
 Appendix 7.1 – Chapter 7 Power Calculation

Sample size was determined through an a priori power analysis, based on the predicted model

structure for the primary analysis exploring the effect of total sleep deprivation on our overall in-

game outcome measure, goal difference (GD). As no prior research currently exists exploring the

effect of total sleep deprivation on any esports performance outcome measure, we used a

published meta-analysis on the effects of total sleep deprivation on cognition (Lim & Dinges,

2010) to obtain an estimated effect size. We pooled the effect sizes provided from all cognitive

domains to obtain an estimated effect size of g = 0.435. To obtain an estimate for pooled

standard deviation, we explored a large (21,588 matches) dataset of Rocket League matches

played by skill-matched individuals that has been previously described (Smithies et al., 2021),

see chapter 5. Specifically, we took the 14 most recent matches from 23 player-opponent pairs

within the dataset and used the mean of the pair standard deviations as our estimate (SDpooled =

2.799). Using these effect size and SD estimates, we calculated the mean effect of the extended

wakefulness intervention as a GD change of 1.218.

We then conducted a power analysis using a mixed-effects model (MEM) framework according

to DeBruine and Barr (2021). We predicted that the model selected through our random effects

selection criteria would be one with a by-pair random intercept and a by-pair random slope. To

estimate the by-pair random intercept standard deviation, we took the standard deviation of pair

means from the aforementioned 23 pairs as our estimate (SD = 1.944). To obtain an estimate of

residual variance, we first calculated the standard deviation for GD in the entire previously

mentioned dataset (SD = 3.777). We subtracted our by-pair random intercept standard deviation

from this estimate to obtain our estimate of residual variance (SD = 1.833). We included a by-

pair random slope of 1.5 to allow a non-effect of the intervention to be approximately 1SD from

the mean effect. Lastly, we included a correlation between random intercept and random slope of

0.2, as per DeBruine and Barr (2021).

The R markdown for the power analysis/ simulation is provided below:

ExtWake Power Analysis

Tim D. Smithies

2023-09-07

Install the necessary packages:

library(lme4)

Loading required package: Matrix

Warning: package 'Matrix' was built under R version 4.2.3

library(lmerTest)

Warning: package 'lmerTest' was built under R version 4.2.2

Attaching package: 'lmerTest'

The following object is masked from 'package:lme4':

lmer

The following object is masked from 'package:stats':

step

library(tidyverse)

Warning: package 'tidyverse' was built under R version 4.2.2

Warning: package 'ggplot2' was built under R version 4.2.3

Warning: package 'tibble' was built under R version 4.2.3

Warning: package 'tidyr' was built under R version 4.2.2

Warning: package 'readr' was built under R version 4.2.2

Warning: package 'purrr' was built under R version 4.2.2

Warning: package 'dplyr' was built under R version 4.2.3

Warning: package 'stringr' was built under R version 4.2.2

Warning: package 'lubridate' was built under R version 4.2.2

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.
0.0 ──
✔ dplyr 1.1.2 ✔ readr 2.1.4

✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.2 ✔ tibble 3.2.1
✔ lubridate 1.9.2 ✔ tidyr 1.3.0
✔ purrr 1.0.1

── Conflicts ── tidyverse_conflict
s() ──
✖ tidyr::expand() masks Matrix::expand()
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
✖ tidyr::pack() masks Matrix::pack()
✖ tidyr::unpack() masks Matrix::unpack()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all
conflicts to become errors

library(dplyr)

Set the seed:

set.seed(123)

Set up the custom data simulation function:

my_sim_data <- function(
 n_subj = 19, # Number of pairs
 n_ingroup = 7, # Number of games in first session
 n_outgroup = 7, # Number of games in second session
 beta_0 = 0, # Mean GD at baseline (0)
 beta_1 = -1.21776394099438, # Estimated magnitude of ~29hr TSD effect on
GD
 tau_0 = 1.94444283, # Estimated by-subject random intercept standard devi
ation
 tau_1 = 1.5, # Estimated By-pair random slope standard deviation
 rho = 0.2, # Estimated correlation between intercept and slope
 sigma = 1.832777471) { # Estimated residual variance (standard deviation)
 items <- data.frame(
 item_id = seq_len(n_ingroup + n_outgroup),
 condition = rep(c("TSD", "CONTROL"), c(n_ingroup, n_outgroup)),
 X_i = rep(c(0, 1), c(n_ingroup, n_outgroup)))
 # variance-covariance matrix
 cov_mx <- matrix(
 c(tau_0^2, rho * tau_0 * tau_1, rho * tau_0 * tau_1, tau_1^2),
 nrow = 2, byrow = TRUE)
 subjects <- data.frame(subj_id = seq_len(n_subj),
 MASS::mvrnorm(n = n_subj, mu = c(T_0s = 0, T_1s = 0
), Sigma = cov_mx))
 crossing(subjects, items) %>% mutate(e_si = rnorm(nrow(.),
 mean = 0, sd = sigma),
 GD = beta_0 + T_0s +
 (beta_1 + T_1s) * X_i + e_si) %>%

 select(subj_id, item_id, condition, X_i, GD)
}

Tidy table of inputs:

#tidy table of results
n_subj = 19 # Number of pairs
n_ingroup = 7 # Number of games in first session
n_outgroup = 7 # Number of games in second session
beta_0 = 0 # Mean GD at baseline (0)
beta_1 = -1.21776394099438 # Estimated magnitude of ~29hr TSD effect on GD
tau_0 = 1.94444283 # Estimated by-subject random intercept standard deviation
tau_1 = 1.5 # Estimated By-pair random slope standard deviation
rho = 0.2 # Estimated correlation between intercept and slope
sigma = 1.832777471 # Estimated residual variance (standard deviation)

This code helps automate the whole process:

single_run <- function(...){dat_sim <- my_sim_data(...)
mod_sim <- lmer(GD ~ 1 + X_i + (1 + X_i | subj_id), data = dat_sim)
broom.mixed::tidy(mod_sim)
}

Test the simulation on a single run to confirm everythings working as it should

single_run()

A tibble: 6 × 8
effect group term estimate std.error statistic df p
.value
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
<dbl>
1 fixed <NA> (Intercept) -0.141 0.431 -0.326 18.0 7
.48e-1
2 fixed <NA> X_i -1.63 0.339 -4.80 18.0 1
.43e-4
3 ran_pars subj_id sd__(Intercept) 1.75 NA NA NA NA
4 ran_pars subj_id cor__(Intercept… 0.686 NA NA NA NA
5 ran_pars subj_id sd__X_i 1.13 NA NA NA NA
6 ran_pars Residual sd__Observation 1.77 NA NA NA NA

Run the simulation and save (ignore singular and convergence warnings if only occasional)

n_runs <- 1000
sims <- purrr::map_df(1:n_runs, ~ single_run())

boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')

boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkCon
v, :
Model failed to converge with max|grad| = 0.00293755 (tol = 0.002, compone
nt 1)

boundary (singular) fit: see help('isSingular')

sims %>% filter(effect == "fixed") %>% select(term, estimate, p.value)

A tibble: 2,000 × 3
term estimate p.value
<chr> <dbl> <dbl>
1 (Intercept) -0.127 0.816
2 X_i -1.69 0.00112
3 (Intercept) 0.245 0.631
4 X_i -0.635 0.122
5 (Intercept) -0.662 0.158
6 X_i -1.22 0.0132
7 (Intercept) 1.12 0.0395
8 X_i -1.19 0.0196
9 (Intercept) -0.410 0.226
10 X_i -1.10 0.0115
ℹ 1,990 more rows

Calculate the mean estimates and power for specified alpha

alpha <- 0.05
sims %>% filter(effect == "fixed") %>% group_by(term) %>% summarize(
 mean_estimate = mean(estimate), meas_se = mean(std.error),
 power = mean(p.value < alpha), .groups = "drop")

A tibble: 2 × 4
term mean_estimate meas_se power
<chr> <dbl> <dbl> <dbl>
1 (Intercept) -0.0195 0.469 0.059
2 X_i -1.21 0.406 0.805

The power to detect the proposed effect is presented as power for X_i

Power at 19 pairs = 0.8

