 1

p13(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = waitAtPwr

p14(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = rlseAtPwr

p15(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r4 and cnt(m(s)) >0

p16(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r4 and cnt(m(s)) = 0

p17(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r4 and cnt(m(s)) < 0

p18(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r5

p19(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r6 and cnt(m(s)) > 1

p20(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r6 and cnt(m(s)) = 1

p21(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r6 and cnt(m(s)) < 1

p22(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = waitAtPm2

p23(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = rlseAtPm2

p24(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r7

p25(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r8 and

rdcnt(s) = 0 and cnt(w(s)) > 0

p26(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r8 and

rdcnt(s) = 0 and cnt(w(s)) = 0

p27(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r8 and

rdcnt(s) = 0 and cnt(w(s)) < 0
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p28(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r8 and rdcnt(s) < 0

p29(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r8 and rdcnt(s) > 0

p30(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r9 and cnt(m(s)) > 0

p31(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r9 and cnt(m(s)) = 0

p32(s): bool = IsReader(pID(s)) and next(s)(pID(s)) = r9 and cnt(m(s)) < 0

p33(s): bool = not IsReader(pID(s)) and next(s)(pID(s)) = w1 and cnt(w(s)) > 1

p34(s): bool = not IsReader(pID(s)) and next(s)(pID(s)) = w1 and cnt(w(s)) = 1

p35(s): bool = not IsReader(pID(s)) and next(s)(pID(s)) = w1 and cnt(w(s)) < 1

p36(s): bool = not IsReader(pID(s)) and next(s)(pID(s)) = waitAtPww

p37(s): bool = not IsReader(pID(s)) and next(s)(pID(s)) = rlseAtPww

p38(s): bool = not IsReader(pID(s)) and next(s)(pID(s)) = w2

p39(s): bool = not IsReader(pID(s)) and next(s)(pID(s)) = w3 and cnt(w(s)) > 0

p40(s): bool = not IsReader(pID(s)) and next(s)(pID(s)) = w3 and cnt(w(s)) = 0

p41(s): bool = not IsReader(pID(s)) and next(s)(pID(s)) = w3 and cnt(w(s)) < 0

END conds

3. table.pvs

transition % [ parameters ]

: THEORY

BEGIN

importing conds

j: VAR index

trans(s : {s:stateneop |

NOT (p1(s) or p7(s) or p10(s) or p12(s)

or p15(s) or p19(s) or p25(s) or p28(s)

or p30(s) or p33(s) or p39(s))}, t: state): bool =

LET k: index = pID(s) IN

table

%---------------------------------------------------------------||

|p1(s)| ||

%---------------------------------------------------------------||

|p2(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) - 1 and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r2) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

| p3(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) - 1 and %

set(m(t)) = add (k, set(m(s))) and %

cnt(w(t)) = cnt(w(s)) and set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = waitAtPm1) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p4(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: next(t)(j) = next(s)(j)) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p5(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r2) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p6(s)| rdcnt(t) = rdcnt(s) + 1 and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %
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set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r3) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p7(s)| ||

%---------------------------------------------------------------||

|p8(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) + 1 and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) - 1 and%

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r4) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p9(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(w(t)) = add(k, set(w(s))) and %

cnt(w(t)) = cnt(w(s)) - 1 and set(m(t)) = set(m(s)) and %

(forall j: (j= k and next(t)(j) = waitAtPwr) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p10(s)| ||

%---------------------------------------------------------------||

|p11(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) + 1 and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r4) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p12(s)| ||

%---------------------------------------------------------------||

|p13(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: next(t)(j) = next(s)(j)) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p14(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) + 1 and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r4) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p15(s)| ||

%---------------------------------------------------------------||

|p16(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) + 1 and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r5) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p17(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) + 1 and %

cnt(w(t)) = cnt(w(s)) and set(w(t)) = set(w(s)) and %

(exists (p:index):(set(m(s))(p) and %

set(m(t)) = remove(p, set(m(s))))) and %

(forall j: (j= k and next(t)(j) = r5) or %

(j /= k and difference(set(m(s)), set(m(t)))(j) and %
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((next(s)(j) = waitAtPm1 and next(t)(j) = rlseAtPm1) or%

(next(s)(j) = waitAtPm2 and next(t)(j) = rlseAtPm2))) %

or (j /= k and (not difference(set(m(s)), set(m(t)))(j)%

or %

(next(s)(j) /= waitAtPm1 and next(s)(j) /= waitAtPm2)) %

and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p18(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r6) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p19(s)| ||

%---------------------------------------------------------------||

|p20(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) - 1 and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r7) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p21(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) - 1 and %

set(m(t)) = add(k, set(m(s))) and %

cnt(w(t)) = cnt(w(s)) and set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = waitAtPm2) or%

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p22(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p23(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r7) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p24(s)| rdcnt(t) = rdcnt(s) - 1 and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r8) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p25(s)| ||

%---------------------------------------------------------------||

|p26(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) - 1 and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) + 1 and%

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r9) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p27(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) - 1 and %
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wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

cnt(w(t)) = cnt(w(s)) + 1 and set(m(t)) = set(m(s)) and%

(exists (p:index):(set(w(s))(p) and %

set(w(t)) = remove(p, set(w(s))))) and %

(forall j: ((j = k and next(t)(k) = r9) or %

(j /= k and difference(set(w(s)), set(w(t)))(j) %

and next(s)(j) = waitAtPww and next(t)(j) = rlseAtPww) %

or (j /= k and (NOT difference(set(w(s)), set(w(t)))(j)%

or next(s)(j) /= waitAtPww) and %

next(t)(j) = next(s)(j)))) and next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p28(s)| ||

%---------------------------------------------------------------||

|p29(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) - 1 and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = r9) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p30(s)| ||

%---------------------------------------------------------------||

|p31(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) + 1 and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = EOP) or %

(j /= k and next(t)(j) = next(s)(j))) and %

(next(t)(pID(t)) /= EOP or %

forall (i: index): next(t)(i) = EOP) ||

%---------------------------------------------------------------||

|p32(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) + 1 and %

cnt(w(t)) = cnt(w(s)) and set(w(t)) = set(w(s)) and %

(exists (p:index):(set(m(s))(p) and %

set(m(t)) = remove(p, set(m(s))))) and %

(forall j: (j= k and next(t)(j) = EOP) or %

(j /= k and difference(set(m(s)), set(m(t)))(j) and %

((next(s)(j) = waitAtPm1 and next(t)(j) = rlseAtPm1) or%

(next(s)(j) = waitAtPm2 and next(t)(j) = rlseAtPm2))) or%

(j /= k and (not difference(set(m(s)), set(m(t)))(j) %

or (next(s)(j) /= waitAtPm1 and next(s)(j) /= waitAtPm2))%

and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p33(s)| ||

%---------------------------------------------------------------||

|p34(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) + 1 and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) - 1 and%

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = w2) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p35(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) - 1 and%

set(w(t)) = add(k, set(w(s))) and %

(forall j: (j= k and next(t)(j) = waitAtPww) or%

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p36(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %
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(forall j: next(t)(j) = next(s)(j)) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p37(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s)+ 1 and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = w2) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p38(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(j) = w3) or %

(j /= k and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

%---------------------------------------------------------------||

|p39(s)| ||

%---------------------------------------------------------------||

|p40(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) - 1 and cnt(m(t)) = cnt(m(s)) and %

set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) + 1 and%

set(w(t)) = set(w(s)) and %

(forall j: (j= k and next(t)(k) = EOP) or %

(j /= k and next(t)(j) = next(s)(j))) and %

(next(t)(pID(t)) /= EOP or %

forall (i: index): next(t)(i) = EOP) ||

%---------------------------------------------------------------||

|p41(s)| rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) - 1 and cnt(m(t)) = cnt(m(s)) and %

cnt(w(t)) = cnt(w(s)) + 1 and set(m(t)) = set(m(s)) and%

(exists (p:index):((set(w(s)))(p) and %

set(w(t)) = remove(p, set(w(s))))) and %

(forall j: (j= k and next(t)(j) = EOP) or %

(j /= k and difference(set(w(s)), set(w(t)))(j) and %

((next(s)(j) = waitAtPww and next(t)(j) = rlseAtPww) or%

(next(s)(j) = waitAtPwr and next(t)(j) = rlseAtPwr))) %

or (j /= k and (not difference(set(w(s)), set(w(t)))(j)%

or (next(s)(j) /= waitAtPww and next(s)(j) /= waitAtPwr))%

and next(t)(j) = next(s)(j))) and %

next(t)(pID(t)) /= EOP ||

endtable

END transition

4. getinv.pvs

getinv: THEORY

BEGIN

importing transition

s: VAR stateneop

t: VAR state

i: VAR index

rp(t): bool = (wt(t) = 0 or rd(t) = 0) and wt(t) < 2 and rd(t) >= 0

and wt(t) >= 0

initcond(t): bool = cnt(m(t)) = 1 and empty?(set(m(t))) and

cnt(w(t)) = 1 and empty?(set(w(t))) and

rd(t) = 0 and wt(t) = 0 and rdcnt(t) = 0 and

(forall i: (i <= n and next(t)(i) = r1)

or (i > n and next(t)(i) = w1))

crp11: lemma (forall t:(initcond(t) => rp(t)))

and (forall s, t:(rp(s)

and trans(s, t) => rp(t)))

% after the first iteration from failed proofs of crp11

%we read the invariants as below
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S7(t): bool = rdcnt(t) >= 0

S2(t): bool = cnt(w(t)) <= 1

S1(t): bool = cnt(m(t)) <= 1

S6(t): bool = cnt(w(t)) = 1 => (wt(t) = 0 and rd(t) = 0)

S91(t): bool = forall i: next(t)(i) = rlseAtPwr

implies wt(t) = 0

S31(t): bool = forall i:

next(t)(i) = r4 implies cnt(m(t)) <= 0

S32(t): bool = forall i:

next(t)(i) = r9 implies cnt(m(t)) <= 0

S41(t): bool = forall i: next(t)(i) = r3

implies rdcnt(t) = rd(t) + 1

S5(t): bool = forall i: next(t)(i) = r8

implies rd(t) = rdcnt(t) + 1

S81(t): bool = forall i: next(t)(i) = rlseAtPww

implies wt(t) = 0

S82(t): bool = forall i: next(t)(i) = rlseAtPww

implies rd(t) = 0

S101(t): bool = forall i: next(t)(i) = w3

implies wt(t) = 1

ind1(t): bool = rp(t) and S1(t) and S2(t) and S31(t)

and S32(t) and S41(t) and S5(t)

and S6(t) and S7(t) and S81(t)

and S82(t) and S91(t) and S101(t)

crpind1: lemma (forall t: initcond(t) => ind1(t))

and forall s, t: (ind1(s)

and trans(s, t) => ind1(t)) %2619

% from the unprovable sequents we got more

%invariants, which together with previous ones, give us new set:

S92(t): bool = forall i: next(t)(i) = rlseAtPwr

implies cnt(w(t)) <= 0

S35(t): bool = forall i:

next(t)(i) = r3 implies cnt(m(t)) <= 0

S38(t): bool = forall i:

next(t)(i) = r8 implies cnt(m(t)) <= 0

S39(t): bool = forall i:

next(t)(i) = rlseAtPwr implies cnt(m(t)) <= 0

S10(t): bool = forall i: next(t)(i) = w2

implies wt(t) = 1

S83(t): bool = forall i: next(t)(i) = rlseAtPww

implies cnt(w(t)) <= 0

S111(t): bool = forall i: next(t)(i) = r7

implies rd(t) = rdcnt(t)

S112(t): bool = forall i: next(t)(i) = r2

implies rd(t) = rdcnt(t)

S125(t): bool = forall i: next(t)(i) = r7

implies rd(t) >= 1

ind2(t): bool = ind1(t) and S92(t) and S35(t) and

S38(t) and S39(t) and S10(t) and S83(t) and S111(t) and

S112(t) and S125(t)

ind2a(t): bool = S31(t)

and S32(t) and S5(t)

and S6(t) and S7(t) and S91(t)

and S101(t) and S92(t) and S35(t) and

S38(t) and S39(t) and S10(t) and S83(t) and S111(t) and

S112(t) and S125(t)

crpind2: lemma (forall t: initcond(t) => ind2a(t))

and forall s, t: (ind2(s)

and trans(s, t) => ind2a(t)) %new-4577

%new invariants:

S34(t): bool = forall i: next(t)(i) = r2

implies cnt(m(t)) <= 0

S37(t): bool = forall i: next(t)(i) = r7

implies cnt(m(t)) <= 0

S114(t): bool = forall i: next(t)(i) = rlseAtPm2

implies rd(t) = rdcnt(t)

S115(t): bool = forall i: next(t)(i) = rlseAtPm1

implies rd(t) = rdcnt(t)
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S131(t): bool = forall i:

next(t)(i)= r1 and cnt(m(t)) = 1

implies rd(t) = rdcnt(t)

S123(t): bool = forall i: next(t)(i) = r6

implies rd(t) >= 1

S124(t): bool = forall i: next(t)(i) = rlseAtPm2

implies rd(t) >= 1

S133(t): bool = forall i: next(t)(i) = r6 and cnt(m(t)) = 1

implies rd(t) = rdcnt(t)

ind3(t): bool = ind2(t) and S34(t) and S37(t) and S114(t) and

S115(t) and S123(t) and S124(t) and S131(t) and S133(t)

ind3a(t): bool = S35(t) and S38(t) and S111(t) and S112(t) and S125(t) and

S34(t) and S37(t) and S114(t) and

S115(t) and S123(t) and S124(t) and S131(t) and S133(t)

crpind3: lemma (forall t: initcond(t) => ind3a(t))

and forall s, t: (ind3(s)

and trans(s, t) => ind3a(t)) %5000

S33(t): bool = forall i: next(t)(i) = rlseAtPm1

implies cnt(m(t)) <= 0

S36(t): bool = forall i: next(t)(i) = rlseAtPm2

implies cnt(m(t)) <= 0

S122(t): bool = forall i: next(t)(i) = r5

implies rd(t) >= 1

S132(t): bool = forall i: next(t)(i) = r5 and cnt(m(t)) = 1

implies rd(t) = rdcnt(t)

ind4(t): bool = ind3(t) and S33(t) and S36(t) and S122(t) and S132(t)

ind4a(t): bool = S34(t) and S37(t) and S123(t) and S133(t) and

S33(t) and S36(t) and S122(t) and S132(t)

crpind4: lemma (forall t: initcond(t) => ind4a(t))

and forall s, t: (ind4(s)

and trans(s, t) => ind4a(t)) %3520

S113(t): bool = forall i: next(t)(i) = r4

implies rd(t) = rdcnt(t)

S121(t): bool = forall i: next(t)(i) = r4

implies rd(t) >= 1

ind5(t): bool = ind4(t) and S113(t) and S121(t)

ind5a(t): bool = S122(t) and S132(t) and S113(t) and S121(t)

crpind5: lemma (forall t: initcond(t) => ind5a(t))

and forall s, t: (ind5(s)

and trans(s, t) => ind5a(t)) %2377

S42(t): bool = forall i: next(t)(i) = rlseAtPwr

implies rdcnt(t) = rd(t) + 1

ind6(t): bool = ind5(t) and S42(t)

ind6a(t): bool = S113(t) and S42(t)

crpind6: lemma (forall t: initcond(t) => ind6a(t))

and forall s, t: (ind6(s) and

trans(s, t) => ind6a(t)) %973

END getinv

5. invj.pvs

invj % [ parameters ]

: THEORY

% ASSUMING

% assuming declarations

% ENDASSUMING

BEGIN

% ASSUMING

% assuming declarations

% ENDASSUMING

importing transition

s: VAR stateneop
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t: VAR state

i, j: VAR index

%safety property:

rp(t): bool = (wt(t) = 0 or rd(t) = 0) and wt(t) < 2 and rd(t) >= 0

and wt(t) >= 0

%initial state:

initcond(t): bool = cnt(m(t)) = 1 and empty?(set(m(t))) and

cnt(w(t)) = 1 and empty?(set(w(t))) and

rd(t) = 0 and wt(t) = 0 and rdcnt(t) = 0 and

(forall (i: index): (i <= n and next(t)(i) = r1)

or (i > n and next(t)(i) = w1))

%invariants as found in inlong.pvs

S1(t): bool = (cnt(m(t)) <= 1)

S2(t): bool = (cnt(w(t)) <= 1)

S6(t): bool = (cnt(w(t)) = 1 => (wt(t) = 0 and rd(t) = 0))

S7(t): bool = (rdcnt(t) >= 0)

S31(t): bool = forall i:

next(t)(i) = r4

implies cnt(m(t)) <= 0

S32(t): bool = forall i:

next(t)(i) = r9

implies cnt(m(t)) <= 0

S33(t): bool = forall i:

next(t)(i) = rlseAtPm1

implies cnt(m(t)) <= 0 %done, 3535.12

S34(t): bool = forall i:

next(t)(i) = r2 implies cnt(m(t)) <= 0% done, 3867

S35(t): bool = forall i:

next(t)(i) = r3

implies cnt(m(t)) <= 0

S36(t): bool = forall i:

next(t)(i) = rlseAtPm2

implies cnt(m(t)) <= 0

S37(t): bool = forall i:

next(t)(i) = r7

implies cnt(m(t)) <= 0

S38(t): bool = forall i:

next(t)(i) = r8

implies cnt(m(t)) <= 0

S39(t): bool = forall i:

next(t)(i) = rlseAtPwr

implies cnt(m(t)) <= 0

S41(t): bool = forall i: next(t)(i) = r3

implies rdcnt(t) = rd(t) + 1

S42(t): bool = forall i: next(t)(i) = rlseAtPwr

implies rdcnt(t) = rd(t) + 1

S5(t): bool = forall i: next(t)(i) = r8

implies rd(t) = rdcnt(t) + 1

S81(t): bool = forall i: next(t)(i) = rlseAtPww

implies wt(t) = 0

S82(t): bool = forall i: next(t)(i) = rlseAtPww

implies rd(t) = 0

S83(t): bool = forall i: next(t)(i) = rlseAtPww

implies cnt(w(t)) < 1

S91(t): bool = forall i: next(t)(i) = rlseAtPwr

implies wt(t) = 0

S92(t): bool = forall i: next(t)(i) = rlseAtPwr

implies cnt(w(t)) <= 0

S10(t): bool = forall i: next(t)(i) = w2

implies wt(t) = 1

S101(t): bool = forall i: next(t)(i) = w3

implies wt(t) = 1

S111(t): bool = forall i: next(t)(i) = r7

implies rd(t) = rdcnt(t)

S112(t): bool = forall i: next(t)(i) = r2

implies rd(t) = rdcnt(t)

S113(t): bool = forall i: next(t)(i) = r4

implies rd(t) = rdcnt(t)
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S114(t): bool = forall i: next(t)(i) = rlseAtPm2

implies rd(t) = rdcnt(t)

S115(t): bool = forall i: next(t)(i) = rlseAtPm1

implies rd(t) = rdcnt(t)

S121(t): bool = forall i: next(t)(i) = r4

implies rd(t) >= 1

S122(t): bool = forall i: next(t)(i) = r5

implies rd(t) >= 1

S123(t): bool = forall i: next(t)(i) = r6

implies rd(t) >= 1

S124(t): bool = forall i: next(t)(i) = rlseAtPm2

implies rd(t) >= 1

S125(t): bool = forall i: next(t)(i) = r7

implies rd(t) >= 1

S131(t): bool = forall i: next(t)(i) = r1

and cnt(m(t)) = 1

implies rdcnt(t) = rd(t)

S132(t): bool = forall i: next(t)(i) = r5

and cnt(m(t)) = 1

implies rdcnt(t) = rd(t)

S133(t): bool = forall i: next(t)(i) = r6

and cnt(m(t)) = 1

implies rdcnt(t) = rd(t)

CS1pred(t, i): bool = next(t)(i) = rlseAtPm1

or next(t)(i) = r2 or

next(t)(i) = r3 or next(t)(i) = r4 or next(t)(i) = rlseAtPm2

or next(t)(i) = r7 or next(t)(i) = r8

or next(t)(i) = r9 or next(t)(i) = waitAtPwr or

next(t)(i) = rlseAtPwr

CS1(t): bool =

(forall (i, j: index): CS1pred(t, i) and CS1pred(t, j) => i = j)

CS2pred(t, i): bool = next(t)(i) = w2

or next(t)(i) = w3 or

next(t)(i) = rlseAtPwr or next(t)(i) = rlseAtPww

CS2(t): bool =

(forall (i, j: index): CS2pred(t, i) and CS2pred(t, j)

=> i = j)

indc(t): bool = CS1(t) and CS2(t) and rp(t) and S1(t) and S2(t)

and S31(t) and S32(t) and S33(t) and S34(t) and S35(t)

and S36(t) and S37(t) and S38(t) and S39(t)

and S41(t) and S42(t) and S5(t) and S6(t)

and S7(t) and S81(t) and S82(t) and S83(t)

and S91(t) and S92(t) and S10(t) and S101(t)

and S111(t) and S112(t) and S113(t) and S114(t) and S115(t)

and S121(t) and S122(t) and S123(t) and S124(t) and S125(t)

and S131(t) and S132(t) and S133(t)

crpindrp: lemma (forall t: initcond(t) => rp(t))

and forall s, t: (indc(s)

and trans(s, t) => rp(t)) %1464, 1851kipd

crpind1: lemma (forall t: initcond(t) => S1(t))

and forall s, t: (indc(s)

and trans(s, t) => S1(t)) %new-30(s1)

crpind2: lemma (forall t: initcond(t) => S2(t))

and forall s, t: (indc(s)

and trans(s, t) => S2(t)) %new-218(s1)

crpind6: lemma (forall t: initcond(t) => S6(t))

and forall s, t: (indc(s)

and trans(s, t) => S6(t)) %new-4670

crpind7: lemma (forall t: initcond(t) => S7(t))

and forall s, t: (indc(s)

and trans(s, t) => S7(t))%new-130(s1)

crpind31: lemma (forall t: initcond(t) => S31(t))

and forall s, t: (indc(s)

and trans(s, t) => S31(t)) %new-480

crpind32: lemma (forall t: initcond(t) => S32(t))

and forall s, t: (indc(s)

and trans(s, t) => S32(t)) % new-684(s"r")

crpind33: lemma (forall t: initcond(t) => S33(t))
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and forall s, t: (indc(s)

and trans(s, t) => S33(t)) %new-298(s"r")

crpind34: lemma (forall t: initcond(t) => S34(t))

and forall s, t: (indc(s)

and trans(s, t) => S34(t))%new-354(s"r")

crpind35: lemma (forall t: initcond(t) => S35(t))

and forall s, t: (indc(s)

and trans(s, t) => S35(t)) %new-403

crpind36: lemma (forall t: initcond(t) => S36(t))

and forall s, t: (indc(s)

and trans(s, t) => S36(t))%new-471(s"r")

crpind37: lemma (forall t: initcond(t) => S37(t))

and forall s, t: (indc(s)

and trans(s, t) => S37(t)) %new-571

crpind38: lemma (forall t: initcond(t) => S38(t))

and forall s, t: (indc(s)

and trans(s, t) => S38(t)) %new-612

crpind39: lemma (forall t: initcond(t) => S39(t))

and forall s, t: (indc(s)

and trans(s, t) => S39(t))

%we found another invariant while proving crpind39:

S140(t): bool = forall i: next(t)(i) = waitAtPwr

implies cnt(m(t)) <= 0

indc1(t): bool = indc(t) and S140(t)

crpind140: lemma (forall t: initcond(t) => S140(t))

and forall s, t: (indc1(s)

and trans(s, t) => S140(t))%new(sr)-644-experiment

crpind39i: lemma (forall t: initcond(t) => S39(t))

and forall s, t: (indc1(s)

and trans(s, t) => S39(t))%new-723(s"r"+revinst)

% "divide and conquer" CS1 and CS2, so that proof would be faster

CS11(t): bool =

forall i, j: next(t)(i) = rlseAtPm1

and CS1pred(t, j)

=> i = j

CS12(t): bool =

forall i, j: next(t)(i) = r2

and CS1pred(t, j)

=> i = j

CS13(t): bool =

forall i, j: next(t)(i) = r3

and CS1pred(t, j)

=> i = j

CS14(t): bool =

forall i, j: next(t)(i) = r4

and CS1pred(t, j)

=> i = j

CS15(t): bool =

forall i, j: next(t)(i) = rlseAtPm2

and CS1pred(t, j)

=> i = j

CS16(t): bool =

forall i, j: next(t)(i) = r7

and CS1pred(t, j)

=> i = j

CS17(t): bool =

forall i, j: next(t)(i) = r8

and CS1pred(t, j)

=> i = j

CS18(t): bool =

forall i, j: next(t)(i) = r9

and CS1pred(t, j)

=> i = j

CS19(t): bool =

forall i, j: next(t)(i) = waitAtPwr

and CS1pred(t, j)

=> i = j

CS110(t): bool =
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forall i, j: next(t)(i) = rlseAtPwr

and CS1pred(t, j)

=> i = j

CS21(t): bool =

forall i, j: next(t)(i) = w2

and CS2pred(t, j)

=> i = j

CS22(t): bool =

forall i, j: next(t)(i) = w3

and CS2pred(t, j)

=> i = j

CS23(t): bool =

forall i, j: next(t)(i) = rlseAtPww

and CS2pred(t, j)

=> i = j

CS24(t): bool =

forall i, j: next(t)(i) = rlseAtPwr

and CS2pred(t, j)

=> i = j

indcs11: lemma (forall t: initcond(t) => CS1(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS11(t))%new-3443

indcs12: lemma (forall t: initcond(t) => CS1(t)) %ne-4026

and forall s, t: (indc1(s)

and trans(s, t) => CS12(t))

indcs13: lemma (forall t: initcond(t) => CS1(t))

and forall s, t: (indc1(s) %ne-3277

and trans(s, t) => CS13(t))

indcs14: lemma (forall t: initcond(t) => CS1(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS14(t))%ne-3252

indcs15: lemma (forall t: initcond(t) => CS1(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS15(t))%ne-3159

indcs16: lemma (forall t: initcond(t) => CS1(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS16(t)) %ne-3198css

indcs17: lemma (forall t: initcond(t) => CS1(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS17(t)) %ne-3198

indcs18: lemma (forall t: initcond(t) => CS1(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS18(t)) %ne-3373(ccs)

indcs19: lemma (forall t: initcond(t) => CS1(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS19(t)) %ne-3444(css)

indcs110: lemma (forall t: initcond(t) => CS1(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS110(t)) %ne-3505(css)

indcs21: lemma (forall t: initcond(t) => CS2(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS21(t))% ne-3137(css "CS2")

indcs22: lemma (forall t: initcond(t) => CS2(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS22(t)) %ne 3084

indcs23: lemma (forall t: initcond(t) => CS2(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS23(t)) %ne-2940(css+10goals)

indcs24: lemma (forall t: initcond(t) => CS2(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS24(t))%ne-2794(css)

indcs1f: lemma (forall t: initcond(t) => CS1(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS1(t))%new-17

indcs2f: lemma (forall t: initcond(t) => CS2(t))

and forall s, t: (indc1(s)

and trans(s, t) => CS2(t))%new-7

crpind41: lemma (forall t: initcond(t) => S41(t))
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and forall s, t: (indc1(s)

and trans(s, t) => S41(t)) %new-463(s"r")

crpind42: lemma (forall t: initcond(t) => S42(t))

and forall s, t: (indc1(s)

and trans(s, t) => S42(t)) %new-705

% This is where we need S43

S43(t): bool = forall i: next(t)(i) = waitAtPwr

implies rdcnt(t) = rd(t) + 1

indc2(t): bool = indc1(t) and S43(t)

crpind43: lemma (forall t: initcond(t) => S43(t))

and forall s, t: (indc2(s)

and trans(s, t) => S43(t)) %new-654(s"r")

crpind42i: lemma (forall t: initcond(t) => S42(t))

and forall s, t: (indc2(s)

and trans(s, t) => S42(t)) %new-726(s"r"and revins)

crpind5: lemma (forall t: initcond(t) => S5(t))

and forall s, t: (indc2(s)

and trans(s, t) => S5(t)) %new-690(s"r")

crpind10: lemma (forall t: initcond(t) => S10(t))

and forall s, t: (indc2(s)

and trans(s, t) => S10(t)) %new-346(s"w")

crpind101: lemma (forall t: initcond(t) => S101(t))

and forall s, t: (indc2(s)

and trans(s, t) => S101(t)) %new-403(s "w")

crpind81: lemma (forall t: initcond(t) => S81(t))

and forall s, t: (indc2(s)

and trans(s, t) => S81(t))%new-517,but

%we had to use S83 (kindof; s "w")

crpind82: lemma (forall t: initcond(t) => S82(t))

and forall s, t: (indc2(s)

and trans(s, t) => S82(t))%new-567(s"w"+s83revins)

crpind83: lemma (forall t: initcond(t) => S83(t))

and forall s, t: (indc2(s)

and trans(s, t) => S83(t))%new-406(s "w"+rev)

crpind91: lemma (forall t: initcond(t) => S91(t))

and forall s, t: (indc2(s)

and trans(s, t) => S91(t)) %new-512(s "w") rev(S92)

crpind92: lemma (forall t: initcond(t) => S92(t))

and forall s, t: (indc2(s)

and trans(s, t) => S92(t))%new-need CS2 too,

%add after all for one goal and inst-730

END invj

6. invj1.pvs

invj1: THEORY

BEGIN

importing invj

s: VAR stateneop

t: VAR state

crpind111: lemma (forall t: initcond(t) => S111(t))

and forall s, t: (indc2(s)

and trans(s, t) => S111(t))%new-584

crpind112: lemma (forall t: initcond(t) => S112(t))

and forall s, t: (indc2(s)

and trans(s, t) => S112(t))%new-456

crpind113: lemma (forall t: initcond(t) => S113(t))

and forall s, t: (indc2(s)

and trans(s, t) => S113(t))%new-525

crpind114: lemma (forall t: initcond(t) => S114(t))

and forall s, t: (indc2(s)

and trans(s, t) => S114(t))% bew-604 we need another:

S150(t): bool = forall (i: index): next(t)(i) = r9

implies rdcnt(t) = rd(t)
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indc3(t): bool = indc2(t) and S150(t)

crpind114i: lemma (forall t: initcond(t) => S114(t))

and forall s, t: (indc3(s)

and trans(s, t) => S114(t))% new 792

crpind150: lemma (forall t: initcond(t) => S150(t))

and forall s, t: (indc3(s)

and trans(s, t) => S150(t))% new-1477

crpind115: lemma (forall t: initcond(t) => S115(t))

and forall s, t: (indc3(s)

and trans(s, t) => S115(t)) %new-786

crpind121: lemma (forall t: initcond(t) => S121(t))

and forall s, t: (indc3(s)

and trans(s, t) => S121(t)) %new-916(gk)

crpind122: lemma (forall t: initcond(t) => S122(t)) %no prf for those 3

and forall s, t: (indc3(s)

and trans(s, t) => S122(t)) %need r5 => rdcnt>=1

crpind123: lemma (forall t: initcond(t) => S123(t))

and forall s, t: (indc3(s)

and trans(s, t) => S123(t)) %r6=>rdcnt >= 1

crpind124: lemma (forall t: initcond(t) => S124(t))

and forall s, t: (indc3(s)

and trans(s, t) => S124(t))%need waitAtPm2

% => rdcnt>=1

crpind125: lemma (forall t: initcond(t) => S125(t))

and forall s, t: (indc3(s)

and trans(s, t) => S125(t)) %new-1296 (s "r")

crpind131: lemma (forall t: initcond(s) => S131(s))

and forall s, t: (indc3(s)

and trans(s, t) => S131(t)) %new - 1063(s "r")

crpind132: lemma (forall t: initcond(t) => S132(t))

and forall s, t: (indc3(s)

and trans(s, t) => S132(t))%new-1200 (s "r")

crpind133: lemma (forall t: initcond(t) => S133(t))

and forall s, t: (indc3(s)

and trans(s, t) => S133(t))%new-1160(s "r")

END invj1

7. cardsem.pvs

cardsem : THEORY

BEGIN

importing invj1

s: VAR stateneop

t: VAR state

i: VAR index

P(t, i): bool = next(t)(i) = r3 or next(t)(i) = r4

or next(t)(i) = r5 or next(t)(i) = r6

or next(t)(i) = r7 or next(t)(i) = waitAtPwr

or next(t)(i) = rlseAtPwr or next(t)(i) = waitAtPm2

or next(t)(i) = rlseAtPm2

au(t): finite_set[index] = {i: index | P(t, i)}

aux: lemma forall (t: state): (exists (i: index): next(t)(i) = r4

or next(t)(i) = r5 or next(t)(i) = r6

or next(t)(i) = r7 or next(t)(i) = waitAtPwr

or next(t)(i) = rlseAtPwr or next(t)(i) = waitAtPm2

or next(t)(i) = rlseAtPm2) => card(au(t)) >= 1 %new

a(t): bool = card(au(t)) = rdcnt(t)

indc4(t): bool = indc3(t) and a(t)

a_inv: lemma (forall t: initcond(t) => a(t))

and forall s, t: (indc4(s)

and trans(s, t) => a(t)) %new-348

crpind122i: lemma (forall t: initcond(t) => S122(t))

and forall s, t: (indc4(s)

and trans(s, t) => S122(t)) %new-130
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crpind123i: lemma (forall t: initcond(t) => S123(t))

and forall s, t: (indc4(s)

and trans(s, t) => S123(t)) %new-130

crpind124i: lemma (forall t: initcond(t) => S124(t))

and forall s, t: (indc4(s)

and trans(s, t) => S124(t)) % new-140

%the proofs of the three previous theorems pretty much alike

END cardsem

8. dq.pvs

dq: THEORY

BEGIN

importing cardsem

s: VAR stateneop

s1, t, u: VAR state

i: VAR index

DQdecrease(s, t): bool = (exists i: IntRW(next(s)(i)) > IntRW(next(t)(i)))

and (forall i: IntRW(next(s)(i)) >= IntRW(next(t)(i)))

dqa: theorem indc4(s) => (trans(s, t) and not (m(s) = m(t) and

w(s) = w(t) and rdcnt(s) = rdcnt(t) and

(forall i: next(s)(i) = next(t)(i)) and

rd(s) = rd(t) and wt(s) = wt(t)) => DQdecrease(s, t)) %new-1500

dqb: lemma forall s1: (indc4(s1) =>

((forall i: IntRW(next(s1)(i)) = 0) or

(exists t: (trans(s1, t) and

(not (m(s1) = m(t) and

w(s1) = w(t) and rdcnt(s1) = rdcnt(t) and

(forall i: next(s1)(i) = next(t)(i)) and

rd(s1) = rd(t) and wt(s1) = wt(t)) or

(exists u: (trans(t, u) and not (m(t) = m(u) and

w(t) = w(u) and rdcnt(t) = rdcnt(u) and

(forall i: next(t)(i) = next(u)(i)) and

rd(t) = rd(u) and wt(t) = wt(u)))))))))

%the previous unprovable, need dqbinv1 and Ssetm1,... as below

dqc: theorem indc4(t) => (forall (i: index): (IntRW(next(t)(i)) = 0))

implies (forall (i: index): (next(t)(i) /= waitAtPm1

and next(t)(i) /= waitAtPm2 and next(t)(i) /= waitAtPwr

and next(t)(i) /= waitAtPww)) %new-3s

dqbinv1(t):bool = forall i: (next(t)(i) = waitAtPm1 or

next(t)(i) = waitAtPm2 or next(t)(i) = waitAtPwr or

next(t)(i) = waitAtPww)=>

exists (j: index): (next(t)(j) /= waitAtPm1 and

next(t)(j) /= waitAtPm2 and next(t)(j) /= waitAtPwr and

next(t)(j) /= waitAtPww and next(t)(j) /= EOP)

dqb2i: lemma (forall t: initcond(t) => dqbinv1(t))

and forall s, t: (dqbinv1(s) and indc4(s)

and trans(s, t) => dqbinv1(t)) %we need:

%dqbinv2 and dqbinv3

dqbinv2(t): bool = cnt(w(t)) <= 0

=> exists i:

(next(t)(i) = rlseAtPm1 and rd(t) >= 1) OR

(next(t)(i) = r2 and rd(t) >= 1) OR

(next(t)(i) = r3 and rd(t) >= 1) OR

next(t)(i) = rlseAtPwr or next(t)(i) = r4 or

next(t)(i) = r5 or next(t)(i) = r6 or

next(t)(i) = rlseAtPm2 or next(t)(i) = r7 or

next(t)(i) = r8 or next(t)(i) = rlseAtPww or

(next(t)(i) = r9 and rd(t) >= 1 and cnt(m(t)) < 0)

or next(t)(i) = w2 or next(t)(i) = w3

dqbinv3(t): bool = cnt(m(t)) <= 0

=> exists i:

next(t)(i) = rlseAtPm1 or next(t)(i) = r2 or

next(t)(i) = r3 or next(t)(i) = rlseAtPwr or

next(t)(i) = r4 or next(t)(i) = rlseAtPm2 or
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next(t)(i) = r7 or next(t)(i) = r8 or next(t)(i) = r9 or

(next(t)(i) = rlseAtPww and cnt(w(t)) < 0) or

(next(t)(i) = w2 and cnt(w(t)) < 0) or

(next(t)(i) = w3 and cnt(w(t)) < 0)

dqb2ii: lemma (forall t: initcond(t) => dqbinv2(t))

and forall s, t: (dqbinv2(s) and indc4(s)

and trans(s, t) => dqbinv2(t))

%Ssetm(t): bool = cnt(m(t)) < 0 => exists i: set(m(t))(i)

Ssetm1(t): bool = forall i :set(m(t))(i) <=> next(t)(i) = waitAtPm1

or next(t)(i) = waitAtPm2

%Ssetm2(t): bool = forall i: next(t)(i) = waitAtPm1

%or next(t)(i) = waitAtPm2 => set((m(t)))(i)

%Ssetw(t): bool = cnt(w(t)) < 0 => exists i: set(w(t))(i)

Ssetw1(t): bool = forall i :set(w(t))(i) <=> next(t)(i) = waitAtPww

or next(t)(i) = waitAtPwr

%Ssetw2(t): bool = forall i: next(t)(i) = waitAtPww

%or next(t)(i) = waitAtPwr => set(w(t))(i)

Ssetc(t): bool = cnt(m(t)) <= 0 => card(set(m(t))) = abs(cnt(m(t)))

Ssetc1(t): bool = cnt(m(t)) = 1 => card(set(m(t))) = 0

Ssetc2(t): bool = cnt(w(t)) <= 0 => card(set(w(t))) = abs(cnt(w(t)))

Ssetc3(t): bool = cnt(w(t)) = 1 => card(set(w(t))) = 0

indc5(t): bool = indc4(t) and dqbinv1(t) and dqbinv2(t) and dqbinv3(t)

and Ssetm1(t) and Ssetw1(t) and Ssetc(t)

and Ssetc1(t) and Ssetc2(t) and Ssetc3(t)

END dq

9. dqb.pvs

dqb: THEORY

BEGIN

importing dq

s: VAR stateneop

t: VAR state

i: VAR index

%Ssetc(t): bool = cnt(m(t)) <= 0 => card(set(m(t))) = abs(cnt(m(t)))

Ssetm1ind: lemma (forall t: initcond(t) => Ssetm1(t))

and forall s, t: (indc5(s) and

trans(s, t) => Ssetm1(t)) %new-1172<=>

Ssetcind: lemma (forall t: initcond(t) => Ssetc(t))

and forall s, t: (indc5(s)

and Ssetc(s)

and trans(s, t) => Ssetc(t))

%unprovable, we need another one for the previous:

%Ssetc1(t): bool = cnt(m(t)) = 1 => card(set(m(t))) = 0

Ssetcind1: lemma (forall t: initcond(t) => Ssetc(t))

and forall s, t: (indc5(s)

and trans(s, t) => Ssetc(t)) %new-67

Ssetc1ind: lemma (forall t: initcond(t) => Ssetc1(t))

and forall s, t: (indc5(s)

and trans(s, t) => Ssetc1(t))%new-52

%Ssetc2(t): bool = cnt(w(t)) <= 0 => card(set(w(t))) = abs(cnt(w(t)))

Ssetw1ind: lemma (forall t: initcond(t) => Ssetw1(t))

and forall s, t: (indc5(s)

and trans(s, t) => Ssetw1(t)) %new-1155

%unprovable, we need another one for the previous:

%Ssetc3(t): bool = cnt(w(t)) = 1 => card(set(w(t))) = 0

Ssetc2ind1: lemma (forall t: initcond(t) => Ssetc2(t))

and forall s, t: (indc5(s)

and trans(s, t) => Ssetc2(t)) %new 100

Ssetc3ind: lemma (forall t: initcond(t) => Ssetc3(t))

and forall s, t: (indc5(s)

and trans(s, t) => Ssetc3(t))

dqbinv1i: lemma (forall t: initcond(t) => dqbinv1(t))

and forall s, t: (indc5(s)

and trans(s, t) => dqbinv1(t)) %new 852
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dqbinv2: lemma (forall t: initcond(t) => dqbinv2(t))

and forall s, t: (indc5(s)

and trans(s, t) => dqbinv2(t))%unprovable, we need:

P1(t, i): bool = next(t)(i) = r4

or next(t)(i) = r5 or next(t)(i) = r6

or next(t)(i) = r7 or next(t)(i) = r8

or next(t)(i) = waitAtPm2

or next(t)(i) = rlseAtPm2

cr(t): finite_set[index] = {i: index | P1(t, i)}

craux: lemma forall (t: state): (exists (i: index): next(t)(i) = r4

or next(t)(i) = r5 or next(t)(i) = r6

or next(t)(i) = r7 or next(t)(i) = r8

or next(t)(i) = waitAtPm2

or next(t)(i) = rlseAtPm2) => card(cr(t)) >= 1

cr1(t):bool = card(cr(t)) = rd(t)

indc6(t): bool = indc5(t) and cr1(t)

crinv: lemma (forall t: initcond(t) => cr1(t))

and forall s, t: (indc6(s)

and trans(s, t) => cr1(t)) %new 569

dqbinv2final: lemma (forall t: initcond(t) => dqbinv2(t))

and forall s, t: (indc6(s)

and trans(s, t) => dqbinv2(t)) %new-1777

dqbinv3: lemma (forall t: initcond(t) => dqbinv3(t))

and forall s, t: (indc6(s)

and trans(s, t) => dqbinv3(t)) %for the last goal

%we need dqinv4

dqinv4(t): bool = forall i: (next(t)(i) = rlseAtPww or next(t)(i) = w2

or next(t)(i) = w3) and cnt(w(t)) < 0 and cnt(m(t)) <= 0

and (forall (k: index): next(t)(k) /= waitAtPwr)

=> exists (k: index):

next(t)(k) = rlseAtPm1 or next(t)(k) = r2 or

next(t)(k) = r3 or next(t)(k) = rlseAtPwr or

next(t)(k) = r4 or next(t)(k) = rlseAtPm2 or

next(t)(k) = r7 or next(t)(k) = r8 or

next(t)(k) = r9

indc7(t): bool = indc6(t) and dqinv4(t)

dqbinv3final: lemma (forall t: initcond(t) => dqbinv3(t))

and forall s, t: (indc7(s)

and trans(s, t) => dqbinv3(t)) %new - 756

dqinv4: lemma (forall t: initcond(t) => dqinv4(t))

and forall s, t: (indc7(s)

and trans(s, t) => dqinv4(t)) %new-2594, with indc7

END dqb

10. dqbfinal.pvs

dqbfinal % [ parameters ]

: THEORY

BEGIN

% ASSUMING

% assuming declarations

% ENDASSUMING

IMPORTING dqb

s: VAR stateneop

s1, t, u: VAR state

i: VAR index

%in order to prove TCC for dqb

dqbinv5(t): bool = next(t)(pID(t)) /= EOP or forall i: next(t)(i) = EOP

indc8(t): bool = indc7(t) and dqbinv5(t)

dqbinv5final: lemma (forall t: initcond(t) => dqbinv5(t))

and forall s, t: (indc8(s)

and trans(s, t) => dqbinv5(t))

dqbassist1: lemma nonempty?({i: index |
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next(t)(i) /= waitAtPm1

AND next(t)(i) /= waitAtPm2

AND next(t)(i) /= waitAtPwr

AND next(t)(i) /= waitAtPww

AND next(t)(i) /= EOP}) and (LET rdcnt = rdcnt(t),

pID =

choose({i: index |

next(t)(i) /= waitAtPm1

AND next(t)(i) /= waitAtPm2

AND next(t)(i) /= waitAtPwr

AND next(t)(i) /= waitAtPww

AND next(t)(i) /= EOP}),

rd = rd(t),

wt = wt(t),

cntm = cnt(m(t)),

setm = set(m(t)),

cntw = cnt(w(t)),

setw = set(w(t)),

next = next(t)

IN

(# pID := pID,

m := (# cnt := cntm, set := setm #),

w := (# cnt := cntw, set := setw #),

rdcnt := rdcnt,

next := next,

rd := rd,

wt := wt #))

= u and indc8(t) => indc8(u)

dqbassist2: lemma forall s: indc8(s) => (p17(s) =>

(exists t: trans(s, t) and not (m(s) = m(t) and

w(s) = w(t) and rdcnt(s) = rdcnt(t) and

(forall i: next(s)(i) = next(t)(i)) and

rd(s) = rd(t) and wt(s) = wt(t)))) %

dqbassist3: lemma forall s: indc8(s) => (p27(s) =>

(exists t: trans(s, t) and not (m(s) = m(t) and

w(s) = w(t) and rdcnt(s) = rdcnt(t) and

(forall i: next(s)(i) = next(t)(i)) and

rd(s) = rd(t) and wt(s) = wt(t)))) %new-120

dqbassist4: lemma forall s: indc8(s) => (p32(s) =>

(exists t: trans(s, t) and not (m(s) = m(t) and

w(s) = w(t) and rdcnt(s) = rdcnt(t) and

(forall i: next(s)(i) = next(t)(i)) and

rd(s) = rd(t) and wt(s) = wt(t)))) %120

dqbassist5: lemma forall s: indc8(s) => (p41(s) =>

(exists t: trans(s, t) and not (m(s) = m(t) and

w(s) = w(t) and rdcnt(s) = rdcnt(t) and

(forall i: next(s)(i) = next(t)(i)) and

rd(s) = rd(t) and wt(s) = wt(t)))) %181

dqbassist6: lemma forall s: indc8(s) => (p31(s) or p40(s) =>

(exists t: trans(s, t) and not (m(s) = m(t) and

w(s) = w(t) and rdcnt(s) = rdcnt(t) and

(forall i: next(s)(i) = next(t)(i)) and

rd(s) = rd(t) and wt(s) = wt(t)))) %153

dqbassist: lemma forall s: indc8(s) =>

(p4(s) or p13(s) or p22(s) or p36(s)

=> (exists t: (trans(s, t) and exists u: trans(t, u) and

not (m(t) = m(u) and

w(t) = w(u) and rdcnt(t) = rdcnt(u) and

(forall i: next(t)(i) = next(u)(i)) and

rd(t) = rd(u) and wt(t) = wt(u)))))

dqb: lemma forall s1: (indc8(s1) =>

((forall i: IntRW(next(s1)(i)) = 0) or

(exists t: (trans(s1, t) and

(not (m(s1) = m(t) and

w(s1) = w(t) and rdcnt(s1) = rdcnt(t) and

(forall i: next(s1)(i) = next(t)(i)) and

rd(s1) = rd(t) and wt(s1) = wt(t)) or

(exists u:
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(trans(t, u) and not (m(t) = m(u) and

w(t) = w(u) and rdcnt(t) = rdcnt(u) and

(forall i: next(t)(i) = next(u)(i)) and

rd(t) = rd(u) and wt(t) = wt(u))))))))) %new-365justrerun

END dqbfinal

11. ordering

ordering

: THEORY

BEGIN

importing dqbfinal

s: VAR stateneop

t: VAR state

active(l: label): nat = if l = EOP then 0

else 1

endif

SUM(t: state, i: index): RECURSIVE nat =

if i = 1 then IntRW(next(t)(1))

else IntRW(next(t)(i)) + SUM(t, i-1)

endif

measure i

Pos(t: state, i: index): RECURSIVE nat =

if i = 1 then active(next(t)(1))

else active(next(t)(i)) + Pos(t, i-1)

endif

measure i

DQtotal(s, t): bool= table

%-----------------------------------%

| Pos(s, M) > Pos(t, M) | TRUE ||

%-----------------------------------%

| Pos(s, M) = Pos(t, M)

and SUM(s, M) > SUM(t, M)| TRUE ||

%-----------------------------------%

| Pos(s, M) = Pos(t, M)

and SUM(s, M) <= SUM(t, M)| FALSE ||

%-----------------------------------%

| Pos(s, M) < Pos(t, M) | FALSE ||

%-----------------------------------%

endtable

partot: lemma DQdecrease(s, t) => DQtotal(s, t)

END ordering

12. pvs-strategies

%finding invariants

(defstep get_inv ()

(branch (split)

(

(then

(skolem!)

(flatten)

(typepred "next(t!1)")

(inst - "pID(t!1)")

(flatten)

(ind_inv1$)

(branch (split +)

((then

(ind_inv1$)

(try (skolem!)

(then

(expand "initcond")

(flatten)

(inst - "i!1")

(grind))(grind))))))
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(then

(skolem!)

(flatten)

(ind_inv1$)

(typepred "next(s!1)")

(inst - "pID(s!1)")

(flatten)

(expand* "ind7" "ind6" "ind5" "ind4"

"ind3" "ind2" "ind1" "ind" )

(branch (split +)

((then

(ind_inv1$)

(try (skolem!)

(then

(flatten)

(inst - "i!1")

(branch (case "i!1=pID(s!1)")

((then

(expand "trans")

(branch (tasimp)

((if (equal (get-goalnum *ps*) 30)

(then (lemma "trans_TCC2")

(branch (inst - "pID(s!1)" "s!1" "s!1")

((branch (split -1)((if (equal (get-goalnum *ps*) 30)

(then (grind))(postpone))))(then (reveal -2)

(hide -3 -4 -5 -6 -7 -8 -9 -10 +)(grind)))))

(then (inst - "pID(s!1)")(grind))))))(skip))))

(grind))))))))

"" "")

(defstep ind_inv1 ()

(let ((sforms (s-forms (current-goal *ps*)))

(inv_name (string (id (operator

(formula (car (select-seq sforms 1))))))))

(expand inv_name))

"" "")

(defstep ind_inv2 ()

(let ((sforms (s-forms (current-goal *ps*)))

(inv_name (string (id (operator

(formula (car (select-seq sforms 2))))))))

(expand inv_name))

"" "")

(defstep bddtrans ()

(let

((transvar

(gather-fnums

(s-forms *goal*)

’-

nil

#’(lambda (sf)

(and (negation? (formula sf)) (branch? (args1 (formula sf)))))))

)

(bddsimp transvar)

)

"..."

"..."

)

%invariants of type forall (i:index): P(x) => v

(defstep s (arg)

(branch

(split)

((then (skolem!)

(flatten)

(expand "initcond")

(flatten)

(ind_inv1$)

(skolem!)

(inst - "i!1")

(grind)
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)

(then

(skolem!)

(flatten)

(let ((sforms (s-forms (current-goal *ps*)))

(indinv (string (id (operator (args1

(formula (car (select-seq sforms -1)))))))))

(then (if (equal indinv "indc3") (expand* "indc3" "indc2"

"indc1" "indc") (if (equal indinv "indc2")

(expand* "indc2" "indc1" "indc")(if (equal indinv "indc1")

(expand* "indc1" "indc")(expand "indc"))))

(flatten)

(ind_inv1$)

(skolem!)

(inst?)

(flatten)

(branch

(case "i!1=pID(s!1)")

((then

(hide -2 -3)

(expand "trans")

(branch (tasimp)

((if (equal (get-goalnum *ps*) 30)

(then (lemma "trans_TCC2")

(branch (inst - "pID(s!1)" "s!1" "s!1")

((branch (split -1)((if (equal (get-goalnum *ps*) 30)

(then (grind))(postpone))))(then (reveal -4)(hide-all-but

:keep-fnums

(-1 -2 -12 -13 -14 -15 -16 -24

-26 -35 -27 -28))(grind)))))(then

(inst - "pID(s!1)")(grind))))))

(then

(expand "trans")

(if (equal arg "r")(then (hide -2)(expand* "CS1" "CS1pred")

(inst - "i!1" "pID(s!1)"))

(then (hide -1)(expand* "CS2" "CS2pred")

(inst - "i!1" "pID(s!1)")))

(branch (tasimp)

((if (equal (get-goalnum *ps*) 30)

(then (lemma "trans_TCC2")

(branch (inst - "pID(s!1)" "s!1" "s!1")

((branch (split -1)((if (equal (get-goalnum *ps*) 30)

(then (inst - "i!1")(grind))(propax))))(then (reveal -4)(hide-all-but

:keep-fnums

(-1 -2 -12 -13 -14 -15 -16 -24

-26 -27 -28 -35))(grind)))))(then

(inst - "i!1")(grind)))))))))))))

"" "")

(defstep s1 ()

(branch

(split)

((grind)

(then

(skolem!)

(flatten)

(typepred "next(s!1)")

(inst - "pID(s!1)")

(let ((sforms (s-forms (current-goal *ps*)))

(indinv (string (id (operator (args1

(formula (car (select-seq sforms -2)))))))))

(then (if (equal indinv "indc3") (then (expand "indc3")(expand "indc2")

(expand "indc1")(expand "indc")) (if (equal indinv "indc2")

(then (expand "indc2")

(expand "indc1")(expand "indc"))(if (equal indinv "indc1")

(then (expand "indc1")(expand "indc"))(expand "indc"))))

(flatten)

(grind))))))

"" "")
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(defstep ind_invs ()

(let ((sforms (s-forms (current-goal *ps*)))

(inv_name (string (id (operator

(formula (car (select-seq sforms 2))))))))

(expand inv_name))

"" "")

(defstep ref_induct()

(let ((sforms (s-forms (current-goal *ps*)))

(refStepName (string (id (formula (car sforms))))))

(then (expand refStepName)

(split)))

"" "")

(defstep tasimp ()

(let

((transvar (car

(gather-fnums

(s-forms *goal*)

’-

nil

#’(lambda (sf)

(and (negation? (formula sf)) (branch? (args1 (formula sf))))))))

)

(then (branch (split transvar)((then (flatten)(skip))(repeat*

(if (equal (get-goalnum *ps*) 1)

(then (flatten)(skip))(then (flatten)

(branch (split -1)((skip)(skip))))))))))

"..."

"..."

)

(defstep s_tcc ()

(then

(flatten)

(hide -1)

(skolem!)

(flatten)

(let ((sforms (s-forms (current-goal *ps*)))

(indinv (string (id (operator (args1

(formula (car (select-seq sforms -1)))))))))

(then (expand indinv)(if (equal indinv "indc8")

(expand* "indc8" "indc7" "indc6" "indc5"

"indc4" "indc3" "indc2" "indc1" "indc")

(if (equal indinv "indc7")

(expand* "indc7" "indc6" "indc5"

"indc4" "indc3" "indc2" "indc1" "indc")

(if (equal indinv "indc6")

(expand* "indc6" "indc5"

"indc4" "indc3" "indc2" "indc1" "indc")

(if (equal indinv "indc5")

(expand* "indc5"

"indc4" "indc3" "indc2" "indc1" "indc")

(if (equal indinv "indc4")

(expand*

"indc4" "indc3" "indc2" "indc1" "indc")

(if (equal indinv "indc3")

(expand* "indc3" "indc2" "indc1" "indc")

(if (equal indinv "indc2")

(expand* "indc2" "indc1" "indc")

(if (equal indinv "indc1")

(expand* "indc1" "indc")(expand "indc")))))))))

(flatten)

(s_tcc_aux$)

(expand* "p1" "p7" "p10" "p12" "p15"

"p19" "p25" "p30" "p33" "p39")

(grind))))

"" "")

(defstep s_tcc_aux ()

(let

((transvar (car
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(gather-fnums

(s-forms *goal*)

’-

nil

#’(lambda (sf)

(and (negation? (formula sf)) (disjunction?

(args1 (formula sf))))))))

)

(hide-all-but :keep-fnums (-3 -4 -5 -6 -7 -15 -17 -18 -19 -26

transvar)))

"..."

"..."

)

%semaphore invariants

(defstep css (inv)

(let ((invname (concatenate ’string inv "pred")))

(branch

(split)

((then (skolem!)

(flatten)

(expand inv)

(expand "initcond")

(flatten)

(skolem!)

(inst - "i!1")

(grind)

)

(then

(skolem!)

(flatten)

(expand* "indc1" "indc")

(flatten)

(expand* inv invname)

(ind_inv1$)

(skolem!)

(inst-cp - "i!1" "j!1")

(flatten)

(expand* "S31" "S32" "S33" "S34" "S35" "S36" "S37" "S38" "S39"

"S41" "S42" "S81" "S82" "S83" "S10" "S101" "S111" "S112"

"S113" "S114" "S115" "S121" "S122" "S123" "S124" "S125"

"S131" "S132" "S133" "S91" "S92" "S140")

(branch

(case "i!1=pID(s!1)")

((then

(if (equal inv "CS1") (hide -4 -6) (hide -2 -3))

(repeat* (inst - "j!1"))

(expand "trans")

(branch (tasimp)

((if (equal (get-goalnum *ps*) 30)

(then (lemma "trans_TCC2")

(branch (inst - "pID(s!1)" "s!1" "s!1")

((branch (split -1)((if (equal (get-goalnum *ps*) 30)

(then (inst-cp - "pID(s!1)")(inst - "j!1")(grind))(propax))))

(then (hide-all-but :keep-fnums -1)

(if (equal inv "CS1")

(reveal -12 -13 -25 -26 -27 -66 -74 -82 -83 -85)

(reveal -11 -12 -13 -25 -26 -27 -66 -74 -82 -83))

(grind)))))

(then (inst-cp - "pID(s!1)")(inst - "j!1")(grind))))))

(then

(if (equal inv "CS1") (hide -5) (hide -1))

(inst-cp - "i!1" "pID(s!1)")

(inst - "j!1" "pID(s!1)")

(repeat* (inst - "i!1"))

(expand "trans")

(branch (tasimp)

((if (equal (get-goalnum *ps*) 30)

(then (lemma "trans_TCC2")
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(branch (inst - "pID(s!1)" "s!1" "s!1")

((branch (split -1)((if (equal (get-goalnum *ps*) 30)

(then (inst-cp - "j!1")(inst - "i!1")(grind))(propax))))

(then (hide-all-but :keep-fnums -1)

(if (equal inv "CS1")

(reveal -13 -14 -26 -27 -28 -67 -75 -83 -84 -86)

(reveal -12 -13 -14 -26 -27 -28 -67 -75 -83 -84))

(grind)))))

(then (inst-cp - "j!1")(inst - "i!1")(grind))))))))))))

"" "")

C.4 The List of All Auxiliary Invariants
t: VAR state

i, j: VAR index

S7(t): bool = (rdcnt(t) >= 0)

S2(t): bool = (cnt(w(t)) <= 1)

S1(t): bool = (cnt(m(t)) <= 1)

S6(t): bool = (cnt(w(t)) = 1 => (wt(t) = 0 and rd(t) = 0))

S91(t): bool = forall (i: index): next(t)(i) = rlseAtPwr

implies wt(t) = 0

S92(t): bool = forall (i: index): next(t)(i) = rlseAtPwr

implies cnt(w(t)) <= 0

S33(t): bool = forall (i: index):

(next(t)(i) = rlseAtPm1)

implies cnt(m(t)) <= 0

S34(t): bool = forall (i: index):

(next(t)(i) = r2) implies cnt(m(t)) <= 0

S35(t): bool = forall (i: index):

(next(t)(i) = r3)

implies cnt(m(t)) <= 0

S31(t): bool = forall (i: index):

next(t)(i) = r4

implies cnt(m(t)) <= 0

S36(t): bool = forall (i: index):

(next(t)(i) = rlseAtPm2)

implies cnt(m(t)) <= 0

S37(t): bool = forall (i: index):

next(t)(i) = r7

implies cnt(m(t)) <= 0

S38(t): bool = forall (i: index):

next(t)(i) = r8

implies cnt(m(t)) <= 0

S32(t): bool = forall (i: index):

next(t)(i) = r9

implies cnt(m(t)) <= 0

S39(t): bool = forall (i: index):

next(t)(i) = rlseAtPwr

implies cnt(m(t)) <= 0

S41(t): bool = forall (i: index): next(t)(i) = r3

implies rdcnt(t) = rd(t) + 1

S42(t): bool = forall (i: index): next(t)(i) = rlseAtPwr

implies rdcnt(t) = rd(t) + 1

S5(t): bool = forall (i: index): next(t)(i) = r8

implies rd(t) = rdcnt(t) + 1

S81(t): bool = forall (i: index): next(t)(i) = rlseAtPww

implies wt(t) = 0

S82(t): bool = forall (i: index): next(t)(i) = rlseAtPww

implies rd(t) = 0

S83(t): bool = forall (i: index): next(t)(i) = rlseAtPww

implies cnt(w(t)) < 1

S10(t): bool = forall (i: index): next(t)(i) = w2

implies wt(t) = 1
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S101(t): bool = forall (i: index): next(t)(i) = w3

implies wt(t) = 1

S111(t): bool = forall (i: index): next(t)(i) = r7

implies rd(t) = rdcnt(t)

S112(t): bool = forall (i: index): next(t)(i) = r2

implies rd(t) = rdcnt(t)

S113(t): bool = forall (i: index): next(t)(i) = r4

implies rd(t) = rdcnt(t)

S114(t): bool = forall (i: index): next(t)(i) = rlseAtPm2

implies rd(t) = rdcnt(t)

S115(t): bool = forall (i: index): next(t)(i) = rlseAtPm1

implies rd(t) = rdcnt(t)

S121(t): bool = forall (i: index): next(t)(i) = r4

implies rd(t) >= 1

S122(t): bool = forall (i: index): next(t)(i) = r5

implies rd(t) >= 1

S123(t): bool = forall (i: index): next(t)(i) = r6

implies rd(t) >= 1

S124(t): bool = forall (i: index): next(t)(i) = rlseAtPm2

implies rd(t) >= 1

S125(t): bool = forall (i: index): next(t)(i) = r7

implies rd(t) >= 1

S131(t): bool = forall (i: index): next(t)(i) = r1

and cnt(m(t)) = 1

implies rdcnt(t) = rd(t)

S132(t): bool = forall (i: index): next(t)(i) = r5

and cnt(m(t)) = 1

implies rdcnt(t) = rd(t)

S133(t): bool = forall (i: index): next(t)(i) = r6

and cnt(m(t)) = 1

implies rdcnt(t) = rd(t)

S140(t): bool = forall i: next(t)(i) = waitAtPwr

implies cnt(m(t)) <= 0

S43(t): bool = forall i: next(t)(i) = waitAtPwr

implies rdcnt(t) = rd(t) + 1

S150(t): bool = forall i: next(t)(i) = r9

implies rdcnt(t) = rd(t)

a(t):bool = card(au(t)) = rdcnt(t), where

au(t): finite_set[index] = {i: index | P(t, i)}

P(t, i): bool = next(t)(i) = r3 or next(t)(i) = r4

or next(t)(i) = r5 or next(t)(i) = r6

or next(t)(i) = r7 or next(t)(i) = waitAtPwr

or next(t)(i) = rlseAtPwr or next(t)(i) = waitAtPm2

or next(t)(i) = rlseAtPm2

CS1(t): bool =

(forall (i, j: index): CS1pred(t, i) and

CS1pred(t, j) => i = j), where

CS1pred(t, i): bool = next(t)(i) = rlseAtPm1

or next(t)(i) = r2 or

next(t)(i) = r3 or next(t)(i) = r4

or next(t)(i) = rlseAtPm2

or next(t)(i) = r7 or next(t)(i) = r8

or next(t)(i) = r9 or next(t)(i) = waitAtPwr

or next(t)(i) = rlseAtPwr

CS2(t): bool =

(forall (i, j: index): CS2pred(t, i) and CS2pred(t, j)

=> i = j), where

CS2pred(t, i): bool = next(t)(i) = w2

or next(t)(i) = w3 or

next(t)(i) = rlseAtPwr or next(t)(i) = rlseAtPww

%The additional invariants needed for the clean completion proof:

Ssetm1(t): bool = forall i :set(m(t))(i) <=> next(t)(i) = waitAtPm1

or next(t)(i) = waitAtPm2

Ssetw1(t): bool = forall i :set(w(t))(i) <=> next(t)(i) = waitAtPww

or next(t)(i) = waitAtPwr

Ssetc(t): bool = cnt(m(t)) <= 0 => card(set(m(t))) = abs(cnt(m(t)))

Ssetc1(t): bool = cnt(m(t)) = 1 => card(set(m(t))) = 0

Ssetc2(t): bool = cnt(w(t)) <= 0 => card(set(w(t))) = abs(cnt(w(t)))
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Ssetc3(t): bool = cnt(w(t)) = 1 => card(set(w(t))) = 0

cr1(t):bool = card(cr(t)) = rd(t), where

P1(t, i): bool = next(t)(i) = r4

or next(t)(i) = r5 or next(t)(i) = r6

or next(t)(i) = r7 or next(t)(i) = r8

or next(t)(i) = waitAtPm2

or next(t)(i) = rlseAtPm2,

cr(t): finite_set[index] = {i: index | P1(t, i)}

dqbinv1(t):bool = forall (i: index): (next(t)(i) = waitAtPm1 or

next(t)(i) = waitAtPm2 or next(t)(i) = waitAtPwr or

next(t)(i) = waitAtPww)=>

exists (j: index): (next(t)(j) /= waitAtPm1 and

next(t)(j) /= waitAtPm2 and next(t)(j) /= waitAtPwr and

next(t)(j) /= waitAtPww and next(t)(j) /= EOP)

dqbinv2(t): bool = cnt(w(t)) <= 0

=> exists i:

(next(t)(i) = rlseAtPm1 and rd(t) >= 1) OR

(next(t)(i) = r2 and rd(t) >= 1) OR

(next(t)(i) = r3 and rd(t) >= 1) OR

next(t)(i) = rlseAtPwr or next(t)(i) = r4 or

next(t)(i) = r5 or next(t)(i) = r6 or

next(t)(i) = rlseAtPm2 or next(t)(i) = r7 or

next(t)(i) = r8 or next(t)(i) = rlseAtPww or

(next(t)(i) = r9 and rd(t) >= 1 and cnt(m(t)) < 0)

or next(t)(i) = w2 or next(t)(i) = w3

dqbinv3(t): bool = cnt(m(t)) <= 0

=> exists i:

next(t)(i) = rlseAtPm1 or next(t)(i) = r2 or

next(t)(i) = r3 or next(t)(i) = rlseAtPwr or

next(t)(i) = r4 or next(t)(i) = rlseAtPm2 or

next(t)(i) = r7 or next(t)(i) = r8 or next(t)(i) = r9 or

(next(t)(i) = rlseAtPww and cnt(w(t)) < 0) or

(next(t)(i) = w2 and cnt(w(t)) < 0) or

(next(t)(i) = w3 and cnt(w(t)) < 0)

dqinv4(t): bool = forall i: (next(t)(i) = rlseAtPww or next(t)(i) = w2

or next(t)(i) = w3) and cnt(w(t)) < 0 and cnt(m(t)) <= 0

and (forall (k: index): next(t)(k) /= waitAtPwr)

=> exists (k: index):

next(t)(k) = rlseAtPm1 or next(t)(k) = r2 or

next(t)(k) = r3 or next(t)(k) = rlseAtPwr or

next(t)(k) = r4 or next(t)(k) = rlseAtPm2 or

next(t)(k) = r7 or next(t)(k) = r8 or

next(t)(k) = r9

dqbinv5(t): bool = next(t)(pID(t)) /= EOP or forall i: next(t)(i) = EOP

C.5 Invariants From the Manual Proof of Read-

ers/Writers Problem

rp1(t): bool = wt(t) = 0 or rd(t) = 0

rp2(t): bool = wt(t) < 2

V1(t): bool = rd(t) >= 0

V2(t): bool = wt(t) >= 0

V3(t): bool = (rdcnt(t) >= 0)

V4(t): bool = (cnt(w(t)) <= 1)

V5(t): bool = (cnt(m(t)) <= 1)

V6(t): bool = (cnt(w(t)) = 1 => (wt(t) = 0 and rd(t) = 0))

V7(t): bool = (rdcnt(t) > 1 => rd(t) >= 1)

V8(t): bool = (cnt(w(t)) < 1 => ((wt(t) = 1 and rd(t) = 0) or

(rd(t) >= 1 and wt(t) = 0) or

(rd(t) = 0 and wt(t) = 0 and

exists (i: index): (next(t)(i) = rlseAtPwr

or next(t)(i) = rlseAtPww))))
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V9(t): bool = (exists (i: index): (i = pID(t) and (next(t)(i) = r3 or

next(t)(i) = rlseAtPwr or

next(t)(i) = r4 or next(t)(i) = r5 or

next(t)(i) = r6 or next(t)(i) = rlseAtPm2

or next(t)(i) = r7))) => rdcnt(t) > 0

V10(t): bool = ((exists (i: index): i = pID(t) and next(t)(i) = rlseAtPwr)

implies (rd(t) = 0 and cnt(w(t)) < 1))

V11(t): bool = (exists (i: index): i = pID(t) and (next(t)(i) = rlseAtPm1 or

next(t)(i) = r2 or next(t)(i) = r3 or

next(t)(i) = rlseAtPwr or

next(t)(i) = r4 or

next(t)(i) = rlseAtPm2 or

next(t)(i) = r7 or next(t)(i) = r8 or

next(t)(i) = r9)) implies cnt(m(t)) < 1

V12(t): bool = (exists (i: index): i = pID(t) and (next(t)(i) = r1 or

next(t)(i) = rlseAtPm1 or

next(t)(i) = r2 or next(t)(i) = r4 or

next(t)(i) = r5 or next(t)(i) = r6 or

next(t)(i) = rlseAtPm2 or next(t)(i) = r7

or next(t)(i) = r9)) implies

rd(t) = rdcnt(t)

V13(t): bool = (exists (i: index): i = pID(t) and (next(t)(i) = r3 or

next(t)(i) = rlseAtPwr )) implies

rd(t) = rdcnt(t) - 1

V14(t): bool = (exists (i: index): i = pID(t) and next(t)(i) = r8) implies

rd(t) = rdcnt(t) + 1

V15(t): bool = (exists (i: index): i = pID(t) and next(t)(i) = rlseAtPww)

implies (wt(t) = 0 and cnt(w(t)) < 1)

V16(t): bool = (exists (i: index): i = pID(t) and (next(t)(i) = w3 or

next(t)(i) = w2)) implies

(wt(t) = 1 and cnt(w(t)) < 1)
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