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AN EMPIRICAL INVESTIGATION INTO THE EFFECTS 

OF SLEEP LOSS ON ESPORTS PERFORMANCE 

i. Abstract 

Esports (competitive, organised video game play) has risen from obscurity to rival and/ 

or surpass many traditional sports in terms of popularity, viewership, and earnings. As a 

result, human factors are beginning to be explored in the context of esports, ultimately 

with the same goals that are pertinent in much traditional sport research; to augment 

performance, or minimise performance loss. One human factor which has drawn attention 

within esports literature and practice is sleep. This is largely due to the substantial 

cognitive demands of esports, combined with the wealth of research linking sleep loss to 

impeded cognitive performance. Nonetheless, the relationship between sleep loss and 

esports performance has not been formally investigated to date; this current thesis aims 

to address this gap in scientific knowledge. Chapter two systematically explores the 

current scientific literature on how acute sleep restriction impacts the cognitive 

performance specifically for individuals who engage in cognitively demanding tasks with 

critical or safety-critical outcomes in their occupation or area of expertise (Elite Cognitive 

Performers). This chapter finds simple cognitive tasks to be most susceptible to sleep loss 

induced performance hindrance, however performance on complex tasks demanding 

cognitive flexibility (e.g. task-switching, a cognitive ability deemed highly relevant to 

esports) also appears potentially sensitive to sleep loss. Chapter three examines the test-

retest reliability and presence of practice effects for a shortened version of the Category 

Switch Task, a task-switching paradigm with unpredictable switches, which allows for 

the assessment of cognitive performance on a complex task with and without cognitive 

flexibility demands. Chapter four provides an introduction to the esport Rocket League, 

which is the target esport within the current thesis. Chapter five outlines the identification 

of performance and rank indicators in the esport Rocket League through use of machine 

learning methods on a large dataset of in-game data. Performance indicators outlined are 

metrics targeted within later exploratory analysis on sleep loss and its impact on in-game 

Rocket League performance. Chapter six outlines key methodological details about the 

sleep measurement methods and analytical approach used in the subsequent chapter. It 

includes a bespoke simple imputation approach to deal with missing actigraphy-derived 

sleep data, which I show to outperform other simple imputation approaches. Chapter 

seven outlines a study exploring how experimentally induced total sleep deprivation 

impacts the cognitive and in-game performance of esport players. Cognitive tasks include 

the Psychomotor Vigilance Task and Category Switch Task, and the esport targeted was 

Rocket League; chosen due to various properties lending itself strongly to experimental 

research, as well as access to performance indicators (from chapter five) allowing for 

analytical depth. I find the overall in-game performance of Rocket League players to not 

change following ~29 hours of total sleep deprivation, despite increases in sleepiness, and 

decreases in alertness, motivation, and cognitive performance, immediately prior to 

esport play. Further exploratory analysis suggests that sleep deprived players may have 

adopted a simpler or safer (or both) playstyle. Chapter eight combines the findings of 

chapter seven with expert opinion from professional players, coaches, and analysts, to 

explore this playstyle change. In this chapter, I find that simpler and safer playstyles are 

very much analogous within Rocket League, helping to contextualise my findings with 

previous sleep loss and decision making literature. Collectively, the chapters within the 

current thesis provide novel insights into how sleep loss impacts in-game performance 

within esports, providing further evidence and discourse toward the topic of performance 

optimisation in esports.  
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Term Explanation 

Agreement 

Assessment of closeness between repeated 

measurements (de Vet et al., 2006). 

Bootstrapping 

A method of resampling with replacement, normally 

used to create many simulated samples from a single 

dataset.  

Circadian rhythm 

A biological process occurring with a period of 

approximately 24-hours. 

Classification and 

regression trees  

Decision tree algorithms, used to predict categorical 

(classification) or numerical (regression) outcomes. 

Cognitive flexibility 

Adjustment of behaviour in response to environmental 

or task demands (Uddin, 2021). 

Cognitive performance 

Response/ action on the basis of knowing, learning, or 

understanding. 

Compensatory mechanisms 

Within the context of cognitive performance: changes 

in the brain's response to a task, in an effort to maintain 

performance in situations where the brains normal 

response is in some way impaired. 

Ecological validity 

"The generalisability of experimentally obtained 

findings to a real-world context, or to the context for 

which the results directly apply to" (Kilhlstrom, 2021; 

Orne's definition). 

Elite Cognitive Performers 

Individuals who engage in cognitively demanding 

tasks with critical or safety-critical outcomes in their 

occupation or area of expertise. 

Esports 

“Video/computer games played within the medium of 

cyberspace competitively” (Campbell et al., 2018; p. 

161). 

High-Salience Flexible 

Tasks involving cognitive flexibility to a significant 

degree for performance. 

High-Salience Stable 

Tasks involving complex cognitive functioning (i.e. 

beyond that of low-salience) but in which performance 

does not depend on the ability to flexibly shift attention 

or adapt to changing task dynamics. 
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Imputation 

The process of substituting missing data with an 

alternate value.  

In-situ 

For the purposes of this thesis, in-situ refers to 

performance measured in the environment directly 

relevant to environment in which it is most applicable 

to. 

Lapse (for PVT) Responses ≥500msec. 

Local sleep 

A state akin to slow-wave sleep (global or 'whole 

brain') but localised to specific neural assemblies. 

Low-Salience 

Tasks no distractors and very limited decision-making, 

and typically require simple, timely responses to a 

stimulus. 

Machine learning 

The development of algorithms which can predict 

outcomes when provided with data. 

Metric importance 

How important a specific metric is to the performance 

of the machine learning model built using multiple 

metrics to predict an outcome. 

Mixed Effect Model 

Statistical models containing both fixed and random 

effects. 

Mixing Costs 

The cost associated with knowing a cue could 

potentially change in a block of test block, compared to 

performance when knowing the cue will not change. 

Mtry 

The number of features randomly selected for each 

CART entrainment within a random forest model. 

Notational analysis 

The study of patterns within a 

match/contest/competition/performance that lead to a 

successful overall outcome (Hughes & Bartlett, 2002). 

Ntree 

The number of CARTs created within a random forest 

model. 

Performance indicator In-match metrics that predict in-game match outcome.  

Permutation 

The random shuffling of a given feature such that the 

relationship between the feature and the outcome is 

broken. 

Playstyle 

An individual's technique/ strategy employed while 

playing a game.  

Practice effects 

Improved performance specifically attributable to 

repeated engagement with the test (McCaffrey et al., 

2000). 
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Random forest 

Machine learning algorithm; specifically, an ensemble 

of CARTs each trained using a unique bootstrapped 

data set and random selection of splitting predictor 

features. 

Rank indicator In-match metrics that predict in-game player rank.  

Response Speed 1000/RT(msec). 

Rocket League 

Rocket League is a vehicular soccer video game 

(Smithies et al., 2021), commonly played as an esport. 

For a further description, see Chapter 4. 

Scrimmaging (scrims) 

Practice through organised esport play against other 

individuals or teams, performed in a way to directly 

mimic competition. 

Sleep 

“A reversible behavioural state of perceptual 

disengagement from an unresponsiveness to the 

environment” (Sullivan et al., 2021, p. 16).  

Sleep Disruption 

Frequent arousals and wake periods during nighttime 

periods, which may reduce sleep quantity but also 

reduce sleep quality.  

Sleep loss 

Obtaining less sleep than is optimal. Acute sleep loss 

can be categorised into three categories: Total Sleep 

Deprivation, Sleep Restriction, and Sleep Disruption 

(Reynolds and Banks, 2010). 

Sleep Onset Latency (SOL) 

Length of time from time at lights out to time of sleep 

onset. 

Sleep Opportunity 

The amount of time allowed for participant sleep 

within a study. 

Sleep Restriction 

The reduction of sleep quantity below that normally 

experienced for one or more nights. 

Switch costs 

The cost of responding to a changing cue, compared to 

performance when a cue within a task remains the 

same. 

Task-Switching 

The ability to rapidly/ efficiently shift one’s attention 

or cognitive resources between two or more tasks.  

Test-retest interval 

The length of time between test administrations in a 

test-retest design study. 

Test-retest reliability 

The degree to which individual's performance can be 

distinguished from each other across two 

administrations of a test. 
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Total Sleep Deprivation 

(TSD) 

The total elimination of sleep, normally for 24 hours or 

more.  

Total Sleep Time (TST) 

Length of from time of sleep onset to time at wake, 

minus the wake after sleep onset. 

Vigilance decrement (time-

on-task effect) 

Task performance becomes poorer and more variable 

over prolonged/ sustained bouts. 

Wake After Sleep Onset 

(WASO) 

Length of time awake after sleep onset and before 

wake time. 
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1.1. Thesis scope 

The main objective of the work outlined within this thesis is to explore if and how acute 

sleep loss may impact performance in the world of esports. Throughout the thesis, the 

definition of esports provided by Campbell et al. (2018), “video/computer games played 

within the medium of cyberspace competitively” (p. 161), is used as the working 

definition for esports.  

The thesis objective is addressed in a multidisciplinary fashion and with use of a variety 

of approaches. Firstly, I attempt to gain insight into how sleep loss may impact esports 

performance by first exploring how sleep loss affects both the cognitive and occupation 

specific performance of individuals with work demands comparable to those within 

esports. This is undertaken by way of a systematic review. From this review, I outline 

task switching as a cognitive function of interest, and subsequently assess the presence of 

practice effects and reliability of a task switching test, the Category Switch Task (CST), 

in a test-retest design administration. These pieces of work were performed within the 

context of a perceived importance of cognitive factors for in-game esports performance 

(Campbell et al., 2018), an idea supported by large bodies of work demonstrating 

experienced action video gamers to have improved performance in many cognitive 

domains relative to their peers, and practice in action video game play leading to 

improved cognitive performance (Bediou et al., 2018; Bediou et al., 2023; Toth et al., 

2020). 

Beyond looking at cognitive performance, a direct measure of in-game esport 

performance was sought. Firstly, Rocket League was identified as a suitable esport to 

assess performance in, within an experimental design. A machine learning notational 

analysis was performed within this esport to uncover in-game metrics directly relevant to 

performance. Lastly, an experimental protocol was undertaken, in which the impact of a 

total sleep deprivation protocol on cognitive and in-game Rocket League performance 

(using measures explored in the abovementioned work) was assessed.  

1.2. Introduction outline 

The following sections within this chapter will describe many of the themes directly 

relevant to the overarching topic of acute sleep loss and its influence on esports 

performance. Firstly, the world of esports will be briefly introduced. Following this, the 

introduction will hone in on the topic of sleep; it will discuss the perceived adverse impact 



3 

of sleep loss on esports performance, theories that have been developed to explain how 

sleep loss impacts cognitive performance, different types of sleep loss, and briefly discuss 

the role of circadian rhythms. Three key considerations when defining the relationship 

between sleep loss and esports performance will be introduced and outlined in preparation 

for later chapters. The chapter will conclude by listing the thesis purpose, research 

questions, aims and hypotheses explored. 

1.3. Esports and human factors 

Esports, already massively popular, are comfortably the fastest growing competitive 

activity worldwide. Here and throughout this thesis, I adopt Campbell et al. (2018)’s 

definition of esports, being “video/computer games played within the medium of 

cyberspace competitively” (p. 161), though I note the existence of countless definitions 

for esports, each with their similarities and nuances (see Cranmer et al., 2021 for a 

collation of definitions). There is considerable and ongoing debate as to esports’ status as 

a sport, ignited by inclusions/ exclusions of esports within sport specific arenas such as 

the Olympics (Olympics.com, 2023; Ribeiro et al., 2023; Todt et al., 2020), and 

Commonwealth Games (Olympics.com, 2022; Tidy, 2022); I will avoid this debate within 

this thesis, but will point to numerous published articles (Cranmer et al., 2021; Franks & 

King, 2023; García & Murillo, 2020; Hallmann & Giel, 2018; Hamari & Sjöblom, 2017; 

Holden et al., 2017; Jenny et al., 2017; Reitman et al., 2019) for nuanced discussion of 

this topic. Importantly, the term esports is analogous to sport in that it encompasses a 

multitude of games, with different dynamics, strategies, cognitive and physical demands. 

Continuing this analogy, esports can be categorised into genres according to these 

characteristics; and again like traditional sport, differences and debates over classification 

methods exist (Apperley, 2006; Jang & Byon, 2020; Jonasson & Thiborg, 2010; Toth, 

Conroy, et al., 2021). 

Esports are an integral part of the juggernaut gaming industry, which has a projected 

market value of €375billion in 2023 (Statista, 2023). The staggering value of esports is 

attributable primarily to the large and dedicated fanbases they foster, with viewership 

estimates exceeding one billion individuals in 2020 (Ahn et al., 2020) (and growing 

yearly). Hence, esports present as an enticing medium for publicity, attracting large 

investment from major companies such as Microsoft, Coca-Cola, Amazon, and Tencent 

(Marques, 2019). For successful esports organisations, these financial outlays are not 

trivial, with the ten most valuable esports organisations combined being valued at 
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†A universally agreed upon definition of sleep does not exist, which is a persistent issue 

in sleep research and medicine, particularly when expressing or lobbying for more 

emphasis of sleep in population health conversations and within major health 

organisations. For a brief introduction to the difficulty of defining sleep, see Siegel 

(2021).  

approximately ~€3.21billion in 2022 (Knight, 2022). For top players within popular 

esports, financial rewards can be lucrative, with over 135 players (as of June 20, 2023) 

earning more than €1million in competition earnings alone (Esports Earnings, 2023a), 

and with average yearly contracts exceeding $400,000USD within the top-tier of League 

of Legends (Studholme, 2023). However, it should be noted that there is an extreme 

skewing in esports prize money distribution, where winners receive a disproportionate 

amount of earnings compared to other competitors (Coates & Parshakov, 2016), 

alongside extremely poor job security and career lifespan (discussed by Smithies et al., 

2020), altogether placing an extreme emphasis on performance maximisation for esport 

players and organisations alike.  

In light of this, there is ever increasing interest towards understanding the human factors 

that influence esports performance in order to maximise chances for success; both in field-

based and laboratory settings. To demonstrate the latter, I turn to a database of 566 journal 

articles, all of which include the word esport* (with the asterix meaning truncation here 

and throughout; so this search would include perform, performs, performance etc.) in 

their title or abstract and are indexed by the large multidisciplinary databases Embase, 

Ovid Medline, and Web of Science as of April 23, 2023 (this database was created for a 

book chapter on research methods in esports; see x. List of Publications). This database 

includes articles published between 2013 and 2023, and covers all topics, including arts, 

economics, engineering, law, philosophy, psychology, social sciences, and sport sciences. 

Of the 566 articles, 134 mention performance (perform*) in their title and abstract, 

emphasising that (unsurprisingly) performance is a key theme within much of esports 

research. One human factor which has received interest within the short lifespan of 

esports research is sleep. As many as 25 peer-reviewed scientific articles (from the 

abovementioned database) discuss sleep (sleep*) in the title or abstract as of June 20, 

2023. 

1.4. An introduction to sleep 

For most purposes, sleep can be simply defined as “a reversible behavioural state of 

perceptual disengagement from an unresponsiveness to the environment” (Sullivan et al., 

2021, p. 16)†. In humans, sleep is mostly and normally (but not exclusively) experienced 
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†The American Academy of Sleep Medicine (AASM) guidelines for defining and scoring 

NREM sleep stages changed in 2007; previously, NREM sleep was separated into four 

stages, with ‘slow wave sleep’ having two distinct stages (Stage 3 and Stage 4) instead of 

just one (N3). Thus, the sleep stages provided within the description about are not 

necessarily reflective of those used in past or contemporary literature.  

nocturnally and monophasically (i.e. one ‘block’ of sleep per 24-hour cycle, as opposed 

to multiple dispersed blocks or ‘polyphasic’ sleep) in a recumbent posture, with closed 

eyes and a marked reduction of behavioural activity.  

While initial forays into human sleep research largely concluded that sleep was a passive 

and idling state (see Pelayo & Dement, 2021 for a detailed history of sleep research), a 

paper published in 1953 (Aserinsky & Kleitman, 1953) and a cascade of subsequent 

research has ultimately led to the key understanding that sleep has two distinct sleep 

states; REM and non-Rapid Eye Movement (NREM) Sleep. NREM sleep can be further 

broken down into stage N1 (colloquially referred to as ‘light sleep’, and normally 

accounting for 2-5% of sleep in healthy young adults), N2 (normally 45-55% of sleep), 

and N3 (often call slow wave sleep or SWS in human sleep literature, and colloquially 

referred to as ‘deep sleep’; normally 10-20% of sleep)†. Together with REM (normally 

20-25% of sleep), these are the four sleep ‘stages’. Broadly speaking, in humans, stage 

N2 and N3 sleep are most commonly associated with memory and neuroplasticity, with 

stage N3 additionally being associated with physical repair, growth, and immune system 

functioning, while REM sleep is associated with emotional memory consolidation and 

emotional regulation. A high proportion of stage N1 sleep is often associated with 

disordered sleep (i.e. obstructive sleep apnoea or periodic leg movement disorder; 

(Sullivan et al., 2021)).

In normal human sleep, these sleep stages are progressed through in a somewhat 

predictable pattern, which last for ~90 minute sleep ‘cycles’ (Dement & Kleitman, 1957). 

However, the proportion of certain sleep stages within each sleep cycle changes 

(predictably) across a night of sleep, such that most stage N3 sleep (linked to Process S, 

see section 1.8) is experienced within the first third of a nighttime sleep bout, and REM 

sleep (linked to Process C, see section 1.8) bouts are generally longest within the last 

third of a nighttime sleep bout (Sullivan et al., 2021). The pattern of one’s transition 

through sleep stages is referred to as sleep architecture.  

The amount of nighttime sleep needed for optimal functioning contains considerable 

individual variability due to genetic factors (Franken et al., 2001), and is heavily 

influenced by extraneous factors such as prior daytime activity (Horne & Minard, 1985) 
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or prior sleep history. However, the National Sleep Foundation provide a general 

recommendation (derived through a systematic review and Delphi type consensus voting) 

for young adults of seven to nine hours of nighttime sleep (Hirshkowitz et al., 2015). The 

National Health Foundation have also provided recommendations for various sleep 

quality related measures, including sleep onset latency (SOL), number of nighttime 

awakenings, wake after sleep onset (WASO), sleep efficiency (SE%), and proportions of 

nighttime sleep spent in different sleep stages (Ohayon et al., 2017). It is noted that the 

recommendations are provided across a spectrum of ages, owing to the well understood 

changes to normal human sleep across the lifespan (Miner & Lucey, 2021).      

While for the majority of the thesis sleep will be discussed with respect to its relationship 

to task performance (i.e. esports performance), sleep (and the myriad of relevant themes 

around it; sleep disorders, sleep quantity and quality, sleep timing and variability, 

circadian factors etc.) is a component of the human experience which’s importance spans 

well beyond its influence on performance. Indeed, reduced sleep quality/ quantity, 

disturbed and/ or disordered sleep have been linked to reduced academic performance 

(Dewald et al., 2010) and quality of life (Baldassari et al., 2008), and an increased risk of 

obesity and diabetes (Anothaisintawee et al., 2016; Cappuccio et al., 2008; Fatima et al., 

2016; Itani et al., 2017), hypertension (Itani et al., 2017; Wang et al., 2015), stroke 

(Johnson & Johnson, 2010), markers of systemic inflammation (Irwin et al., 2016; 

Nadeem et al., 2013), memory impairment (Wallace & Bucks, 2013), dementia (Shi et 

al., 2018), work injuries (Uehli et al., 2014), motor vehicle crash (Tregear et al., 2009), 

risky behaviours (Short & Weber, 2018), suicidal ideation and behaviours (Chiu et al., 

2018; Harris et al., 2020; Liu et al., 2020; Pigeon et al., 2012), and all-cause mortality 

(i.e. mortality, irrespective of reason) (Cappuccio et al., 2010; da Silva et al., 2016; 

Gallicchio & Kalesan, 2009; Itani et al., 2017). Lastly, there is an increasing 

understanding of the importance of sleep regularity, with a recent analysis of ~61,000 

individuals finding it to be a better predictor of all-cause mortality than sleep duration 

(Windred et al., 2023). 

1.5. Sleep in the esports context 

Despite the well understood importance of sleep for human health, dialogue around sleep 

within an esports context remains primarily focused on esport performance. Indeed, an 

aptly titled seminal article regarding sleep and esports “Sleep and performance in 

Eathletes: for the win!” explored potential risk factors of sleep disturbances in esports, 
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however did so from a perspective that such disturbances may lead to esport performance 

deficits (Bonnar, Castine, et al., 2019). The authors argued that while sleep is being 

increasingly recognised as a factor which impacts traditional sport performance, esports 

performance is more greatly founded in cognitive abilities than almost all traditional 

sports (which rely on a higher degree of physical performance). As cognitive performance 

has been demonstrated to degrade more greatly than physical performance with sleep loss 

(i.e., Fullagar et al., 2015; How et al., 1994; Pilcher & Huffcutt, 1996), it is logical to 

hypothesize that sleep loss may have a greater detrimental impact on esports performance 

relative to performance in traditional sports. This logic is extended within many reviews 

and original research articles around sleep and esports (Bonnar, Lee, et al., 2019; Bonnar 

et al., 2022; Goulart et al., 2023; S. Lee et al., 2021; Moen et al., 2022; Sanz-Milone et 

al., 2021). Clearly, researchers, practitioners, and professionals have an interest in 

optimising esport athletes sleep that is motivated (at least to a large degree) by 

performance optimisation reasons. 

Additional reasons for sleep being highlighted as a performance are (a) a series of studies 

reporting concerning sleep behaviours at a group level within esport populations, and (b) 

the existence of risk factors for reduced/ disturbed sleep which includes those already 

highlighted for traditional sport athletes (Walsh et al., 2021) but also which spans beyond 

this. I will briefly summarise the patterns in esport athlete sleep behaviours below, but I 

implore interested readers to read the original articles cited for further context and 

information.

Generally, esport athletes experience habitual nighttime total sleep times (TSTs; 6.5-8 

hours) comparable to those described for other young adult populations (Bonnar et al., 

2022; Gomes et al., 2021; S. Lee et al., 2021; Moen et al., 2022; Thomas et al., 2019). 

However, most notable is severely delayed sleep onset and wake times; while some 

studies have reported already delayed group means/ medians of ~2am and ~10am 

respectively (Gomes et al., 2021; Moen et al., 2022; Sanz-Milone et al., 2021), others 

have reported even later mean habitual sleep onset ~5am and wake ~12pm times, with 

evidence of regional differences regarding these values (Bonnar et al., 2022; S. Lee et al., 

2021). Unsurprisingly, a high proportion (~60%) of esport athletes present as evening 

chronotype (Gomes et al., 2021; Sanz-Milone et al., 2021). I note that while TST appears 

largely normal, values on sleep quality measures such as SOL, WASO (both >30min; 

Bonnar et al. (2022); S. Lee et al. (2021)) and SE% (as low as 68%; Moen et al. (2022)) 
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†Much of esport practice is undertaken through scrimmaging (scrims) against other 

teams. The timing of this practice is limited by the availability of other teams. Hence, 

avoiding late night scrims (which are often the norm; Bonnar, Lee, et al. (2019)) may 

limit quality training opportunities. I conclude this point by noting that ~50% of coaches/ 

support staff consider night training schedules to be a condition that impacts the sleep of 

their esport athletes (Bonnar et al., 2023). 

are below those recommended by the National Sleep Foundation for young adults 

(Ohayon et al., 2017).  

Regarding risk factors for reduced/ disturbed sleep, I firstly note that with the exception 

of early morning training, all traditional sport athlete specific risk factors outlined in a 

2021 British Journal of Sports Medicine sleep and athlete consensus statement (pre-

competition cognitive arousal, long-haul travel and unfamiliar sleeping environment 

following such travel, night competition, and high training loads; Walsh et al. (2021; see 

Figure 1), as well as caffeine use during competition, appear to be relevant to some degree 

in elite esports. However, the esports environment seems to result in further unique risk 

factors. These are discussed in depth by Bonnar, Castine, et al. (2019) and Bonnar, Lee, 

et al. (2019), however to highlight some highly pertinent factors; esports are (a) 

experienced through blue-light emitting computer monitors which, when used during the 

evening/ nighttime, may suppress endogenous melatonin secretion, potentially delaying 

circadian phase and reducing sleep quality/ quantity (Green et al., 2017; Schöllhorn et al., 

2023), and (b) cognitively/ physiologically arousing by design. The combination of these 

two factors have been previously highlighted as a mechanism potentially explaining 

gaming frequency/ duration and poor sleep outcomes (Kemp et al., 2021). Behavioural 

factors likely further compound this risk; there appears to be a ‘culture’ within elite 

esports which promotes (and may necessitate at times†) play into the late night/ early 

morning (Bonnar, Lee, et al., 2019; Lee et al., 2020), and simultaneously, esport athletes 

are seemingly quite unwilling to participate in sleep monitoring/ hygiene practices 

(Bonnar et al., 2023). 

1.6. Sleep loss and cognitive performance – a speedrun 

While the notion that sleep loss impacts cognitive performance to a greater degree than 

physical performance is true (or, at the least, there is far more robust evidence for effects 

on cognitive vs. physical performance), this statement is a large generalisation made 

towards a very rich and diverse scientific field. Cognitive performance refers not to one 

domain but a plethora of abilities, tested using a plethora of means. Despite the fact that 

with every year of scientific enquiry we develop a stronger understanding of the 
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mechanisms underlying the effect of sleep loss on performance for various cognitive 

domains, there is still a great deal which is not yet understood. As a result, many 

(competing and complementary) theories persist, which attempt to shed light on such 

mechanisms. The purpose of this section is to provide a brief overview of current 

understanding of sleep loss and cognitive performance, some discussion of which is 

expanded upon in future chapters.  

Regarding cognitive domains which are more/ less sensitive to sleep loss, multiple meta-

analyses (alongside earlier seminal work) have shown a general trend that as task 

complexity increases, the adverse effect of sleep loss decreases (Glenville et al., 1978; 

Harrison & Horne, 2000; Lim & Dinges, 2010; Lowe et al., 2017; Pilcher & Huffcutt, 

1996; Wickens et al., 2015). This is exemplified by the fact that the test most universally 

used to assess cognitive performance changes in sleep research (owing largely to its 

sensitivity to sleep loss) is the psychomotor vigilance task (PVT); a task which only has 

one possible stimulus, and one possible response mechanism. This is not to state that 

performance on highly complex tasks is immune to sleep loss induced performance 

deficits; rather, effects tend to be smaller, can be more easily compensated for, and appear 

meaningful following only more severe bouts of sleep loss. As stated by Lim and Dinges 

(2010) (following a meta-analysis on sleep deprivation and cognitive performance), 

“although total SD [total sleep deprivation; discussed in Section 1.7] does produce 

statistically significant differences in most cognitive domains, the largest effects are seen 

in tests of simple, sustained attention” (p. 13). Among more complex tasks, one aspect of 

cognition which has received increased attention in the past decade for it’s supposed 

sensitivity to sleep loss is cognitive flexibility (i.e., Harrison and Horne (2000); (Honn et 

al., 2019); Lawrence-Sidebottom et al. (2020); Stenson et al. (2023); Whitney et al. 

(2015); Whitney et al. (2019); Whitney et al. (2017)). Cognitive domains and task 

characteristics which are sensitive/ robust to sleep loss (in particular, acute sleep 

restriction) will be discussed in greater detail in Chapter 2.  

As previously mentioned, the mechanisms for how sleep loss impact aspects of cognition 

are not completely understood, and hence are constantly a subject of research. Regarding 

simple attention task performance, three predominant (non-exhaustive and non-

exclusive) theories have been proposed and expanded upon throughout the history of 

sleep research. All three of these theories provide explanation as to why sleep loss leads 

to worsened performance on simple attention taxing tasks. The first of these theories is 

the lapse hypothesis (Williams et al., 1959). This hypothesis expands upon work as far 
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back as 100 years ago (Bills, 1931; Bjerner, 1949; Kleitman, 1923; Lee & Kleitman, 

1923; Warren & Clark, 1937; Williams et al., 1959) and suggests that sleep loss results 

in brief blips in physiological arousal (called blocks in seminal research), and hence 

periods of reduced responsiveness to stimuli. The second theory, called the state 

instability hypothesis, extends this logic by positing that global (i.e., entire brain) sleep 

and wake states (governed by interactions between sleep history and circadian processes, 

which are elaborated on in Section 1.8) and top-down compensatory effort to maintain 

wakefulness, are highly unstable and can rapidly fluctuate when sleep drive is high, 

resulting in variable performance (and increased frequency of these blips or lapses) 

(Doran et al., 2001). This theory helps to explain the effects of sleep loss on task 

performance at a global (i.e., whole brain) level. More recently, a third theory has been 

presented, the local sleep hypothesis, which suggests that network circuitry which is 

constantly used due to repetitive task demands (i.e., use-dependent) may be faster to enter 

a local sleep state (a state akin to slow-wave sleep but localised to specific neural 

assemblies; see Krueger et al. (2008) and Vyazovskiy et al. (2011)) when prior sleep loss 

is experienced (Hudson et al., 2020; Van Dongen, Belenky, et al., 2011). The latter two 

theories help explain how sleep loss expedites (makes occur earlier) and exacerbates 

(makes the effect stronger) the vigilance decrement (or time-on-task effect; stating that 

task performance becomes poorer and more variable over prolonged/ sustained bouts). 

The theories also help explain an increase in errors on time-sensitive tasks and the 

dramatic increase in responses >2 times slower than average on the PVT for example, but 

do not explain the observed general slowing of responses across the entire administration 

of the test, as demonstrated by the sensitivity of the fastest 10% response time measure 

of the PVT to sleep loss (Basner & Dinges, 2011; Belenky et al., 2003; Dinges & Kribbs, 

1991; Dinges & Powell, 1988, 1989; Loh et al., 2004). 

These theories also do not explain the observed decreases in cognitive performance from 

sleep loss which are dissociable from decreases in vigilance/ general alertness. For 

explanations of these performance decrements, neuroimaging techniques have been 

utilised. From such research, some notable findings have included reductions in brain 

activation within the central executive (dorsolateral prefrontal (PFC) cortex, intraparietal 

sulcus, posterior parietal areas) and salience (insula, medial frontal cortex) networks 

(Krause et al., 2017; Ma et al., 2015).  

Additionally, the functional connectivity of various brain areas (especially those with 

connections to the hippocampus) have been reported to be altered under sleep loss, as has 
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†I use ≤36hrs as the cutoff for mild bouts of total sleep deprivation here and throughout, 

due its frequent use (i.e., Harrison & Horne, 1999; Horne & Pettitt, 1985; Whitmore & 

Fisher, 1996) and due to bouts beyond this being considered only in highly specialised 

circumstances (i.e., military operations). 

the functional segregation of networks; referring to the ability to simultaneously engage 

some networks and disengage others when desirable for a specific function. In the case 

of sleep loss, diminished ability to disengage the default mode network is observed during 

attention-based tasks. Changes in activation levels to reward and losses have also been 

noted following sleep loss. Given the breadth and complexity of this topic, I will not 

expand further but instead guide readers to two key reviews within this area (Krause et 

al., 2017; Ma et al., 2015). Such changes in the activation of brain areas and networks 

could be expected to result in worsened performance within cognitive domains actively 

requiring them, such as attentional capacities, working memory, and executive 

functioning. However, research has demonstrated that performance on many complex 

cognitive tasks appears robust to mild bouts of sleep loss†.

By again turning to neuroimaging, results from studies have suggested that increased 

activation of certain brain areas (in particular, parietal areas, thalamus and frontostriatal 

circuitry) during cognitive performance tasks following sleep loss may contribute to the 

observed performance preservation on more complex tasks under mild bouts of sleep loss 

(i.e., Chuah et al., 2006; Drummond et al., 2000; Drummond et al., 2004; Drummond et 

al., 2005; Nakashima et al., 2018). Overall, it is hypothesised that additional resources, 

both within and outside of the task-specific areas/ networks, are recruited to overcome 

the diminished efficiency of those normally used for task performance. This 

understanding is consistent with explanations of task-specificity and individual 

differences within the aforementioned local sleep hypothesis. Networks required for the 

performance of different tasks may have varying levels of redundancy/ spare capacity that 

can be called upon within a bout of sleep loss, and individuals may have varying amounts 

of redundancy available within the same given network (Hudson et al., 2020).

However, some researchers argue that compensatory mechanisms may function to 

preserve some cognitive functions at the expense of others. Within their dynamic 

attentional control framework, Whitney et al. (2019) propose that the compensatory 

mechanisms specific to frontostriatal circuitry prioritise the maintenance of task-relevant 

information over the changing or updating of such information, such that performance on 

tasks not demanding attentional shifts or adaptation to changing task requirements (i.e., 

stable tasks) will be maintained, while performance on tasks with these requirements (i.e., 

flexible tasks) will be degraded. This is purportedly through an increase in tonic striatal 
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dopamine levels leading to poorer phasic dopamine signalling, which is considered 

critical for cognitive flexibility (Grace, 2000; Whitney et al., 2019). 

It is critical to outline some factors which may influence the extent to which performance 

compensation occurs under conditions of sleep loss. As performance maintenance 

following sleep loss is associated with compensatory recruitment of cognitive resources, 

it can be thought of as an increase in effort, and therefore cost, within a cost-benefit 

neuroeconomic framework (this idea is described in detail by Massar, Lim and Huettel 

(2019)). Simply, a cost-benefit neuroeconomic framework posits that actions taken are 

proportional to a subjective value, which is determined by an individual’s perception of 

perceived benefit (task completion, victory, monetary rewards) and perceived cost (time, 

risk, effort). This increase in cost associated with sleep loss is neatly demonstrated by 

studies reporting larger monetary rewards to be required to convince participants to 

engage in effortful cognitive tests following sleep loss, when compared when participants 

are well rested (Libedinsky et al., 2013; Massar, Lim, Sasmita, et al., 2019). Through this 

lens, factors that increase ones intrinsic or extrinsic motivation may help to promote the 

maintenance of performance under sleep loss by increasing the perceived benefit. I note 

that these factors can be task-specific (i.e., how boring/ monotonous the task is, or 

whether feedback is provided) or context specific (whether a competition aspect is 

introduced, whether a monetary reward is available, or whether outcomes are critical for 

the safety of self or others). Regarding task specific drivers of motivation, I highlight the 

following quote from Harrison and Horne (2000) (p. 236); “the prevailing view in SD 

[sleep deprivation] research is that high-level complex skills are relatively unaffected by 

SD because of the interest they generate and the implicit encouragement for participants 

to apply compensatory effort to overcome their sleepiness”. 

However, sleep loss can in turn reduce task-specific motivation (Mathew et al., 2021; 

Mikulincer et al., 1989; Odle-Dusseau et al., 2010), perhaps as a shift of prioritisation 

from task completion toward sleep-preparatory behaviours (Axelsson et al., 2020). 

Furthermore, while compensatory effort can maintain performance under sleep loss, there 

is an overall tendency to engage in less effortful tasks, actions, or strategies, when the 

choice is provided (Engle-Friedman et al., 2010; Engle-Friedman et al., 2003; Sullan et 

al., 2021). Lastly, it is important to stress that once a certain amount of sleep loss is 

achieved, performance will diminish in spite of any compensatory mechanisms (though 

most experimentally manipulated sleep loss studies do not reach this threshold; Dinges 

and Kribbs (1991); Horne and Pettitt (1985)).  
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1.7. Forms of sleep loss 

Until now, I have intentionally used the vague term sleep loss throughout. However in 

reality, just like cognitive performance, sleep loss is not a uniform concept but can be 

experienced in a multitude of forms. These forms are neatly divided into three categories 

by Reynolds and Banks (2010); total sleep deprivation (TSD; also sometimes called 

extended wakefulness, or simply sleep deprivation), sleep restriction (SR; sometimes 

called partial sleep deprivation), and sleep disruption (or sleep fragmentation). TSD refers 

to the total elimination of sleep, normally for 24 hours or more. It is by far the most 

commonly studied form of sleep loss in experimental research. SR refers to the reduction 

of sleep quantity below that normally experienced for one or more nights. SR is much 

more commonly experienced than TSD for both the general population (Banks & Dinges, 

2007) and for individuals in many specialised occupations and environments (Caldwell 

et al., 2012; Capaldi et al., 2019), however is far less commonly studied than TSD, 

predominately due to the extreme logistical boundaries of studies imploring multiple days 

of SR (Banks & Dinges, 2007). To avoid confusion, throughout the manuscript I will 

refer to one day to two weeks of SR as acute SR, and SR spanning beyond two weeks as 

chronic SR. Sleep disruption specifically refers to frequent arousals and wake periods 

during nighttime periods, which may reduce sleep quantity but also reduce sleep quality. 

While sleep disruption can certainly hinder performance (Bonnet & Arand, 2003; Kahn 

et al., 2014), it is generally associated with disordered sleep (Reynolds & Banks, 2010), 

and hence is largely outside the scope of the current thesis.  

Though both TSD and acute SR are forms of sleep loss, there are two key differences in 

the effects they tend to produce. Firstly, while subjectively reported alertness and 

sleepiness tend to closely follow objectively measured vigilance under conditions of TSD, 

these subjective outcomes underestimate performance degradation under SR (Banks et 

al., 2010; Belenky et al., 2003; Van Dongen et al., 2003; also see Figure 1-1). Secondly, 

performance recovery following SR takes much longer than a bout of TSD inducing an 

identical performance deficit (Banks et al., 2010; Belenky et al., 2003); a finding with 

fundamental implications for (bio)mathematical modelling of performance under 

conditions of sleep loss (McCauley et al., 2009). These two findings combined have led 

to extreme concern regarding the performance, safety and wellbeing of individuals 

operating in critical or safety-critical environments; essentially, SR can result in a 

situation where people aren’t fully aware of their impairment, and take many days to 
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recover to baseline. Despite these differences between TSD and SR and nuances in the 

biological mechanisms underpinning impairment from each, the effects of TSD and SR 

on task performance during the actual bout of sleep loss appear to be similar and equatable 

(Banks & Dinges, 2007; Van Dongen et al., 2003; Figure 1-1). An example of such can 

be found as Figure 1-1, which shows data equating performance within PVT and 

subjective sleepiness as measured by the Stanford Sleepiness Scale (SSS) following TSD 

and bouts of SR of various severities.  

 

Figure 1-1 A Instances of Lapses on a 10 minute psychomotor vigilance task (PVT), and 

B subjective sleepiness scores on the Stanford Sleepiness Scale (SSS), across multiple 

days and for participant groups with varying amounts of sleep opportunity (SO) afforded. 

In both graphs, higher values denote greater impairment. The grey horizontal line depicts 

the expected value for each graph following ~36hrs of total sleep deprivation (TSD), 

denoted by the leftmost vertical dashed line in each graph. In A, the rightmost vertical 

dashed line denotes the equivalent amount of days (~9) with 4hrs SO required for 

predicted PVT lapses to be equivalent to that at ~36hrs TSD. This figure is adapted from 

Van Dongen et al. (2003). 

 

1.8. A word on circadian rhythms of performance 

While the current thesis concerns itself primarily with sleep loss (in relation to effects on 

cognitive and in-game performance among esports players), it would be remiss to not 

briefly introduce and discuss the role of circadian rhythms on cognitive performance. 

Circadian (a word derived from the Latin phrase “Cirda diem”, meaning “around a day”) 
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rhythm refers to biological processes occurring with a period of approximately 24-hours. 

Within the human body, circadian rhythm’s can be thought of as an orchestra – where 

individual cells throughout the body are the musicians, each with nuanced differences in 

natural rhythms if left without a conductor, who is present to synchronise the pace and 

tempo of the players (Merrow & Harrington, 2020). Within this analogy, the conductor 

is the suprachiasmatic nucleus (SCN) located within the anterior hypothalamus, with 

eventual influence over almost all cells within the human body (Foster & Kreitzman, 

2014). The primary role of the circadian rhythm is to augment the timing of biological 

processes, such that they occur at the most ideal time of day. Circadian rhythms are 

entrained by zeitgebers (German for time giver, and referring to external influences), 

however are ultimately endogenous and are still present with a ~24hr period without 

zeitgeber influence. By far the most influential zeitgeber is light (received through the 

eyes), with the intensity and spectral properties of light further influencing its impact on 

human biology (Roenneberg et al., 2013).  

Sleep and circadian rhythms affect human neurobiology, subjective experience, and 

objective performance, both independently and synergistically. This relationship is 

described by the two-process model, which was proposed by Borbély (1982) and is still 

widely used today in describing sleep-wake regulation, sleep architecture, and alertness/ 

human performance. The two-process model describes an interaction between the 

homeostatic process (Process S), a process which builds (normally modelled linearly) 

with every moment awake and diminishes with sleep, and the circadian process (Process 

C), referring to circadian rhythm (Figure 1-2). Subjective alertness and performance on 

cognitive tasks tends to be greatest when Process S is low, and poorest when Process S is 

high, and peaks (acrophases) and valleys (bathyphases) over the period of Process C 

(Dijk et al., 1992; Van Dongen & Dinges, 2003). The distribution of task-performance 

acrophases and bathyphases across a day is related to one’s chronotype (i.e., Rae et al., 

2015), or highly individualised preferences in rest/ activity timing that are influenced by 

both biological and environmental factors (Kunorozva et al., 2017; Montaruli et al., 2021; 

Roenneberg et al., 2003; Shawa et al., 2018). While both Process S and Process C affect 

humans independently, they also interact, such that when sleep pressure is high, the 

influence of Process C on subjective and objective markers of performance appears to be 

greatly amplified (Dijk et al., 1992; Van Dongen & Dinges, 2003). Task specificity of 

performance arcophases and bathyphases can also be explained within the framework of 

the two-process model. The current best evidence regarding task-specificity of peak 
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performance acrophases and bathyphases (for cognitive predominant tasks) indicates 

task-independence across one’s circadian rhythm, with temporal changes between task 

acrophases/ bathyphases resulting from differential influences of Process S (Johnson et 

al., 1992; Monk et al., 1997; Muck et al., 2022).  

 

Figure 1-2 The two-process model, originally described by (Borbély, 1982). This model 

is used today to describe how sleep history and circadian rhythm interact to influence 

ones sleep drive, alertness, and performance. Regarding sleep drive, the larger the 

distance between Process S and Process C, the greater the sleep drive, with this distance 

being reduced through nighttime sleep.  

 

1.9. Is acute sleep loss a performance concern in esports? 

Circling back to the presumptions of researchers and esport athletes outlined alike in 

Section 1.5, that sleep loss negatively impacts esports performance; it is clear that 

relationships between sleep loss and performance (in any element) are highly nuanced 

and multifactorial. The literature does not suggest that any amount of sleep loss will 

certainly negatively impact esports performance. Such complexities warrant further 

investigation into pertinent themes around sleep loss and esports performance, as well as 

an empirical investigation into the relationship itself. As such, the overall purpose of this 

thesis is to shed light on if and how sleep loss impacts the ability of esport athletes to play 

at their best. To address this purpose, three key investigations are outlined in the current 

thesis: 

The first key investigation was spawned from a desire to understand how the current 

literature would suggest sleep loss to impact esports performance, with prior knowledge 

that such research had not yet taken place to date. To execute this investigation, I 
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performed a systematic search and review of the scientific literature (alongside grey 

literature sources, as per systematic search protocol) of studies exploring the impact of 

sleep restriction on cognitive performance; however, key criteria were placed on 

population and outcomes explored, in attempt to maximise relevancy to esports. 

Specifically, I included studies only using Elite Cognitive Performer populations; that is, 

populations within occupations or positions in which they are required to perform 

cognitively demanding tasks with critical or safety-critical outcomes. Furthermore, I 

included performance on occupation-specific cognitively demanding tasks as outcomes 

of consideration. SR was chosen as the sleep loss mode of choice (compared to TSD) due 

to its increased likelihood of being experienced by esport athletes. This review is provided 

as Chapter 2, and published in the peer-review journal Sleep. 

The second key investigation spawned from the understanding that in order to explore 

how sleep loss impacts esports performance, an ability to rigorously measure esports 

performance is first required. The ability to obtain relevant measures of overall game 

outcome were important, but obtaining an understanding of in-game measures which 

actually influence performance may help shed light on any whether in-game strategy 

changes occur under conditions of sleep loss. While game outcome and performance 

indicator metrics were already present for major multiplayer online battle arena (MOBA) 

esports (Novak et al., 2020; Xia et al., 2017), these esports are not particularly conducive 

for use in experimental research, due to long and unpredictable match lengths and team-

based competition. Rocket League, however, is an esport particularly suitable for 

experimental research, owing to the fact that match lengths are short and predictable, it 

can involve solo competitive game play (i.e., 1v1), and boasts exceptional data 

availability. Since Rocket League game outcome and performance metrics have not been 

previously examined, Chapter 5 will outline my use of a contemporary machine learning 

approach to identify these metrics; this work is also published in the peer-review journal 

Scientific Reports. 

The third key investigation is into how experimentally induced sleep loss (in the form of 

TSD) impacts both the cognitive and in-game performance of Rocket League players. 

This study makes direct use of the investigations preceding it (through its choice of 

cognitive tasks & in-game performance measures used). It also directly addresses the 

assertions made within previous sleep and esports literature (Bonnar, Castine, et al., 2019; 

Bonnar, Lee, et al., 2019; Bonnar et al., 2022; Goulart et al., 2023; Kemp et al., 2021; S. 

Lee et al., 2021; Moen et al., 2022; Sanz-Milone et al., 2021), and answers the call for 
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research into sleep loss and its direct effects on in-game performance (S. Lee et al., 2021). 

It is, to date, the only formal investigation into experimentally induced sleep loss and 

esports performance, and is described in Chapter 7.  

 

1.10. Purpose, research questions, hypotheses 

The overarching aim of the thesis is to understand how acute sleep loss may impact 

esports performance. Specific research questions covered, and the hypotheses associated, 

are listed below: 

Chapter 2: 

Research Question: How does the current scientific literature suggest that acute 

sleep restriction impacts both the cognitive and occupation specific cognitively 

demanding tasks, for individuals in populations who must perform such tasks with critical 

outcomes as part of their occupation (i.e. Elite Cognitive Performers)? 

Hypothesis: No formal hypothesis is provided.  

Chapter 3: 

Research Question/s: What is the test-retest reliability of the Category Switch 

Task (CST) on various reaction time and error-based outcome measures? Which outcome 

measures on the Category Switch Task (CST) experience test-retest practice effects? Do 

such practice effects vary as a function of test-retest interval (same day, next day, next 

week)? 

Hypotheses: Performance in all outcome measures would improve from test to 

retest, and shorter test-retest intervals would be conducive to larger practice effects than 

longer test-retest intervals.   

Chapter 5: 

Research Question/s: What is a suitable match outcome measure in 1v1 Rocket 

League? Which in-game metrics best predict this match outcome measure, and how do 

these vary as a function of player ability level? Which in-game metrics best predict player 

ability level? 
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Hypotheses: No formal hypotheses are provided. 

Chapter 6: 

Research Question/s: What is the optimal simple imputation strategy for missing 

actigraphy-derived sleep data?  

Hypotheses: No formal hypotheses are provided. 

Chapter 7: 

Research Question/s: Does a ~29 hours of total sleep deprivation (TSD) reduce 

worsen the cognitive performance (vigilance and task-switching performance) of Rocket 

League players? Does such a bout of TSD reduce in-game Rocket League performance? 

Are Rocket League performance indicators impacted by this bout of TSD?  

Hypotheses: Cognitive and in-game Rocket League performance will be 

negatively impacted by ~29 hours TSD. 

Chapter 8: 

Research Question/s: Which Rocket League in-game metrics are perceived to 

best differentiate both safe vs. risky and simple vs. complex playstyles? Do a safer or 

simpler (or both) strategy changes best explain variance between Rocket League matches 

played with both participants rested vs. one participant sleep deprived? 

Hypotheses: There will be substantial overlap between in-game metrics that 

distinguish playstyle risk and playstyle complexity, and both perceived simpler and safer 

strategy derived metrics will explain changes in Rocket League matches played with both 

participants rested vs. one participant sleep deprived. 
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Chapter 2. The Effect of Sleep Restriction on Cognitive 

Performance in Elite Cognitive Performers: A Systematic 

Review  
 

This chapter has been published in a modified format in Sleep: 

Smithies, T. D., Toth, A. J., Dunican, I. C., Caldwell, J. A., Kowal, M., & Campbell, M. 

J. (2021). The effect of sleep restriction on cognitive performance in elite cognitive 

performers: a systematic review. Sleep, 44(7), zsab008. DOI: 

https://doi.org/10.1093/sleep/zsab008 

 

Changes to the abovementioned publication for the purposes of this thesis are outlined 

below: 

• Change in referencing style (article version is in numbered format). 

• References to supplementary files are changed to the appropriate location within 

the appendix. 

• Words emphasised using quotation marks were changed to be emphasised using 

italics, in line with the thesis format.  

• The words Figure and Table in in-text references to figures was capitalised. 

Furthermore, figure/ table numbering convention was changed in line with the 

thesis format.  

• Abbreviations representing authors were changed where needed to avoid conflict 

with other abbreviations used throughout the thesis. 

• Addition of a linking section for the purpose of thesis flow. 

• Minor amendments have been made based on examiner correction suggestions. 

  

https://doi.org/10.1093/sleep/zsab008


21 

 

2.1. Abstract 

Study Objectives: To synthesise original articles exploring the effects of sleep restriction 

on cognitive performance specifically for Elite Cognitive Performers; i.e. those who 

engage in cognitively demanding tasks with critical or safety-critical outcomes in their 

occupation or area of expertise. 

Methods: Backward snowballing techniques, grey literature searches, and traditional 

database searches (Embase, MEDLINE, Web of Science, Google Scholar, PSYCinfo, and 

SportDiscus) were used to obtain relevant articles. A quality assessment was performed, 

and risk of training effects was considered. Results were narratively synthesised. Fourteen 

articles fit the criteria. Cognitive outcomes were divided into three categories defined by 

whether cognitive demands were ‘low-salience’, ‘high-salience stable’, or ‘high-salience 

flexible’. 

Results: Low-salience tests (i.e., psychomotor vigilance tasks & serial reaction tests), 

mainly requiring vigilance and rudimentary attentional capacities, were sensitive to sleep 

restriction, however this did not necessarily translate to significant performance deficits 

on low-salience occupation-specific task performance. High-salience cognitive outcomes 

were typically unaffected unless when cognitive flexibility was required. 

Conclusions: Sleep Restriction is of particular concern to occupations whereby 

individuals perform (a) simple, low-salience tasks or (b) high-salience tasks with 

demands on flexible allocation of attention and working memory, with critical or safety-

critical outcomes.  

Keywords: vigilance, cognitive flexibility, occupation, safety-critical, attention, sleep 

restriction. 

Statement of Significance: Sleep restriction is considered a significant concern to 

performance on cognitively demanding tasks within occupations that involve such tasks 

(i.e. pilots, air traffic controllers, surgeons, medical residents, emergency responders, 

process operators, athletes). However, no review to date has focused specifically on these 

populations, outlining the results of research exploring how the performance of these 

individuals is impacted by sleep restriction. Our review systematically searches for and 

narratively synthesizes the current literature to date within these populations, and outlines 

how cognitive tests and occupational tasks of different demands are differentially 
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impacted by sleep restriction. Lastly, the review shows that more work is needed that 

examines the impact of sleep restriction on cognitive flexibility within these populations. 
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2.2. Introduction 

Optimal cognitive functioning is fundamental for performance within many work 

environments. In select safety-critical occupations, the ability to perform complex, 

cognitively demanding tasks within unpredictable circumstances is integral to operational 

success. Active military personnel (Serfaty et al., 1997), aviation pilots (Adams & 

Ericsson, 2000), air traffic controllers (Hilburn, 2004), emergency responders (Paton & 

Flin, 1999), surgeons and medical practitioners (Patel et al., 1996; Schmidt et al., 1990), 

and process operators in potentially dangerous environments (i.e., mines, power plants, 

oil refineries) (Mumaw et al., 1994) are all examples of individuals involved in such 

safety-critical professions. Additionally, while elite athletes do not engage in safety-

critical work, optimal cognitive functioning (i.e. attention, executive functioning, 

decision making) within time-constrained and unpredictable environments is often 

integral for elite performance (Janelle & Hillman, 2003; Williams et al., 2011). 

Individuals within these professions must exhibit cognitive expertise not normally present 

within the general population for operational success, given the complexities and 

cognitive demands embedded within the tasks involved. Individuals in some of the 

professions mentioned (i.e., athletes, pilots, air traffic controllers) have been shown to 

demonstrate enhanced cognitive performance compared to the general population not 

only within the context of their area of expertise, but also through laboratory testing 

(Arbula et al., 2016; O'Hare, 1997; Voss et al., 2010; Yildiz et al., 2014), though see an 

article by Taylor and colleagues (Taylor et al., 2005) for a contrary finding), particularly 

during task-switching, multitasking and attentionally demanding task paradigms. As a 

result of the aforementioned cognitive demands and the observed performance benefits 

these individuals may possess, we refer to them here collectively as Elite Cognitive 

Performers (ECPs).  

Sleep quantity has been identified as a key moderator of cognitive performance (Durmer 

& Dinges, 2005; Lim & Dinges, 2008, 2010; Lowe et al., 2017). To date, most sleep 

quantity research has concerned itself with total sleep deprivation (TSD; a total 

elimination of sleep obtained during a specified time period), primarily due to the time 

and cost efficiency of their designs (Banks & Dinges, 2007). However, TSD is uncommon 

ecologically, whereas sleep restriction (SR), referring to a moderate reduction in the 

amount of sleep across one or more nights (~2-6hr sleep obtained per night), is far more 

commonly experienced both by the general population (Banks & Dinges, 2007) and by 
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ECPs (Caldwell et al., 2012; Capaldi et al., 2019). The fact that SR is more frequently 

experienced than TSD, and that each affects human neurobiology differently (Banks & 

Dinges, 2007), has led more recent work to specifically focus on understanding the effects 

of SR on cognitive performance. In addition to the reviews assessing the effects of SR on 

cognitive performance among youth (Lundahl et al., 2015) and adolescent (de Bruin et 

al., 2017) populations, experimental sleep dose-response studies, such as those conducted 

by Belenky and colleagues (Belenky et al., 2003), Jewett, Dijk, Kronauer and Dinges 

(Jewett et al., 1999), Van Dongen, Maislin, Mullington and Dinges (Van Dongen et al., 

2003), and Banks, Van Dongen, Maislin and Dinges (Banks et al., 2010), have provided 

comprehensive insight into the effects of SR on cognition. The results of studies such as 

by Belenky and colleagues (Belenky et al., 2003) and by Van Dongen and colleagues 

(Van Dongen et al., 2003), as well as other experimental research, have informed the 

creation of biomathematical fatigue models, used in safety-critical environments to 

identify periods of risk and, guide mitigation, and maximise performance (Hursh et al., 

2004). Recently, Lowe, Safati, and Hall (Lowe et al., 2017), in a meta-analysis 

investigating the effects of SR on cognitive performance, found SR to impact sustained 

attention tasks more than increasingly complex tasks assessing performance in other 

cognitive domains across numerous populations and age groups. This finding 

corroborates those of Wickens, Hutchins, Laux and Sebok (Wickens et al., 2015), who 

noted that simple cognitive task performance is more greatly impacted by sleep loss, as 

well as earlier seminal research outlining the comparatively greater effects of sleep loss 

on simple tasks (Glenville et al., 1978). 

That performance on simple tasks appears selectively hindered by SR initially seems 

counter-intuitive, as prefrontal cortex (PFC; integral to executive functioning) activation 

is decreased by sleep loss (Krause et al., 2017; Ma et al., 2015). However, imaging studies 

(using functional magnetic resonance imaging) have found strong evidence for increased 

recruitment of frontostriatal circuits and additional brain areas coinciding with the 

maintenance of performance during increasingly complex and engaging cognitive tests 

despite decreased PFC activation (Beebe et al., 2009; Chuah et al., 2006; Drummond et 

al., 2004; Drummond et al., 2005; Krause et al., 2017). Through this lens, simple 

attentional test performance tends not to receive similar compensation due to a lack of 

arousal, stemming from the low stimulus/salience nature of such tests (Harrison & Horne, 

2000; Whitney et al., 2019). Recent work has suggested that these compensatory 

mechanisms function in a way so as to give preference to task information already present 
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within working memory, helping to maintain focus and attentional strategy throughout 

the task (i.e., cognitive stability). However, the trade-off appears to be that the ability to 

alter this information within working memory (i.e., cognitive flexibility), necessary for 

when attention needs to be shifted when a task dynamic changes (as is common within 

real-world tasks), is impeded (Whitney et al., 2019).  

Despite the abovementioned literature outlining the effects of SR among general 

populations, it is less clear how SR affects the cognitive performance of ECPs or whether 

this group is differentially affected by SR. The importance of studying this group 

independently from the general population is three-fold. Firstly, optimal cognitive 

performance is arguably more important for ECPs than for the general population, as 

errors or inadequate performance can have critical outcomes, ranging from loss of 

competition for high-level athletes, to loss of life in safety-critical occupations. Numerous 

high-profile catastrophes have involved human errors linked to sleep loss, such as the 

fatal decision to launch the Space Shuttle Challenger in 1986. In the report on the 

Presidential Commission on the Space Shuttle Challenger Accident (1986), it was stated 

that prior to an important teleconference regarding the decision to launch (a decision 

proving to result in seven casualties), “key managers obtained only minimal sleep the 

night before the teleconference” (p. G5), which may have led to poor judgement 

contributing to the fatal decision to launch. Another example is the pervasiveness of 

fatigue in aviation, where it is estimated that fatigue contributes to 4-8% of aviation 

catastrophes (Caldwell, 2005).  

Secondly, ECPs are at an increased risk of experiencing SR due to their occupational 

requirements. For example, sleep opportunity can be sparse and unpredictable throughout 

military combat operations, while other military-specific stressors, such as watch duty 

and field-based exercises, result in the frequent occurrence of SR (Capaldi et al., 2019). 

Commercial pilots often have demanding schedules, are constantly exposed to rapid time-

zone changes, and often must obtain night-time sleep in uncomfortable cockpit 

environments, resulting in regularly experienced SR. Rapidly changing work schedules 

are common for air traffic controllers, causing drastic reductions in sleep quantity, with 

some operating with as little as 2 hours of sleep at times (Signal & Gander, 2007). 

Irregular and demanding shift work schedules can lead to SR for emergency medical 

practitioners (Cheng et al., 2014). Finally, elite athletes can experience SR due to the 

timing and intensity of training and competition schedules, as well as air-travel 

requirements, especially when travelling over multiple time-zones (L. Gupta et al., 2017).  
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Thirdly, contemporary literature has suggested that ECPs at a group level may 

demonstrate an increased resistance to the effects of sleep loss on cognitive performance. 

For example, one study found a group of seven active-duty F117 fighter pilots to have 

greater baseline global cortical activation compared to non-pilots during a working 

memory task, which then positively correlated with performance on a flight simulator 

task after 37 hours of TSD (Caldwell et al., 2005); however the authors advocated for 

further research on larger samples to validate such a finding. In reference to this, some 

authors have discussed the idea that naturally tolerant individuals to sleep loss may either 

self-select into, or that vulnerable individuals may self-select out of, active military 

professions due to the necessity of maintaining performance following sleep loss 

(Caldwell et al., 2012; Van Dongen & Belenky, 2009; Van Dongen, Caldwell, et al., 

2011). Similar theories have been posited to explain a lack of performance degradation 

following sleep loss among medical residents (Schlosser et al., 2012; Veasey et al., 2002). 

It is noted that individual differences in tolerance to sleep loss within elite groups such as 

the U.S. Air Force are still present (Van Dongen et al., 2006). 

Together, the importance of optimal cognitive performance for ECPs, their increased risk 

towards experiencing SR, and their potential increased tolerance to the performance 

effects of SR at a group level, all make the study of the effects of SR on cognitive 

performance in ECPs worthwhile. To date, no attempt has been made to review the 

existing literature examining the effects of SR on the cognitive performance of ECPs. As 

a result, the purpose of this review is to synthesize and summarize the existing literature 

explicitly examining the effect of SR on cognitive and occupation-specific performance 

among ECPs.
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2.3. Methods 

2.3.1. Database search strategy 

This review was not registered prior to its undertaking. Included articles did not have to 

be published in peer-review scientific journals to be considered. Articles included for the 

current review were obtained through an exhaustive systematic search, in accordance with 

the updated PRISMA guidelines (Page et al., 2020). Embase, MEDLINE (Ovid 

MEDLINE(R) and ePub ahead of print, in-process & other non-indexed citations, daily 

and versions(R)), Web of Science (Core Collection), and Google Scholar databases were 

searched, as the combination of these four databases presents superior 

sensitivity/specificity trade-off for systematic searches (Bramer et al., 2017). Subject-

specific databases APA, PSYCinfo, and SportDiscus (both EBSCO host) were also 

queried to add further sensitivity to the search. Searches using these databases took place 

on 27/01/2020, except for Google Scholar, which took place the next day. The exact 

syntax used for each primary database can be found as appendix 2.1. The search strategy 

for each database involved identifying key-words (22 total) within titles and abstracts 

pertaining to motor or cognitive abilities, or performance, and combining them with 

words pertaining to SR (5 total), with the exclusion of words related to animal studies, 

clinical conditions, or reviews. Controlled vocabulary terms (MeSH/EMTREE) were 

explored and used as exploded terms (searching for the particular word as well as the 

more specific words that stem from it within the given organisation system) where 

relevant in databases that allowed for them. Inbuilt database filters were used where 

available to remove studies specifically investigating nonhuman subjects, children, or the 

elderly; no date or language restrictions were enforced. TDS performed the search and 

screening described. 

All identified article references were extracted and exported into Endnote version 9.2 

(Clarivate Analytics), except for those found via Google Scholar, where only the first 200 

references (when searched by relevance; as per Bramer et al. (2017)) were extracted. 

Overall, 4,648 articles were identified through this search process, with 2,421 remaining 

once duplicates had been removed (see Figure 2-1).  
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2.3.2. Grey Literature & Backward Snowballing 

As some research concerning the effects of SR on performance among ECPs may not 

have been detected by the above database searches, an additional grey literature search 

was performed in addition to the use of backward snowballing techniques. Five sources 

of grey literature were queried; two conventional search engines (Google, duckduckgo), 

two grey literature specific databases (OpenGrey and Science.gov), and the Defence 

Technical Information Centre (DTIC). These searches took place between 31/01/2020 

and 04/02/2020. For these searches, similar terms to those used in the primary database 

searches were used (see appendix 2.2 for the exact syntax used for each grey literature 

database search). For the DTIC search, the first 100 results were investigated, while for 

the other grey literature sources, the first 50 were investigated (or less, if less than 50 

results appeared), in a similar fashion to that discussed for Google Scholar by Bramer, 

Rethlefsen, Kliejnen and Franco (Bramer et al., 2017). Backward snowballing refers to a 

technique where the reference lists of previously identified reviews or journal articles 

within a relevant topic are searched to obtain further relevant articles (Wohlin, 2014). 

Due to prior knowledge that many studies conducted in defence institutes are not 

published in peer-reviewed journals and are therefore not identified by primary database 

searches, reviews focussing on such studies were targeted for backward snowballing. 

Additionally, the references of two reviews on the effects of SR on cognition in the 

general population were also searched, as they were considered to be the closest in content 

to the current review. Overall, the reference sections of five reviews and one annotated 

bibliography were searched for relevant studies (Belenky et al., 1987; Grandou et al., 

2019; Lowe et al., 2017; Miller et al., 2007; Vrijkotte et al., 2016; Wickens et al., 2015). 

Backward snowballing was manually performed by TS. In total, 264 articles identified 

based on their title and abstract through the grey literature searches, and 577 articles 

identified through backward snowballing were screened (Figure 2-1). 
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Figure 2-1 PRISMA flowchart outlining the eligibility and inclusion process for the 

current review. 

 

2.3.3. Eligibility Criteria 

The titles and abstracts obtained from the primary database search, the grey literature 

search, and through backward snowballing were screened and excluded only if they 

unambiguously did not fit the following eligibility criteria: 
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1. Data. Articles must present original data; reviews or articles re-presenting 

previously available data were excluded.  

2. Population. Participants must have been ECPs: that is, they must be members 

of the military (e.g. army, navy, air-force, special forces), in aviation 

(specifically pilot and air traffic controllers), medical personnel (physicians, 

surgeons, anaesthesiologists, residents etc.), alternate emergency responders 

(police, firefighters etc.), process operators in a high-risk environment (i.e., 

mines, oil-rigs, power plants etc.), or elite athletes (highly trained and 

competing regularly in their given sport). Data for participants that was 

influenced by the use of alcohol or psychostimulants was excluded with the 

exception of habitual caffeine or tobacco use. 

3. Baseline Sleep Condition. Each study must have compared a SR condition to 

a baseline condition. This could have been conducted through a repeated 

measures design (each participant is exposed to both baseline and SR 

conditions) or an independent group design (participants exposed to a SR 

condition are compared to participants exposed to a baseline condition). For 

repeated measures designs, baseline conditions must have been conducted 

either before the SR condition or multiple days after SR was experienced (two-

days recovery for every one-day SR), to account for delayed recovery of 

cognitive performance noted following SR (Banks et al., 2010; Belenky et al., 

2003); where both are provided, only the baseline prior to SR condition was 

considered. Where a mean TST or sleep opportunity value is provided, it must 

be at least 6 hours (TST > 6 hrs) and at least 2 hours longer than one or more 

nights in the SR condition; otherwise, it must be clearly stated that baseline 

sleep was habitual or unhindered. 

4. Intervention. Articles must have included SR conditions within their protocols 

that involved 1-7 nights whereby sleep was restricted to between 2 and 6 hours 

of sleep opportunity or mean sleep obtained. Sleep restriction must have been 

either experimentally induced or resulting from an abrupt event directly 

causing SR to occur (e.g., 24-hour overnight shift). Sleep undertaken during 

an overnight shift was only considered if sleep was not likely to have occurred 

earlier during the same day, hence 24-hour shifts were considered if 

participants obtained some sleep throughout the night, however night-only 

shifts were not. An example of a near-miss article that fulfilled all other 

criteria but was not included due to this point was by Szelenberger, Piotrowski 
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and Da̧browska (Szelenberger et al., 2005); this article was not included as it 

was unclear whether the sleep loss condition was due to sleep during a night-

only shift allowing for prior daytime sleep or from a 24-hour overnight shift. 

For protocols involving multiple nights of SR, all periods of sleep (sleep onset 

or wake time) must have commenced within the same three-hour time window 

within the recurring 24-hour cycle. This was implemented to minimise any 

confounding circadian phase-shifting effects on cognitive performance 

(Burgess et al., 2013; Santhi et al., 2007). Similarly, any studies where 

protocols involved participants travelling across three or more time-zones 

were excluded to eliminate any confounding effects of jet-lag (Waterhouse et 

al., 2007). If multiple SR conditions were presented within the same article, 

only the SR condition involving night-time sleep was included. Further, 

daytime sleep periods were only considered if it was explicitly clear that 

participants were adapted to diurnal sleep prior to measurement. Sleep 

restriction interventions must have been monitored using sleep diaries or 

subjective recollections provided the day immediately following sleep, 

objective sleep measurement techniques (actigraphy, polysomnography 

(PSG) etc.), or enforced in an experimental setting through limiting sleep 

opportunity. If multiple sleep measurement techniques were implemented, 

preference for reporting sleep obtained was given to the gold standard PSG, 

followed by actigraphy, and finally subjective recollections. 

5. Outcome. Articles must have evaluated cognitive performance using a 

validated neuropsychological test or an occupation-specific cognitively 

demanding task. Testing following SR interventions had to occur within the 

same three hour window as testing following the baseline condition, to 

minimise the influence of circadian factors on performance (Mollicone et al., 

2010). For reviews on the effects of circadian factors on cognitive 

performance, see articles by Carrier and Monk (Carrier & Monk, 2000); 

Valdez, Reilly and Waterhouse (Valdez et al., 2008); and Van Dongen and 

Dinges (Van Dongen & Dinges, 2000). Additionally, sufficient information 

must have been provided within the manuscript for each test or task (or be 

freely available if commonly used) to allow for classification of test 

(classification described further below).  
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Although effect sizes are not presented within this review, they were calculated for each 

relevant measure. In doing so, we observed two studies presenting effect sizes on 

performance effects of SR that were highly improbable (hedges’ g >3 and greater than 

double the next largest effect size observed by a separate article within the test category). 

Due to their improbability, these two studies (Daaloul et al., 2019; Taheri & Irandoust, 

2019) were removed from consideration in this review.  

Following exclusions based on titles and abstracts, the full texts of the 802 remaining 

articles were screened and excluded if they did not satisfy any of the criteria described 

above, if articles were written in a language other than English with no translation 

available, or if full-texts were not present (i.e. conference abstracts). Nine corresponding 

authors of articles were contacted, as the results of these articles could not be included in 

the current state, however with clarification of population, methodologies, or results, they 

may have fit the criteria for the review. Unfortunately however, only one author 

responded, confirming that the relevant article was not suitable for consideration here. 

Following full-text exclusions, fifteen articles were assessed for quality. 

2.3.4. Quality Assessment 

Study quality was assessed using the specific study design tools from the National Heart, 

Lung, and Blood Institute (NHLBI, 2014). These criteria were chosen as the NHLBI 

provides multiple checklists which differ depending on study design and because they 

include the only standard assessment tool specifically catered for assessing repeated-

measures designs within systematic reviews. These tools have been developed by expert 

panels, are intuitive and easy-to-use for researchers, and have been used within systematic 

reviews previously (Frestad & Prescott, 2017; A. Gupta et al., 2017; Saltzman & Liechty, 

2016). For the thirteen studies with a repeated measures design, the Quality Assessment 

Tool for Before-After (Pre-Post) Studies With No Control Group checklist was used, and 

for the two independent-group designs the Quality Assessment of Controlled Intervention 

Studies was used (see appendix 2.3 for the checklists in tabular form). In the latter, criteria 

regarding the blinding of participants to the intervention were excluded due to the 

practical difficulties of doing so within SR protocols. Included articles were assessed 

independently by TDS and AJT, with agreement being reached through consensus. Using 

the checklists and their accompanying guidelines, articles were given a rating of good, 

fair, or poor, with poor articles being removed from further consideration. Overall, seven 

studies were assessed as good, eight studies were assessed as fair, and one study was 
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assessed as poor. For the study assessed as poor, this was due to a >15% difference in 

drop-out rate between groups, constituting a fatal flaw and mandating a poor rating 

according to the tool (Naitoh et al., 1987). This study was thus not included further in the 

review.  

Overall, fourteen articles were included in the review (Figure 2-1) and were categorised 

according to the task used to evaluate cognitive performance (cognitive tests or 

performance in cognitively demanding occupation-specific tasks), as well as the risk of 

performance bias due to training effects. 

2.3.5. Test/Task Categorisation 

The tests used within each of the fourteen articles to evaluate cognitive or occupation-

specific performance were categorised as low-salience (LS), high-salience stable (HSS), 

or high-salience flexible (HSF). The low-salience (LS) category included simple 

attention-based tests that involved no distractors, very limited decision-making, and 

typically required simple, timely responses to a stimulus. Performance was dependent on 

vigilance and simple attentional capacity. Low-salience tests included the psychomotor 

vigilance task (PVT) and serial reaction time (SRT) tests. Occupation-specific tasks were 

coded as low-salience if performance on the task primarily depended on vigilance and 

maintenance of simple attentional capacity. An example of such would be a vigilance rifle 

task, where stimuli is interspersed over very long periods of waiting, the response (shoot) 

is always the same, and the main determinant of performance is clearly how long the 

individual can maintain vigilant attention.  

The high-salience stable (HSS) category included tests which are typically used to 

evaluate more complex cognitive functioning. However, performance on these tests did 

not depend on the ability to flexibly shift attention or adapt to changing task dynamics 

(i.e. cognitive flexibility). High-salience stable tests included working memory tasks, 

grammatical reasoning tests, and the digit symbol substitution test (DSST). Occupation-

specific tasks were similarly coded as HSS if performance primarily depended on more 

complex cognitive functions without requiring task switching or adapting to changing 

dynamics. This could include psychomotor dominant tasks (skilled sport performance, 

surgery skill performance) as well as tasks such as friend foe discrimination tasks where 

the features discriminating friends and foes remain constant throughout.  



34 

 

The high-salience flexible (HSF) category consisted of complex/higher-salience cognitive 

tests & occupation-specific tasks that required cognitive flexibility and/or task switching 

ability for optimal performance. Examples of high-salience flexible tests included task-

switching tests, multitask tests, and tests where the nature of targets could change 

unpredictably throughout the test. The categorization of both neuropsychological tests 

and ECP tasks was performed independently by two researchers (TDS and MK); where 

there was disagreement, consensus was reached upon consultation with AJT and MJC. 

2.3.6. Categorisation of Training Effect Bias 

In order to assess the degree to which repeated-measure study designs risked confounding 

the effect of SR on cognitive ability by showing a training effect on cognitive 

performance, TDS and NR reviewed the included repeated-measures design articles, 

rating them as having a no risk, low-to-moderate risk, or moderate-to-high risk of training 

effects, with consensus being reached through discussion. Repeated-measures studies 

were considered no risk if the order between baseline and SR measurements was 

counterbalanced or if PVT was the performance outcome measure, due to thorough 

demonstration of robustness of PVT to training effects (Basner et al., 2017). Studies were 

considered low-to-moderate risk if no more than three testing sessions were administered, 

and moderate-to-high risk if more than three testing sessions were administered where 

the order of baseline and SR conditions were not counterbalanced between participants. 

Of the fourteen remaining studies, nine had no-risk, one had low-to-moderate risk, and 

four had moderate-to-high risk of training effects biasing results.   

The number and age of participants in the article, occupation, nature and measurement 

method of SR and baseline conditions, performance test/task used, whether a significant 

difference was found between performance in conditions, risk of training effect bias, and 

quality assessment, was coded for each included article and is presented in this review. 

Results of the review are synthesised narratively below. 
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2.4. Results 

2.4.1. Study Characteristics 

The details pertaining to each study included in this review can be found in Table 2-1 

(also provided in spreadsheet form for readability as appendix 2.4). The fourteen included 

articles were published between 1985-2019 with thirteen of the articles published in peer-

reviewed journals and one article published as a technical report within the Naval Medical 

Research Unit (Hartzler et al., 2015). A total of 246 participants (41 females) were tested 

across all studies, with each individual study sampling 18 participants on average 

(SD=10). The mean age of participants was not provided in each study (with some instead 

opting to only provide an age range), however for those that did provide this data (11 of 

14), the mean age ranged from 19-30 years. The absence of mean age information in some 

studies was not considered particularly troublesome as similar effect sizes have been 

noted for the effects of SR on cognitive performance for individuals aged from 18-59 

(Lowe et al., 2017).  

Six studies included military personnel as participants, three tested medical service 

workers, four tested elite or highly-trained athletes, and one tested oil refinery process 

operators. Nine studies assessed performance following only one day of SR, one study 

following two days of SR, two studies following three days of SR, one study following 

four days of SR, and one study each following four days and six days of SR respectively. 

Two studies used polysomnography (PSG) to measure the sleep of participants, five used 

actigraphy, two used subjective recollection, and five used enforced restriction of sleep 

opportunity (SO) within a laboratory. Eleven studies experimentally manipulated the SR 

protocol (mean reported sleep obtained across articles ≈ 3.6±0.9hr per night SR), while 

the remaining three all observed sleep obtained during a 24-hour overnight shift (mean 

reported sleep obtained across articles ≈ 4.4±0.4hr per night SR). Mean baseline sleep 

duration was approximately 7.3±0.6hr (Figure 2-2); note that the report by Hartzler, 

Chandler, Levin and Turnmire (Hartzler et al., 2015) was not included in this baseline 

mean calculation, due to reporting “unhindered” baseline sleep rather than a quantity.  
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Figure 2-2 Amount of mean sleep obtained (±SD) within each condition. Note that for 

studies reporting only “sleep opportunity,” sleep obtained was considered to be the 

entirety of the reported period. SR = sleep restriction, EM = experimentally manipulated 

(n = 11), Obs = observed (n = 3). 

 

Assessed using the NHLBI checklists, strengths generally included well-defined research 

questions, thoroughly described procedures, and minimal participant drop-out. Common 

weaknesses included a lack of evidence provided on the validity of performance measures 

and outcomes used, not providing information of whether test administrators were blinded 

to the condition of the participants, and a lack of consideration of statistical power when 

determining sample size (although in many cases, the sample size was likely limited by 

the availability of participants, given the specialised populations).



37 

 

Table 2-1 Study Characteristics for included articles, organised by their test/task categorisation and type. 

Authors (Year) Population Occupation 
Test/Task 

Categorisation 

Cognitive 

Test or 

Occupation-

specific task 

Cognitive Test Used Measure 
Baseline Sleep 

Protocol 

 Sleep 

Restriction 

(SR) Protocol 

Result 

Risk of 

Training 

Effects Biasing 

Results 

Englund, Ryman, 

Naitoh & 

Hodgdon (1985) 

22 marine 

corps 

Military LS Cognitive Test Alpha-Numeric Visual 

Vigilance Task 

% correct 8hr SO  3hr SO ↓  Moderate-to-

high 

4-Choice SRT % correct NS 

Gillberg and 
Akerstedt (1994) 

7 military 
consripts 

6-minute Visual SRT  Response Time 
(1/RT) 

8hr SO  4hr Undisturbed 
SO 

↓ None 

4hr SWS-

suppresed SO 

↓ 

Hartzler, 

Chandler, Levin 
& Turnmire 

(2015)  

24 naval 

aviation 
preflight 

training 

program 
participants 

PVT Lapses (reaction 

time > 500ms) 

"Unhindered 

sleep" 

1 night 4hr SO ↓  None 

2 nights 4hr SO ↓   

3 nights 4hr SO ↓   

4 nights 4hr SO ↓  

Slowest 10% 
Response Time 

(1/RT) 

1 night 4hr SO ↓ 

2 nights 4hr SO ↓   

3 nights 4hr SO ↓  

4 nights 4hr SO ↓  

Romdhani et al. 
(2019)  

14 elite judo 
athletes 

Athlete SRT Response Time 
(1/RT) 

8hr SO  1 night 4hr SO 
(early wake) 

↓ None 

1 night 4hr SO 

(late sleep onset) 

NS 
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2-choice SRT 1 night 4hr SO 

(early wake) 

NS 

1 night 4hr SO 

(late sleep onset) 

↓  

Roberts, Teo, 
Aisbett & 

Warmington 

(2019) 

9 trained 
cyclists or 

triathletes 

10-minute PVT Lapses (reaction 
time > 500ms) 

7.1(0.8)hr sleep 1 night 4.7hr 
sleep 

NS  None 

6.5(1.0)hr sleep 2 nights 4.7-

4.8hr sleep 

NS 

6.7(0.7)hr sleep 3 nights 4.7-

4.9hr sleep 

↓  

6.5(1.5)hr sleep 1 night 4.7hr 
sleep 

NS  

2 nights 4.7-

4.8hr sleep 

↓  

3 nights 4.7-

4.9hr sleep 

↓   

Response Time 
(1/RT) 

7.1(0.8)hr sleep 1 night 4.7hr 
sleep 

NS 

6.5(1.0)hr sleep 2 nights 4.7-

4.8hr sleep 

NS 

6.7(0.7)hr sleep 3 nights 4.7-

4.9hr sleep 

↓ 

6.5(1.5)hr sleep 1 night 4.7hr 
sleep 

↓  

2 nights 4.7-

4.8hr sleep 

↓ 

3 nights 4.7-

4.9hr sleep 

↓ 

Mah, Sparks, 
Samaan, Souza & 

Luke (2019) 

10 elite OR 
highly trained 

and actively 

competing 
cyclists 

10-minute PVT  Reaction Time 7 nights of 
mean 6.7(0.7) 

sleep 

3 nights of 
3.7(0.2)hr sleep  

↓  None 

Fastest 10% 

Reaction Time 

↓  

Response Time 

(1/RT) 

↓  

Saxena & George 
(2005) 

13 medical 
residents 

Medical 5-minute PVT  Slowest 10% 
Reaction Time 

7.6(3.0)hr sleep 4.8(2.4)hr sleep NS  None 

Fastest 10% 

Reaction Time 

NS 

Sallinen et al. 

(2004) 

Process 

Operators 

10-Choice SRT Reaction Time 7.1-7.4(0.6-

0.9)hr sleep 

3.6-3.7(0.1-

0.2)hr sleep 

NS None 
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12 process 

operators at an 

oil refinery 

Slowest 10% 

Reaction Time 

NS 

Haslam (1985) 6 trained 

infantrymen 

Military Occupation-

Specific Task 

Marksmanship: 

Vigilance Rifle 

Shooting 

Number of Hits 2 nights 7.25hr 

SO 

6 nights 4hr SO NS  Moderate-to-

high 

Hartzler, 
Chandler, Levin 

& Turnmire 

(2015)  

24 naval 
aviation 

preflight 

indoctrination 
program 

participants 

Flight Simulator Total Lapse Time Unhindered 
sleep 

1 night 4hr SO ↓ Moderate-to-
high 

2 nights 4hr SO ↓ 

3 nights 4hr SO ↓ 

4 nights 4hr SO ↓  

Sallinen et al. 

(2004) 

12 process 

operators at an 
oil refinery 

Process 

Operators 

Simulated Distillation 

Process – 

Monotonous Workday 

Simulation 

Periods of Nil 

Production 

7.4(0.6)hr sleep 3.6(0.2)hr sleep NS  None 

Haslam (1985) 6 trained 
infantrymen 

Military HSS Cognitive Test Adapted Williams 
Word Memory Test  

Number Correct 2 nights 7.25hr 
SO 

6 nights 4hr SO ↓ Moderate-to-
high 

15-minute Addition 
Test 

Number Correct NS 

Number of Errors NS  

Englund, Ryman, 
Naitoh & 

Hodgdon (1985) 

22 marine 
corps (11 

exercise, 11 

non exercise)  

Baddeleys Logical 
Reasoning Test  

% correct 8hr SO 3hr SO NS Moderate-to-
high 

Williams Auditory 
Word Memory Test 

% correct NS  

Gates-Peardon 

Reading Exercise - 

"Remembering 
Details" 

Number Correct NS 

Gates-Peardon 

Reading Exercise - 

"Section About" 

NS 

Gates-Peardon 
Reading Exercise - 

"Following Direction" 

NS 

Miller Reading 

Efficiency Test 

Number of Lines 

Completed 

NS 
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Reimann, Manz, 

Prieur, 
Reichmann & 

Ziemssen (2009) 

32 neurology 

residents 

 
Paced Auditory Serial 

Addition Test 
(PASAT) 

Proportion of 

Items Correctly 
Answered 

6.5(6.0-7.0)hr 

sleep 

4.3(2.8-4.6)hr 

sleep observed 
on 24hr 

overnight shift 

NS N/A 

(independent-
group design) 

Schlosser et al. 

(2012) 

38 surgeons  d2-Paper-Pencil test Main 

Concentration 
inTdex 

6.7(0.2)hr sleep 4.1(0.3)hr sleep 

observed on 
24hr overnight 

shift 

↑  Low-to-

moderate 

Sallinen et al. 
(2004) 

12 process 
operators at an 

oil refinery 

Process 
Operators 

Subtraction Test Reaction Time 7.1-7.4(0.6-
0.9)hr sleep 

3.6-3.7(0.1-
0.2)hr sleep 

NS  None 

Slowest 10% 

Reaction Time 

NS 

Haslam (1985) 6 trained 

infantrymen 

Military Occupation-

Specific Task 

10-minute Map Grip 

Reference 

Encoding/Decoding  

Number Correct 2 nights 7.25hr 

SO 

6 nights 4hr SO NS Moderate-to-

high 

Number of 

Errors 

NS  Moderate-to-

high 

Marksmanship: 

Grouping Capacity 

Shooting 

Accuracy  

NS  Moderate-to-

high 

Englund, Ryman, 
Naitoh & 

Hodgdon (1985) 

22 marine 
corps (11 

exercise, 11 

non exercise)  

Air Defense Game Average Range of 

Intercept 

8hr SO 3hr SO NS  Moderate-to-
high 

Smith et al. 
(2019) 

15 active duty 
soldiers 

Marksmanship: 

Friend vs. Foe 

Discrimination Task - 

"Low Cognitive Load 

(LCL)" 

Errors (incorrect 

response to friend 

or foe target) 

7.7(0.1)hr sleep 1 Night 2hr SO NS  Moderate-to-
high 

2 Nights 2hr SO NS 

Accuracy on 

hitting foes (%) 

1 Night 2hr SO NS  

2 Nights 2hr SO NS 

Marksmanship: Army 

Record Fire Task 

Accuracy 1 Night 2hr SO NS  

2 Nights 2hr SO NS  

Reyner and 

Horne (2013) 

28 first or 

second team 

univeristy 
tennis players 

Athlete Tennis Serving 

Accuracy 

Hits Within a 

Designated Area 

6.6-

7.8(SE=0.1-

0.2)hr sleep 

4.3-

5.4(SE=0.1)hr 

sleep 

↓ None 

Schlosser et al. 

(2012) 

38 surgeons  Medical LapSim Low-Fidelity 

Tasks  

Composite 

Performance 

Score (%) 

6.7(0.2)hr sleep 4.1(0.3)hr sleep 

observed on 

24hr overnight 
shift 

↑ Low-to-

moderate 

High-Fidelity 

Intracorporeal 

Suturing 

↑   

High Fidelity Chole-

Cystectomy 

↑  
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Sallinen et al. 

(2008)  

16 military 

conscripts 

Military HSF Cognitive Test Brain@work 

Multitask  

Score obtained 

relative to highest 

possible score 
obtainable for the 

individual 

8.0(0.4)hr sleep 2.1(0.1)hr sleep ↓  None 

Hartzler, 
Chandler, Levin 

& Turnmire 

(2015)  

24 naval 
aviation 

preflight 

indoctrination 
program 

participants 

Dual n-back Dual n-back 
Metric 

Unhindered 
sleep 

1 night 4hr SO ↑  Moderate-to-
high 

2 nights 4hr SO ↑  

3 nights 4hr SO ↑  

4 nights 4hr SO ↑  

Smith et al. 

(2019)  

15 active duty 

soldiers 

Occupation-

Specific Task 

Marksmanship: 

Friend vs. Foe 

Discrimination Task, 

"High Cognitive Load 

(HCL)" 

Errors 7.7(0.1)hr sleep 1 Night 2hr SO ↓ Moderate-to-

high 
2 Nights 2hr SO ↓  

High Value 

Target Detections 

1 Night 2hr SO NS  

2 Nights 2hr SO ↓ 

Accuracy on 

hitting foes (%) 

1 Night 2hr SO NS  

2 Nights 2hr SO NS  

Sallinen et al. 

(2004) 

12 process 

operators at an 
oil refinery 

Process 

Operators 

Simulated Distillation 

Process – Busy 

Workday Simulation 

Amount of Time 

with Nil 

Production 

7.1(0.9)hr sleep 3.7(0.1)hr sleep NS None 

Note. ↓: significant negative effect of SR condition, ↑: significant positive effect of SR condition, NS: no significant effect of SR condition. LS: Low-salience, HSS: High-salience stable, HSF: High-salience 

flexible, PVT : psychomotor vigilance task, SRT: serial reaction test, CRT: choice reaction test, SO: Sleep opportunity provided, SWS: slow-wave sleep. Variance for sleep measures is standard deviation 
except when specified using 'SE' for standard error and is given in brackets following the value. Bolded cognitive tasks and outcomes are occupation/expertise specific performance measures. 
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2.4.2. Low-Salience Test/Task Performance 

2.4.2.1. Descriptive Information 

Nine studies investigated low-salience cognitive or occupation-specific task performance 

following SR among 117 participants. Four of these studies tested military personnel, 

three tested elite or highly-trained athletes, one tested medical residents, and one tested 

oil refinery process operators. Five studies examined the effect of only a single night of 

SR on performance, while the remaining studies examined the effect of multiple 

consecutive nights of SR on performance. Three studies incorporated occupation-specific 

tasks; a marksman vigilance task, a distillation simulation task (monotonous workday 

condition), and a flight simulator lapse task.  

2.4.2.2. Findings 

Only performance on the flight simulator task (deviation from a simple flight profile) was 

found to be significantly weakened by SR (Hartzler et al., 2015). In the other two studies, 

the vigilance of trained infantrymen was found to be unaffected while performing a 

shooting task following six consecutive nights of SR (4hr SO) (Haslam, 1985), and no 

significant performance change was found on a simulated distillation task among 

experienced oil-refinery process operators following one night of ~3.5hr TST (Sallinen 

et al., 2004). Among the eight studies testing cognitive abilities directly, Englund, Ryman, 

Naitoh and Hodgdon (Englund et al., 1985) observed a significant performance 

decrement among a sample of U.S. marines on the alpha-numeric visual vigilance task, 

but not on a four-choice SRT, following one night of SR (3hr SO). Gillberg and Åkerstedt 

(Gillberg & Åkerstedt, 1994) found response times on a SRT were not significantly 

affected by SR when tested at 08:00, but were significantly worsened when tested at 14:00 

or 20:30, as well as when the results from all time points were combined; this was 

regardless of whether the four hours of SO allocated were undisturbed or manipulated so 

that participants could obtain minimal slow-wave sleep. Among a sample of naval 

aviation trainees, Hartzler and colleagues (Hartzler et al., 2015) found the number of 

lapses (reaction time >500ms) increased during each night of SR experienced (4-nights 

of 4hr SO), with an increased overall response time of the slowest 10% attempts on the 

PVT compared to baseline following SR. Romdhani and colleagues (Romdhani et al., 

2019) found that one night of SR (4hr SO) slowed reaction times of judo athletes on (a) 
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a SRT when sleep was restricted by initiating an early wake time but not when delaying 

sleep onset, and (b) a choice reaction time task when sleep was restricted by delaying 

sleep onset but not when initiating an early wake time. Roberts, Teo, Aisbett and 

Warmington (Roberts, Teo, Aisbett, et al., 2019) found a significant increase in PVT 

lapses and response times among highly trained cyclists and triathletes following three 

days of SR (~4.5 to 5hr TST) when compared both to the day before the first night of SR 

(6.5hr TST) or the equivalent day within a baseline condition (~6.5 to 7hr TST), 

additionally finding differences in lapses following two days of SR and in response times 

following both one and two days of SR when compared to the equivalent baseline 

condition. Mah and colleagues (Mah et al., 2019) similarly found the vigilance of ten elite 

(or highly trained & actively competing) cyclists (PVT reaction time, inverse reaction 

time & fastest 10% reaction time) to be adversely affected by three nights of ~4hr SO. 

Interestingly, no significant differences in LS test performance (PVT, serial reaction time 

task) were found between SR (~5hr TST) and baseline conditions for medical residents 

(Saxena & George, 2005), nor among oil refinery process operators following one night 

of ~3.5hr TST (Sallinen et al., 2004).  

2.4.3. High-Salience Stable Test/Task Performance 

2.4.3.1. Descriptive Information 

Seven studies examined the effects of SR on cognitive and occupation-specific high-

salience stable tasks among 153 participants (Table 2-1). Three of these studies tested 

military personnel, one tested highly-trained athletes, two tested surgeons or medical 

residents, and one tested oil refinery process operators. Five studies implemented only a 

single night of SR, while two involved multiple consecutive nights of SR. Five studies 

incorporated occupation-specific tasks, including marksmanship accuracy tasks, a 

marksmanship friend vs. foe discrimination task (low-cognitive load condition), an “air 

defense” game, a map-grip encoding/decoding task, a tennis serving accuracy protocol, 

and a VR-surgery simulator task.  

2.4.3.2. Findings 

Two studies found SR to significantly decrease performance relative to a baseline 

condition. Haslam (1985) found significant deterioration in the number of correctly 

recalled items by trained infantrymen on a word memory test throughout six nights of SR 

(4hr SO). Conversely, Englund and colleagues (Englund et al., 1985) found no effect of 
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one night of SR (3hr SO) on the immediate recall of marine corps on an almost identical 

task to that in Haslam (1985), as well as the ability to immediately recall details in a short 

reading task. Performance on the d2-paper-pencil test (selective attention) was found to 

significantly improve following SR (one night of ~4hr TST) relative to a previously taken 

baseline among surgeons (Schlosser et al., 2012). This study additionally found 

performance on surgery skills of varying complexity (as well as “economy of motion” 

measures which comprised these overall composite scores) on a VR-surgery simulator to 

improve following SR. It is noted however that in measurements taken 24hr after the SR 

condition testing, d2-paper-pencil test performance improved again from the SR 

condition, and performance on two of the three surgery performance measures (Low-

Fidelity Task and Chole-Cystectomy performance score) was maintained from the SR 

condition and also significantly better than in the baseline condition. When examining 

studies that evaluated occupation-specific task performance, Reyner and Horne (Reyner 

& Horne, 2013) found serving accuracy of semi-elite tennis players to be hindered by one 

night of SR (~4.5 to 5.5hr TST), whereas all other studies utilising occupation-specific 

HSS measures failed to detect significant performance differences between baseline and 

SR conditions.  

2.4.4. High-Salience Flexible Test/Task Performance 

2.4.4.1. Descriptive Information 

Four studies examined performance outcomes on high-salience flexible cognitive and 

occupation-specific tasks among 67 participants. Three of these studies tested military 

personnel, and one tested oil refinery process operators. Two of these studies investigated 

only a single night of SR, while the other two implemented multiple consecutive nights 

of SR. Two studies incorporated occupation-specific tasks including a military 

marksmanship friend vs. foe discrimination task (high-cognitive load condition), and an 

oil-refinery distillation simulation task, similar to the task mentioned previously but with 

increased cognitive demand and functional instability embedded within it.  

2.4.4.2. Findings 

Among those studies investigating cognitive test performance, Sallinen and colleagues 

(Sallinen et al., 2008) tested 16 military conscripts on a multitask test (Brain@Work) 

involving four cognitive tests performed simultaneously, and reported a significant 

decrease in performance following SR (one night ~2hr TST) relative to baseline. 
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Alternatively, Hartzler and colleagues (Hartzler et al., 2015) used an adaptive dual n-back 

measure requiring simultaneous attention towards both visual and auditory stimuli, and 

found improvement compared to baseline on all four days of SR (4hr SO). However, the 

authors concluded that “practice effects were evident throughout the study” (p. 24) and 

these likely confounded the results. For studies investigating occupation-specific 

performance, Smith and colleagues (C. D. Smith et al., 2019) found one and two nights 

of SR (2hr SO) led to an increase in the number of errors made on a high cognitive load 

(HCL) challenge of the marksmanship friend vs. foe discrimination task. In this task, 

colours that represented friends and foes changed frequently, requiring participants to 

flexibly adapt to the task details for correct completion. Notably, in the low cognitive load 

(LCL) version of this challenge, whereby colour coding was held constant (HSS task), 

error rate did not significantly differ between baseline and SR conditions. Additionally 

for high value target detection, a measure present only for the HCL version of the task, 

percentage detection rate was impaired after 2-nights of SR. No effect of SR was found 

in either version of the task for the marksmanship accuracy in shooting foes. Lastly, time 

at nil production, the main performance outcome referring to a lack of activity occurring 

within the busy condition of a simulated distillation process, was not found to change 

significantly between SR (one night of ~3.5hr TST) and baseline conditions for oil 

refinery process operators (Sallinen et al., 2004). Again, this task was identical to the 

monotonous condition in the simulated distillation included in the LS table except for a 

greatly increased depletion speed and the addition of functional instability. 
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2.5. Discussion 

Our systematic review explored the literature examining the effect of SR on cognitive and 

task-related performance specifically among Elite Cognitive Performers (individuals 

within occupations that (a) have cognitive demands exceeding the norm and (b) have 

critical outcomes associated with these demands). In doing so, we aimed to provide an 

indication of how SR may affect the cognitive performance of those for whom the 

outcomes are arguably more important than is often the case within the general 

population, with a degree of specificity not previously available within the literature. 

Overall, this review found that the performance of this select group on monotonous, low-

salience tasks is often poorer following SR, and while performance on more complex, yet 

cognitively stable, tasks is usually maintained, performance may be more prone to decline 

when the task involves adaptation to changing goal-oriented information and a shifting 

of attention. 

2.5.1. Differences of the Effects of Sleep Restriction as a Function of 

Task Demands   

In this review, we found performance on simple tests designed to measure vigilance and 

rudimentary attentional capacity (whether occupation-specific or not) was most 

commonly hindered by SR. This corroborates findings from a meta-analysis on the wider 

population (Lowe et al., 2017) and is consistent with the effects found following TSD 

(Lim & Dinges, 2010). The ability to maintain attention in low-salience circumstances is 

integral to many components of safety-critical work (i.e., monitoring human-machine 

interfaces or environment), however two of the three studies using low-salience 

occupation-specific task performance found no significant deterioration resulting from 

SR. These two articles however had factors within their design or within the outcomes 

themselves that could have confounded results. Specifically, Sallinen and colleagues 

(Sallinen et al., 2004), who tested performance on a simulated distillation task among oil 

refinery workers, reported that their failure to find an effect of one night of SR on 

participants’ monotonous and busy workday (the latter coded as HSF) may be due to the 

performance task being “too rough to demonstrate a significant sleep debt-related effect” 

(p. 293). The other task was a vigilance rifle shooting task for trained infantrymen 

following six nights of SR (Haslam, 1985). This article stated that the infantrymen were 

to receive long-weekend leave if they “maintained a certain standard” of performance on 
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“key tasks” (p. 91), likely raising the external motivation to maintain performance in spite 

of SR (although it is unclear which were the “key tasks” in this study). Such external 

motivation likely increased task engagement, which purportedly facilitates the 

maintenance of performance in spite of sleep loss (Harrison & Horne, 2000). Along these 

same lines, one of the few studies that did not find a difference in PVT performance 

following SR rewarded the highest-performing participants with $100CAD (Saxena & 

George, 2005). Hence, it appears that context and motivation are key moderators of the 

effect of SR on the performance of simpler tasks; if task engagement is promoted (through 

task demand, external motivation etc.) performance is likely to be maintained, whereas if 

there is a lack of exogenous factors promoting task engagement, ECPs, like the general 

population, will show degraded performance on tasks prioritising simple attention.   

In stark comparison to studies investigating the effect of SR on simple cognitive 

performance, studies using evaluation tools that required more complex cognitive 

processes that rewarded cognitive stability almost unanimously reported no effect of SR. 

The two studies which reported SR to negatively affect performance tested the immediate 

recall of infantrymen on a working memory task (Haslam, 1985), and university 

representative tennis players on a tennis serving accuracy test respectively (Reyner & 

Horne, 2013). The former suggests that immediate recall is vulnerable to SR, however it 

is to be noted that the immediate recall of marine corps in a separate study (Englund et 

al., 1985) with a similar procedure to Haslam (1985), as well as the ability to immediately 

recall details in a short reading task, was not significantly affected by SR. The latter 

finding would suggest perhaps that skilled, psychomotor performance outcomes could be 

vulnerable to SR, however Schlosser and colleagues (Schlosser et al., 2012) contrastingly 

noted an increase in performance on simulated surgery tasks of differing complexity 

following SR and compared to a previously taken baseline condition. Investigating tasks 

with similar cognitive demands, Haslam (1985) and Smith and colleagues (C. D. Smith 

et al., 2019) did not report a significant effect of six or two nights of SR respectively on 

marksmanship tasks specifically measuring accuracy. Taken altogether, these results 

suggest that acute SR alone is unlikely to negatively affect the performance of ECPs on 

complex cognitively stable tasks when they are related to their area of expertise. In a 

practical sense, this could be interpreted to closed skills for elite athletes (i.e., a free-throw 

or a golf putt), performance of routine fine-motor, yet demanding surgery task, or the 

ability to perform fixed and predictable tasks such as adhering to correct pre-flight 

procedures for an aircraft pilot. Lastly, in further support of the influence of context, 
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engagement and motivation, Englund and colleagues (Englund et al., 1985) noted in 

discussing the (statistically insignificant) trend of performance improvement on a 

complex ‘air defense’ game and the lack of performance loss on a reading efficiency 

following SR, that “competition and interest, each a motivating factor, influenced both 

psychomotor and cognitive task performance” (p. 84).  

We separated HSS and HSF based on whether the task demanded cognitive flexibility; 

that is, the ability to shift attention to new, more relevant information, or to adapt to a 

changing task dynamic (Ionescu, 2012; Scott, 1962). Here we found that performance on 

a multitask test (Sallinen et al., 2008) and error rate within a task embedded within a 

marksmanship context (C. D. Smith et al., 2019), both of which required cognitive 

flexibility, were negatively affected by SR. The latter is particularly notable as error rate 

in a simpler adaptation of the same task, which didn’t require participants to adapt to the 

changing meaning of different colour targets throughout, was not negatively affected by 

the same conditions of SR. When considering the two studies that did not find a negative 

effect of SR on HSF outcomes, one used an adapted version of the aforementioned oil 

refinery distillation task with potential sensitivity issues, and the other one had a 

moderate-to-high risk of bias, with the authors (Hartzler et al., 2015) themselves stating 

that “practice effects were evident” (p. 24). The ability to flexibly shift attention and adapt 

to changing dynamics is of obvious ecological importance, particularly for safety-critical 

workers handling emergency situations. For example, aircraft pilots are presented with a 

multitude of information from dials, outputs, and air-traffic controllers when in an 

emergency situation (i.e., engine failure) and must be able to rapidly shift their focus to 

the most important interface to gather the most relevant information for the resolution of 

their current circumstance. Pilots must then be able to adapt to their new situation (flying 

an aircraft without the engine) and adjust their approach accordingly. Further 

experimental work is clearly required to understand how the cognitive flexibility of ECPs’ 

is affected by SR and how this impacts high-demand tasks within their workplace, given 

(a) the importance of cognitive flexibility particularly within emergency scenarios, (b) 

the increased prevalence of SR in ECPs versus the general population, and (c) the studies 

detailed within this review outlining the effects of SR on the cognitive flexibility of ECPs. 

2.5.2. Strengths and Limitations   

It is accepted that the classification of performance tests in this review can be considered 

coarse. For example, standardised cognitive tests within the HSS category can be 
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attempting to test primarily inhibition, working memory, decision-making, executive 

functioning, complex attention, cognitive throughput and so on. These are regularly 

discussed as distinct cognitive outcomes with distinguishable underlying neural 

processes. Although previous meta-analyses have demonstrated differences in effect sizes 

among different complex cognitive domains (Lim & Dinges, 2010; Lowe et al., 2017), 

the most tangible distinctions regarding effects of sleep loss on cognitive performance 

appear to be: (a) the extent to which performance is dependent on sustained, simple 

attention (Harrison & Horne, 2000; Lim & Dinges, 2008, 2010; Lowe et al., 2017), and 

more recently, and (b) whether cognitive flexibility is prioritised over cognitive stability 

for performance (Honn et al., 2019; Whitney et al., 2015; Whitney et al., 2019) (spawning 

the rationale behind the classification used). This information is of direct practical use to 

members of safety-critical industries, elite athletes and coaches, and other individuals in 

occupations with cognitive demands spanning beyond the norm. The separation of tasks 

into cognitive domains limits applicability because tasks that ECPs engage in are complex 

by nature and require significant contributions from multiple domains simultaneously. By 

separating tasks as we have in the current review, we provide a simple framework that 

applies to real-world tasks in a host of occupations with large cognitive demands, but that 

seemingly distinguishes between tasks in which performance is likely or unlikely to be 

affected by SR (Figure 2-3). 

 

Figure 2-3 Proposed framework explaining the likelihood of sleep restriction affecting 

cognitive performance for Elite Cognitive Performers. 

 

The current review had particularly stringent eligibility criteria. Studies that investigated 

sleep restriction and cognitive performance among ECPs, but that allowed significant 

variance (or lacked reporting) of participant sleep onset & wake times, or testing times, 
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were removed. Additionally, multiple studies included in this review presented additional 

measurements taken and statistical comparisons made that were not included due the 

these reasons (Hartzler et al., 2015; Haslam, 1985). By removing these studies and 

measurements we likely lost some degree of ecological validity as SR in practice is often 

accompanied by a shift in sleep onset and wake times (i.e., following transmeridian travel, 

change from day-shifts to night-shifts etc.) resulting in circadian desynchrony, and 

performance at different and often rapidly changing times of day is necessary (i.e., 

rotating shift schedules). The effect of rhythmic fluctuations of performance related to 

circadian rhythm, as well as the desynchronisation of circadian rhythm likely to arise 

from large variance in sleep onset and wake time, is non-trivial (Blatter & Cajochen, 

2007; Carrier & Monk, 2000; Mollicone et al., 2010; Van Dongen & Dinges, 2000). 

Therefore, without controlling for changes based on when the participants were sleeping 

or when they were being tested, it would be incredibly difficult to discern whether 

differences in performance were due to the changes in sleep quantity or these circadian 

factors. Controlling for these factors allows us to more confidently conclude that any 

performance decrements observed were due to SR and not other influences. In short, this 

review only examined the effects directly related to change in sleep quantity, and that 

other features commonly experienced with SR such as shifts in sleep periods are likely to 

further exacerbate the performance impairments discussed in this review; hence, the 

findings of this review should be considered conservative and a best case outcome for 

how moderate sleep loss impacts task performance for Elite Cognitive Performers in the 

real-world. 

Despite the stringency of the eligibility criteria, there was still a surprisingly small number 

of articles that met the inclusion criteria of the review, given the exhaustive nature of our 

systematic search. In particular, there was a dearth of research investigating the role of 

SR on cognitive performance among elite athletes. Using the criteria for defining and 

quantifying expertise as outlined by Swann et al. (2015), semi-elite athletes were the top 

level participants tested among the included studies. Some of the other studies utilised 

interns and junior medical residents (Saxena & George, 2005; Schlosser et al., 2012) and 

military personnel either within their first few years of service or within the process of 

completing specialised programs such as a naval preflight training program (Hartzler et 

al., 2015; C. D. Smith et al., 2019), and may not be representative of more experienced 

individuals who (a) have more experience performing while fatigued, and (b) have greater 

expertise on occupation-specific tasks. This distinction is highly important as more expert 
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individuals tend to utilise different cognitive strategies compared to their less skilled 

individuals when performing tasks within their field of expertise, such as different gaze 

and fixation strategies (Mann et al., 2007) and decision making processes (Salas et al., 

2009). Hence, it is possible that experts and novices may be differentially affected by 

sleep loss on a particular cognitively demanding task. Ideally, further experimental work 

which directly investigates the potential for expertise to moderate the effect of SR on 

cognitive performance would elucidate such a possibility. However, recruiting such an 

array of participants within a specific area can prove difficult. Additionally, as 

demonstrated by Sallinen and colleagues (Sallinen et al., 2004), selecting a performance 

outcome within the context of ones area of cognitive expertise that is also sensitive 

enough to show performance deficits following SR provides another layer of difficulty. 

Still, such experimental work could be extremely beneficial in (a) understanding the 

relationships between sleep loss, cognitive performance, and cognitive expertise, and (b) 

further improving our overall understanding on how SR affects the task performance of 

ECPs.  

2.5.3. Future Directions   

One area where it is both relatively easy to evaluate cognitive and occupational 

performance among individuals with a vast array of skill level is esports. Here, we believe 

that research on elite esports athletes may be able to provide insight into the moderating 

effect of cognitive expertise on performance loss resulting from SR. Esports refers to the 

competitive (and for some, professional) play of commercially available video games, 

with esports athletes being referred to as “cognitive athletes” due to the cognitive 

expertise that they possess (Campbell et al., 2018). Many esports games often adopt the 

Elo rating system, allowing for expertise to be quantified on a continuum and the digital 

nature of game play facilitates the collection of large amounts of relevant performance. 

In addition to being an exemplar test population, esports athletes also share many 

similarities with many ECPs with respect to work environment and the enhanced 

cognitive skills required by both for optimal performance (Smithies et al., 2020). Future 

research on the effects of SR on esport athletes could thus provide applicability to ECPs 

in general, furthering our understanding of how elite cognitive performers are affected by 

sleep loss. Moreover, as esport athletes can be considered ECPs themselves and that their 

shared commonalities with traditional athletes likely leading to higher-than-normal 
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prevalence of SR, the results of the current review are of great relevance to this 

population. 

Sleep restriction presents as one of many factors which may adversely affect performance 

on complex, cognitively demanding tasks. In addition to circadian factors mentioned 

earlier, sleep inertia, referring to the grogginess and degraded performance immediately 

following wake, is of high relevance to individuals performing tasks at night or those 

working extended shifts and are able to sleep on the job but simultaneously may be 

required to respond to complex emergency situations at a moment’s notice (i.e., night-

shift medical workers, pilots, air traffic controllers, emergency responders). Extended 

periods of wakefulness and time on task (particularly for boring, monotonous tasks) can 

also further contribute to fatigue related performance impairment within the workplace 

(Caldwell et al., 2019), and are important considerations for safety-critical workers and 

other elite cognitive performers (i.e., athletes, esport athletes). As aforementioned, the 

context surrounding a given task (i.e. the presence of external motivating factors) is an 

important consideration in addition to the nature and demands of the task itself. Lastly, 

the extension of sleep quantity beyond what is habitually obtained has shown positive 

effects on cognitive performance outcomes for high-level collegiate athletes measured 

both through standardised cognitive tests and through outcomes directly related to their 

expertise (Mah et al., 2011), and may resemble a fruitful strategy to improve performance 

on demanding tasks for Elite Cognitive Performers overall.  

2.5.4. Conclusion  

In summary, the current review demonstrates that the performance of ECPs is more 

negatively affected on simple cognitive tests and monotonous occupation-specific tasks, 

where simple attentional capabilities are instrumental to task success, over more complex 

cognitive tasks; however, performance may be more affected on complex tasks when 

adaptation to changing goal-oriented information and a shifting of attention (i.e., 

cognitive flexibility). Further research is required particularly when using tasks 

demanding cognitive flexibility as there is little and conflicting evidence on the effect of 

SR on the performance of such tasks. Lastly, we believe that esports presents as a fruitful 

medium to explore the effects of sleep loss on Elite Cognitive Performers, potentially 

uncovering moderating roles of expertise and providing applicability to many industries 

and occupations. 
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2.6. Linking Section 

2.6.1. Esport Athletes are ECPs   

The systematic review presented in the above chapter provides insight into how sleep loss 

(in the form of SR) could impact the performance of esport athletes. No prior research 

had experimentally determined how sleep loss impacts esports performance. The great 

cognitive demands of esports have led some researchers to refer to esport athletes as 

cognitive athletes. (Campbell et al., 2018). In order to gain insight into how sleep loss 

may impact esport performance and justify the experimental investigation of this 

phenomenon, I explored prior literature on an Elite Cognitive Performer (ECP) 

population. This population was chosen as they also are specifically required to perform 

cognitively demanding tasks with critical outcomes (i.e., requiring timely responses for 

success/ avoidance of failure). Furthermore, I explored performance both on laboratory 

based standardised cognitive tests and on occupation-specific cognitively demanding 

tasks, to provide insight into the effects of sleep loss on performance outside of a highly 

controlled environment and circumstances.  

While the similarities between esport athletes and ECPs (as well as the fact that esport 

athletes themselves can be considered ECPs) was discussed in this review, it was 

elaborated on in much greater detail in my 2020 article Life After Esports: A Grand Field 

Challenge (Smithies et al., 2020). The purpose of this article was to outline post-career 

employment difficulties of esport athletes, suggesting that better connections should be 

established between the world of esports and occupations which could best benefit from 

the unique attributes that esport athletes possess. I uncovered these occupations using a 

systematic approach (querying the Occupational Information Network or O*net), and 

found that the three occupations which best aligned with esports in terms of cognitive and 

environmental demands were military drone operators, aircraft pilots, and air traffic 

controllers; three ECP occupations. A figure from this article (presented here as Figure 

2-4) highlights this relationship. 
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Figure 2-4 Skills and experience of which esport athletes possess (left) and the three 

occupations which best match these skills and experience (right). Figure is from Smithies 

et al. (2020).  

 

Additionally, it would appear that esport athletes exhibit the same improved cognitive 

performance that ECPs seemingly tend to exhibit within laboratory-testing. While there 

is limited evidence specifically for professional esport athletes, there is a now large body 

of evidence (summarised by Bediou et al. (2018), Bediou et al. (2023), and Toth et al. 

(2020)) demonstrating how frequent players of video games commonly played as esports 

outperform non-gamers in laboratory-based cognitive tests. 

It is also pertinent to highlight that esport athletes may be (like the ECP populations 

included in the review) more susceptible for experiencing sleep restriction. This is as not 

only do esport athletes face most of same factors that traditional sport athletes, but they 

also possess some risk factors which are unique. These include the use of blue-light 

emitting monitors (which may negatively impact/ shorten sleep through suppression of 

endogenous melatonin secretion), the highly stimulating nature of the games commonly 

played as esports, and a ‘culture’ of late-night training and play. These factors are 

discussed in greater detail in section 1.5. 
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2.6.2. Implications for Experimental Research 

The systematic review outlined in this chapter helped determine the cognitive domains of 

interest for my future inquiries into sleep loss and performance of esport players (Chapter 

7). Firstly, the review found (in corroboration with reviews and meta-analyses in broader 

populations and under broader conditions of sleep loss; (Lim & Dinges, 2010; Lowe et 

al., 2017; Pilcher & Huffcutt, 1996) that performance on low-salience tasks (LS; defined 

as simple tasks with no distractors, limited decision-making, and requiring simple, timely 

responses) was consistently hindered by SR. I argue that this has limited relevance to in-

game esport performance. Esports are highly engaging, almost always provide multiple 

sources of information to attend to or avoid distraction from, and require rapid and 

frequent decision making. Nonetheless, given the demonstrated sensitivity of LS tests to 

sleep loss, combined with the largely universal use of PVT to assess performance changes 

in sleep research, I decided to include one (PVT) in my experimental sleep loss study.  

The review also suggested that performance on more complex tasks is likely more 

sensitive to sleep loss when cognitive flexibility is required (i.e., HSF tasks; task-

switching tests, multitask tests, and tests where the nature of targets could change 

unpredictably throughout the test). HSF tests/ tasks appear much more relevant to esports 

than LS tests/ tasks, given the multitude of information sources that players must switch 

their attention between in most esports. Task-switching seems especially relevant, as 

studies consistently show task-switching ability to improve with the play of video games 

commonly played as esports (Nuyens et al., 2019; Toth et al., 2020).  

In light of this, I sought to include a task-switching paradigm in addition to the PVT in 

my experimental sleep loss study. Within the “Inquisit” neuropsychological test platform 

(Millisecond Software, 2016), there are two unpredictable (i.e., the participant is unaware 

when the cue will switch) task-switching paradigms; the Color-Shape Task, and the 

Category Switch Task (CST). An unpredictable task-switching paradigm was sought (as 

opposed to a test with predictable switches) as it seemingly better reflects the 

unpredictable nature of player vs. opponent interactions within esports. Of these tests, the 

CST was shown to result in lower residual variance (i.e., variance unrelated to task-

switching ability) than the Color-Shape Task, in a single administration setting (Friedman 

et al., 2008)  using Switch Costs (SC) as the outcome measure. Hence, I sought to 

incorporate the (shortened) CST into the experimental sleep loss study. However, there 

were outstanding questions with regards to the test-retest reliability of this measure, and 



56 

 

whether practice effects may be an issue to overcome with the use of the CST. The latter 

is particularly notable, given that my review included many papers presenting results that 

were highly likely biased by the presence of practice effects (called training effects within 

the review). These questions are addressed through my pilot study, which is outlined in 

the following chapter.
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Chapter 3. Test-Retest Reliability and Practice Effects on 

a Shortened Version of the Category Switch Task – A Pilot 

Study  

 

 
This chapter is currently under review for publication in a peer-review journal:  

 

UNDER REVIEW: Smithies, T. D., Toth, A. J., Campbell, M. J. (2023). Test-Retest 

Reliability and Practice Effects on a Shortened Version of the Category Switch Task – A 

Pilot Study. 

 

 

 

 

Changes to the version submitted for publication for the purposes of this thesis are 

outlined below: 

• Change in referencing style (article version is in numbered format). 

• References to supplementary files are changed to the appropriate location within 

the appendix. 

• Words emphasised using quotation marks were changed to be emphasised using 

italics, in line with the thesis format.  

• The words Figure and Table in in-text references to figures was capitalised. 

Furthermore, figure/ table numbering convention was changed in line with the 

thesis format.  

• Additional of a linking section for the purpose of thesis flow. 

• Minor amendments have been made based on examiner correction suggestions. 
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3.1. Abstract  

Study Objectives: Test-retest reliability and practice effects (PEs) have not been 

assessed for the Category Switch Task (CST), a task-switching paradigm readily available 

to researchers. This pilot study aimed to assess the test-retest reliability of the CST, and 

the presence of Pes among three short test-retest intervals (same day, next day, and next 

week). 

Methods: Forty-eight participants completed a shortened CST twice. Test-retest intervals 

were either same day, one day, or one week. Test-retest reliability was assessed via 

Pearson’s correlation and intraclass correlation coefficient. PEs were assessed using 

paired-samples t-tests, and the effect of interval was examined through a series of 

ANCOVAs.  

Results: Single task, switch cost and mixing cost response time test-retest reliability was 

comparable to other task-switching paradigms, while reliability for switch and mixing 

cost accuracy was poor. Test-retest PEs were present for single task response time and 

accuracy, and mixing cost response time. Of these, PEs varied as a function of interval 

only for single task accuracy, where an interval of one week resulted in a smaller 

improvement compared to one day.  

Discussion: The CST produces reliable values for single task RT, single task accuracy, 

switch cost RT, and mixing cost RT. Researchers should be aware that PEs may confound 

results in a test-retest design when single task RT, single task accuracy, or mixing cost 

RT are considered as outcome measures. 

Keywords: reliability, practice effects, task-switching, test-retest, category 

switch  
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3.2. Introduction 

Researchers often wish to use cognitive tests in test-retest research designs. If a test is to 

be used in this fashion, it is important to consider its test-retest reliability as more reliable 

tests will minimise risk of error and will thus be generally better to use in practice. Test-

retest reliability refers to a measure of the consistency of scores (or the minimisation of 

error) obtained from an individual when a test is administered multiple times. If test-retest 

reliability is low due to measurement error, the risk of both Type I and II error increases 

(however, note that a lower test-retest reliability as a function of low between-subject 

variability may be beneficial in test-retest designs; see Hedge et al. (2018) for further 

discussion). Sources of error that can reduce test-retest reliability can be random, such as 

natural fluctuations in an individual’s alertness, or systematic, such as improved 

performance attributable specifically to an intervention or to repeated engagement with 

the test (practice effects (PEs); McCaffrey et al. (2000)). 

When considering these sources of error, the presence and magnitude of PEs can, and 

should, be measured when using test-retest designs to account for the extent to which an 

intervention truly affects the behavioural outcome being quantified. If improvement due 

to repeated test administrations is not accounted for, the improvement could be 

mistakenly attributed to a positive effect of an intervention. Concurrently, a lack of 

numerical score difference between test and retest sessions could be erroneously 

interpreted as a null finding, when, in fact, test-retest PEs are masking the deleterious 

effect of a given intervention on performance. This scenario has been demonstrated within 

the context of underdiagnosis of mild cognitive impairment (Duff et al., 2011; Elman et 

al., 2018) and cognitive impairment among women undertaking chemotherapy for breast 

cancer (Cerulla et al., 2019). Many factors are known to influence the magnitude of PEs, 

including task difficulty and, perhaps even more importantly, the time interval between 

administrations (test-retest interval). For example, shortening the test-retest interval 

generally leads to a larger PE, with its influence seemingly being task dependent (Bartels 

et al., 2010; Calamia et al., 2012).  

Task-switching (or set shifting) is an executive function commonly studied as a measure 

of one’s cognitive flexibility. Task-switching paradigms have been used in a variety of 

test-retest designs, including the study of the potential cognitive benefits of action video 

game play (Boot et al., 2008; Green et al., 2012), and the study of the deleterious effects 

of total sleep deprivation on cognition (Couyoumdjian et al., 2010; Slama et al., 2018). 

The test-retest reliability and magnitude of PEs for various outcome metrics of some task-
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switching paradigms have been previously described (affective task-switching: Eckart et 

al. (2021); colour-shape: Paap and Sawi (2016); number-letter task-switching: Soveri et 

al. (2018); Timmer et al. (2018); linguistic task-switching: Timmer et al. (2018); colour-

shape and linguistic task-switching: Segal et al. (2021)), specifically within university 

student populations and with test-retest intervals ranging from 1-6 weeks. In task-

switching paradigms, two common outcomes of interest are switch cost scores (SC; 

referring to the cost of responding to a changing cue/task/ruleset (hereafter simply ‘cue’) 

compared to when the cue remains the same) and mixing costs (MC; referring to the cost 

associated with knowing the cue could potentially change in a block of trials vs. knowing 

the cue will not change). 

A specific task-switching paradigm which has not been assessed with respect to its test-

retest reliability is the Category Switch Task (CST). Originally described by (Mayr & 

Kliegl, 2000), the CST requires participants to categorise target words as either living/ 

non-living, or smaller/ bigger than a basketball, depending on a cue presented with or 

slightly before the target. The CST has been used (with adaptations depending on the 

purpose of the study) in research on the affective response to task-switching (Van Dessel 

et al., 2020; Vermeylen et al., 2019) and effect of reward on task-switching behaviour 

(Braem, 2017), as well as to test the congruency of targets (Schneider, 2015) and the 

effect of varying stimulus onset asynchronies (Schneider & Logan, 2014). It is one of two 

unpredictable (i.e., the participant is unaware when the cue will switch) task-switching 

paradigms (along with the colour-shape task) available on the popular Inquisit 

neuropsychological test platform (Millisecond Software, 2016). The CST was 

demonstrated by Friedman et al. (2008) in a single administration design to provide lower 

residual variance (i.e., task impurity and measurement error) than not only other task-

switching paradigms (colour-shape and number-letter), but of all eight executive 

functioning tasks explored (when using the outcome measure SC), within a factor analysis 

model. 

To date, only one study (Chihiro et al., 2017) has explored whether the CST (translated 

from English to Japanese) is susceptible to PEs, noting SC response time (RT) reduced 

from 230.5ms to 98.4ms following eight consecutive test blocks. However, given the 

blocks were performed consecutively, it remains unclear if / how the time interval 

between test and retest impacts PEs on the CST. Friedman et al. (2008) reported the split-

half internal consistency for SC RT on a single administration of the CST as r = 0.85; 

however, this does not capture error unique to the administration at a certain time point 
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and thus is not reflective of test-retest reliability. Hence, both test-retest reliability and 

PEs for the CST when considering SCs have not yet been examined; however it is also 

important to note that there are other metrics are often explored following the use of task-

switching paradigms, such as single task performance and MCs. 

Overall, the purpose of this study is to (a) describe the test-retest reliability of CST 

outcome measures, (b) to assess the presence and magnitude of test-retest PEs on these 

CST outcome measures, and (c) to explore whether presence and magnitude of PEs varied 

as a function of test-retest interval (same day, next day, and next week). Regarding (b) 

and (c), we hypothesised that performance in all outcome measures would improve from 

test to re-test, and that shorter test-retest intervals (same day) would lead to greater 

improvement compared to longer intervals (next week).
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3.3. Methods 

3.3.1. Participants 

51 healthy adults provided written informed consent to participate in the study. We did 

not consider the data of three participants due to the incompletion of the second test 

session, English nonproficiency, or near chance performance. Our final sample included 

48 healthy adults (mean age 25.98 ± 6.61 years (range: 19 – 53), 17 females; see appendix 

3.1 for demographics by interval group). All participants reported to be free from 

neuropsychological or neuromuscular disorders. All procedures described were approved 

by the Education and Health Sciences Research Ethics Committee at the University of 

Limerick, in accordance with the Declaration of Helsinki.  

Participants were randomly assigned to one of three interval groups (N = 16 in each 

group). In all groups, participants completed two test sessions of the Category Switch 

Test (CST; described below). In the first group (same day), participants arrived at the 

laboratory in the morning between the hours of 09:00 and 12:00 to complete their first 

test session. Participants then arrived back at the lab between the hours of 12:00 and 18:30 

the same day to complete their second test session (mean interval length = 4hrs 19min ± 

78min). In the second group (next day), participants completed their first and second test 

sessions at any time between the hours of 09:00 and 18:30 one day apart, given the times 

were similar between days (mean interval length = 23hrs and 59min ± 42min), while in 

the third group (next week), participants completed their first and second test sessions at 

any time between the hours of 09:00 and 18:30 seven days apart, given the times were 

similar between days (mean interval length = 7days ± 71min).  

The Category Switch Task (CST) used in this study was adapted from that originally 

described by (Mayr & Kliegl, 2000) and administered using Inquisit 5.0 software, by 

MillisecondTM. Specifically, the test was shortened to one single task test block per cue, 

and two mixed task test blocks (see the procedure section below), and the stimulus 

response mappings between the response keys were pseudorandomised across test 

sessions. The task was completed by all individuals on the same computer, using the same 

computer peripherals and a 27-inch monitor with a 144hz refresh rate.   

Within a CST trial, participants were presented with a word, which they categorised 

according to one of two distinct categorisation rules, determined by an image which 

served as a cue. Each word was randomly chosen from a set of sixteen words (Mayr & 

Kliegl, 2000), (see appendix 3.2 for the complete list). The first rule dictated whether a 
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given word resembled an item that was living or non-living (living cue), with this rule 

denoted by a heart image that appeared 150ms before the word and which remained 

present above the word until a response was inputted (cue-target interval or CTI = 150ms). 

A second rule dictated whether the word resembled an object that was bigger or smaller 

than a basketball (size cue), with this rule denoted by a cross image that also appeared 

with a CTI of 150ms. Participants inputted their responses using the E and I keys on the 

keyboard to classify the object as living/non-living or big/small respectively. There were 

four words that satisfied each living/size combination. 

3.3.2. Procedure 

Participants in all three groups completed two sessions of the CST, which each took 

approximately 15 minutes to complete. During each session, participants were presented 

with four test blocks (each 54 trials). A practice block (32 trials) preceded each of the first 

two blocks and allowed participants to familiarise themselves with the task. In the first 

block (single task living), the living cue was the only cue presented for all trials. In the 

second block (single task size), the size cue was the only cue presented for all trials.  

In the third and fourth blocks, trials could be presented with either cue (mixed task), 

requiring participants to flexibly adapt their interpretation and categorisation of the word 

according to the cue provided in each trial. During this block, trials could be switch trials, 

in which the cue for the current trial differed from the previous trial, or repeat trials, 

whereby the cue for a current trial was identical to the previous trial. Participants used the 

cue provided to correctly classify each word using the E and I keys. Again, participants 

were presented a practice block, but this practice block consisted of a minimum of ten 

trials and continued until the correct response rate was 80%. Following the practice block, 

participants completed two test blocks of 54 trials. Within the mixed task blocks, cues 

were pseudorandomised such that there were an equal number of switch and repeat trials, 

with the constraint that there could not be more than four switch trials in succession. 

Figure 3-1 depicts both switch and repeat trial variations during the mixed task blocks of 

the CST.  
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Figure 3-1 A visual representation of the third or ‘combined’ iteration of the category 

switch test. For each trial, a living cue or size cue is displayed alone for 150ms. After the 

150ms, a word appears on the screen. The participant uses the ‘E’ or ‘I’ key to correctly 

categorise the word according to the rule associated with the cue. The inter-stimulus 

interval is 350ms for correct responses and 1500ms for incorrect responses. If the next 

trial has a different cue, it is a switch trial, whereas if the next trial has the same cue, it is 

a repeat trial. 

 

Throughout all practice trials, visual error feedback was presented in the form of an 

incorrect message, with participants correcting the error before continuing. Within the 

testing trials, visual feedback for errors was provided however participants did not have 

to correct their error. There was a 350ms inter-stimulus interval (ISI) following correct 

responses, and a 1500ms ISI along with visual feedback (in the form of a x) for incorrect 

responses. Participants were told ‘try to minimize reaction time while avoiding making 

errors’. 

The SRM between the E and I keys and big, small, living & non-living inputs was 

consistent within a given test session but was pseudorandomised across test sessions for 

a given participant and also among participants, such that 50% of the participants within 

each group had the mapping for one cue only changed, and 50% had the mapping for both 

cues changed. 
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3.3.3. Data Processing 

The first two trials within each test block were classified as buffer trials for the given 

block (as per Paap and Sawi (2016)) and removed for any further analysis. Response 

times (RTs) beyond three standard deviations of the mean RT per participant per session 

were considered outliers and removed from subsequent analysis (2.00% of total responses 

removed as outliers). 

Response time (RT; ms) and accuracy (Correct/Incorrect) were recorded for each trial 

within each test block. Performance on both single task blocks (living cue only, and size 

cue only) was pooled for analyses (collectively named single task blocks). For the mixed 

task, we explored two outcome measures commonly reported in task-switching literature; 

switch and mixing costs (SC and MC). We calculated SC as the difference in mean 

performance on switch trials and repeat trials, and considered MC as the difference in 

mean performance on repeat trials and trials within the single task blocks (see appendix 

3.3 for further description of derived variables). In total, mean RT and response accuracy 

were considered for single task, SC, and MC, totalling six outcome measures. 

3.3.4. Statistical Analysis - Test-Retest Reliability 

The test-retest reliability of all outcome measures (irrespective of test-retest interval) was 

assessed using Pearson’s r and intraclass correlation coefficient (ICC). Pearson’s r 

demonstrates the strength and direction of linear relationship between test and re-test. We 

interpreted r < 0.60 as low reliability, 0.60 ≤ r < 0.69 as marginal reliability, 0.70 ≤ r < 

0.79 as adequate reliability, 0.80 ≤ r < 0.89 as high reliability, and 0.9 ≤ r as very high 

reliability (Strauss et al., 2006). ICC further accounts for systematic error (i.e., PEs); we 

used ICC(2,1) as it is most appropriate when using ICC for test-retest reliability (Koo & 

Li, 2016). We interpreted ICC < 0.5 as poor reliability, 0.5 ≤ ICC < 0.75 as moderate 

reliability, 0.75 ≤ ICC ≤ 0.9 as good reliability, and 0.9 < ICC as excellent reliability (Koo 

& Li, 2016). Lastly, we performed variance decomposition analysis on each outcome 

measure using the psych package (v 2.2.5; (Revelle, 2022)) in R (4.1.3; R Core Team 

(2022)). 

3.3.5. Statistical Analysis - Practice Effects 

Regarding practice effects (PEs), we hypothesised that PEs would be present for all CST 

outcome measures, and that the magnitude of PEs would be greater for shorter test-retest 

intervals.  
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To test if PEs were present across the entire sample, we pooled data from each interval 

group and compared scores at test against retest using a series of paired sample t-tests. 

Normality of difference scores (retest – test) was assessed through visual inspection and 

via the Shapiro-Wilk test; where the assumption of normality was violated, bootstrapping 

(Bias-corrected and accelerated (BCa), samples = 5000, 95%CI) was performed prior to 

the paired sample t-test. Differences between test and retest were considered significant 

if two-sided p < 0.05.  

To test whether the magnitude of PEs varied across test-retest intervals, we ran a series 

of six bootstrapped one-way Analysis of Covariates (ANCOVAs). Bootstrapping (BCa, 

samples = 5000, 95%CI) was performed across all ANCOVAs due to performance at 

retest exhibiting non-normal distributions (inspected visually & using the Shapiro-Wilk 

test) in multiple groups for most outcome measures. In these ANCOVAs, we considered 

interval as the independent variable, with three levels (same day, next day & next week), 

and each performance variable at retest as a dependent variable. Performance at test was 

considered as a covariate. ANCOVA was chosen as it tends to produce less biased results 

when compared to other analytical methods factoring in baseline scores in a test-retest 

design (i.e., split-plot ANOVAs or change scores (Overall & Doyle, 1994; Stanley, 2022; 

Vickers & Altman, 2001). A main effect of interval (p<0.05) suggested that the 

magnitude of performance change varied as a result of test-retest interval. When this 

occurred, follow up Fishers LSD multiple comparisons were performed to determine 

which specific interval groups differed. Fishers LSD is an appropriate analysis given our 

design because it preserves type I error rate where three or fewer groups are tested 

(Hayter, 1986; Levin et al., 1994; Meier, 2006). 

All analyses were performed using the IBM SPSS Statistics v28 (IBM Corp, 2021) 

software or R (4.1.3; R Core Team (2022)). 
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3.4. Results 

3.4.1. Test-Retest Reliability 

Test-retest reliability was calculated for each of the six outcome measures. Reliability 

scores are shown in Table 3-1, and variance decomposition is shown in Figure 3-2. 

Table 3-1 Test-retest reliability results for outcome variables considered. Upper and 

lower 95% confidence intervals are given in squared brackets for ICC (2,1). 

Outcome Variable Pearson's r ICC (2,1) 

Single Task 
  

RT (ms) 0.86*** (high) 0.84 [0.69, 0.91]*** (good) 

Accuracy (% correct) 0.57*** (low) 0.52 [0.26, 0.70]*** (moderate) 

Switch Costs 
  

RT (∆ ms) 0.60*** (marginal) 0.60 [0.38, 0.75]*** (moderate) 

Accuracy (∆ % correct) -0.08 (low) 0.00 [-0.28, 0.28] (poor) 

Mixing Costs 
  

RT (∆ ms) 0.66*** (marginal) 0.58 [0.32, 0.75]*** (moderate) 

Accuracy (∆ % correct) -0.10 (low) 0.00 [-0.26, 0.27] (poor) 

***p < 0.001 

 

 

Figure 3-2 Stacked bar charts showing variance decomposition for the six outcome 

measures. As between-participant variance (black) is analogous to the reported ICC 

values, the thresholds used for defining reliability (poor, moderate, good, and excellent) 

are also provided. 
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3.4.2. Test-Retest PEs 

All dependent variable difference scores were sufficiently normal besides mixing cost 

(MC) response time (RT), for which a bootstrapped paired samples t-test was performed. 

Paired-sample t-tests revealed a significant effect of test session (test vs. retest) for single 

task RT (ΔRT = 30.52 ± 10.04; t(47) = 3.04, p = 0.004, 95% CI [10.32, 50.72], Cohen’s 

d = 0.44), single task accuracy (Δ accuracy = -1.46 ± 0.46; t(47) = -3.03, p = 0.004, 95% 

CI [-2.43, -0.49], Cohen’s d = -0.44), and MC RT (ΔRT = 73.29 ± 23.00; t(47) = 3.19, p 

= 0.004, 95% CI [30.04, 121.30], Cohen’s d = 0.46), but not for SC RT (ΔRT = 28.61 ± 

23.00; p = 0.154), SC accuracy (Δ accuracy = 0.45 ± 1.11; p = 0.688), or MC accuracy 

(Δ accuracy = -1.53 ± 0.83; p = 0.072). 

3.4.3. Single Task 

The covariate performance at test was significantly related to performance at retest for 

single task RT (F(1,44) = 114.816, p < 0.001, η2 = 0.723). No main effect of the 

independent variable interval group was present (p > 0.05), indicating that the change in 

performance from test to retest did not significantly vary as a function of test-retest 

interval. 

The covariate performance at test was significantly related to performance at retest for 

single task accuracy (F(1,44) = 26.990, p < 0.001, η2 = 0.380). A main effect of the 

independent variable interval group was present (F(2,44) = 3.369, p = 0.044, η2 = 0.133), 

with multiple comparisons revealing significantly greater accuracy at retest (ΔM = 2.21 

± 0.86%, p = 0.014, BCa 95%CI [ 0.48, 3.94]) for the next day interval group (M = 97.34 

± 0.45%) compared to the next week interval group (M = 95.13 ± 0.68%).  

3.4.4. Switch Costs 

The covariate performance at test was significantly related to performance at retest for 

SC RT (F(1,44) = 24.64, p < 0.001, η2 = 0.359). No main effect of the independent variable 

interval group was present for SC RT (p > 0.05). There was no main effect of interval 

group or significant relationship to performance at test for SC accuracy (p > 0.05). 
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3.4.5. Mixing Costs 

The covariate performance at test was significantly related to performance at retest for 

MC RT (F(1,44) = 41.764, p < 0.001, η2 = 0.487). No main effect of the independent 

variable interval group was present (p > 0.05) for MC RT. 

The covariate performance at test was not significantly related to performance at retest 

for MC accuracy (p < 0.05). A main effect of the  independent variable interval group 

was present (F(2,44) = 7.221, p = 0.002, η2 = 0.247), with multiple comparisons revealing 

that MC accuracy was significantly greater (i.e., a larger difference between single task 

accuracy and repeat trial accuracy in the mixed task blocks) in the same day (M = 4.13 ± 

0.97%) group, compared to both the next day (M = 0.46 ± 0.81%, Δ% = 3.67 ± 1.47%, p 

= 0.023, BCa 95%CI [ 0.95, 6.49]) and the next week (M = -0.97 ± 0.96%; Δ% = 5.10 ± 

1.68%, p = 0.007, BCa 95%CI [1.89, 8.33]) groups. There was no significant difference 

between the next day and next week group. 
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Figure 3-3 Bar charts depicting the ANCOVA adjusted mean (±SEM) retest values of 

the interval groups same day (SD), next day (ND), and next week (NW), adjusted for the 

‘baseline’ test value (dotted line), for the six outcome variables of interest: A single task 

RT, B single task accuracy, C SC RT, D SC accuracy, E MC RT, and F MC accuracy. 

** denotes p < 0.01, and * denotes p < 0.05; denotations next to the dotted line indicate a 

significant test-retest practice effect for the pooled data, and denotations above bars 

indicate a significant difference between different interval groups at retest. 



† When referring to Segal et al., 2021 (data from Prior and Gollan (2013)), we refer only 

to their comparison between Test 1 and 3, which had a test-retest interval of one week, 

and not the comparison between Test 1 and 2 which immediately went from test to retest. 
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3.5. Discussion 

The current study aimed to uncover (a) test-retest reliability for various outcomes of a 

shortened Category Switch Task (CST), as well as (b) the presence and magnitude of test-

retest practice effects (PEs) (c) among different test-retest intervals. Regarding (b) and 

(c), we hypothesised that performance on all outcome measures of interest within the CST 

would exhibit PEs, and that the magnitude of these effects would decrease as test-retest 

interval increased. We found greater test-retest reliability on the single task measure, 

compared to switch costs (SCs) and mixing costs (MCs), and on response time (RT) based 

outcome measures, compared to accuracy-based measures. We found evidence of test-

retest PEs for all RT measures of the CST except SC, as well as for accuracy on the single 

task block. We did not find any evidence of PE magnitude difference between test-retest 

interval groups (same day, next day and next week) for any RT based measure; however, 

we found a next day retest to result in a greater single task accuracy improvement 

compared to a next week retest, and a same day retest to result in a greater MC increase 

compared to a next day or next week retest. Results and implications are discussed below. 

3.5.1. Test-Retest Reliability

Comparison between test-retest reliability score metrics found in the current study and 

other studies on task-switching paradigms can be found as appendix 3.4. Regarding single 

task RT, test-retest reliability was similar to or greater than those reported for single task 

components of other task-switching paradigms (Paap & Sawi, 2016; Segal et al., 2021 

(data from Prior & Gollan, 2013)†; Soveri et al., 2018), and close to that expected (r = 

0.9) for a task with minimum 40 trials without consideration of day effects (Miller and 

Ulrich, 2013; cited in Paap & Sawi, 2016). Similarly, test-retest reliability of MC and SC 

was similar to or greater than most other task-switching paradigms. Only Eckart et al. 

(2021) reported an appreciably greater test-retest reliability for difference score measures, 

on an affective task-switching paradigm (r = 0.81 – 0.88; ICC(2,1) = 0.78 – 0.82), however 

their design included many more trials per test session (48 switch trials & 192 repeat 

trials) than the current design (~52 switch trials & ~52 repeat trials). As Miller and Ulrich 

(2013) demonstrate using the individual differences in reaction time (IDRT) model, 

increasing the number of trials greatly increases test-retest reliability, particularly for 

difference score measures. This was also shown by Eckart et al. (2021), who in their own 
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analysis noted smaller (though still adequate/ moderate) test-retest reliability (r = 0.74; 

ICC(2,1) = 0.66 – 0.69) when only half the trials were included. Overall, the CST 

demonstrated test-retest reliability that was comparable-to or greater-than other task-

switching paradigms for RT measures, boding favourably for its use both in single-test 

and test-retest design studies.  

Test-retest reliability for accuracy measures was found to be much lower when compared 

to the test-retest reliability of RT measures from the same sub task type (single task, SC 

& MC). At least regarding SC, this finding corroborates work by Eckart et al. (2021), 

who found “consistently better psychometric properties for RT-based switch costs” 

(Eckart et al., 2021, p. 929) when compared to error based measures in their affective 

task-switching paradigm. While difference scores can often show poor reliability for 

individual differences despite remaining suitable for group level comparisons (Hedge et 

al., 2018; Paap & Sawi, 2016; Segal et al., 2021), test-retest reliability should at least 

reach statistical significance to be suitable for testing for group level differences (Paap & 

Sawi, 2016). Given non-significance of SC and MC accuracy test-retest reliability, we 

advocate against the consideration of SC and MC accuracy when using our shortened 

version of the CST. Note that interval effects are not responsible for the poor reliability 

of these measures, as the poor reliability remains when analysis is performed on 

individual interval groups (see appendix 3.5 for these results).  

3.5.2. Test-Retest Practice Effects 

We found evidence for test-retest PEs for both single task RT and accuracy, as well as 

MC RT, but not SC RT, and both SC and MC accuracy (Figure 3-3). While a lack of 

evidence for PEs in SC RT is contrary to our hypothesis, it is welcome, as it suggests that 

when SC RT (the primary outcome measure in most studies using task-switching 

paradigms) is considered as an outcome measure of the CST in a test-retest design, PEs 

are unlikely to systematically bias results. Regarding the effects of test-retest PE on SC 

and MC RT, previous analyses on task-switching paradigms have produced conflicting 

findings. Eckart et al. (2021) found reduced switch trial RTs but not repeat trial RTs at 

retest (interval = 11 – 17 days), resulting in a SC improvement of ~29 - ~41ms, while 

conversely Segal et al., 2021 (data from Prior and Gollan (2013)) found MC but not SC 

to improve with practice on a colour-switch task. Of course, differences in the specific 

paradigm used and its administration (number of trials, extent of prior practice) can all 

play a role in PE presence and magnitude. Our analysis suggests that those seeking to use 



  73 

 

the CST in a test-retest design and aiming to analyse single task RT and/ or accuracy, or 

MC RT, should consider PE mitigation strategies such as extensive pre-testing practice 

(potentially with use of alternate forms; Beglinger et al. (2005)), counterbalancing 

(Greenwald, 1976), or using the performance of control groups (i.e., standardized 

regression-based methodology; McSweeny et al. (1993)). 

3.5.3. Effect of ‘Interval’ 

We found the magnitude of PEs to vary as a function of test-retest interval for single task 

and MC accuracy measures, however not for RT measures, or SC accuracy. Regarding 

single task accuracy, the direction of this effect corroborated with our hypothesis; a larger 

test-retest interval resulted in smaller PEs compared to a shorter interval (though this only 

reached significance when comparing to the same day group) (see Figure 3-3). A lack of 

effect of interval on RT measures, while contrary to our hypothesis, does corroborate with 

previous research finding no effect of interval on cognitive tests when only short-term (> 

2 weeks) intervals were examined (Farahat et al., 2003; Salthouse & Tucker-Drob, 2008). 

Overall, our results suggest that researchers looking to use RT outcome measures on the 

CST should not be concerned about differences in interval confounding a test-retest 

design by producing different PE magnitudes, so long as interval remains between a few 

hours and one week.  

3.5.4. Limitations 

Firstly, although all included participants were proficient English speakers, we did not 

explicitly check whether English was the first language of participants. Secondly, we did 

not check whether participants only spoke English, or whether they were bilingual. This 

is relevant as there is evidence that bilingual individuals possess enhanced task-switching 

abilities that persist beyond language-switching (Declerck et al., 2017; Prior & Gollan, 

2013; Prior & Macwhinney, 2010; Weissberger et al., 2012), though this domain-

generality is highly disputed (de Bruin et al., 2015; Paap & Greenberg, 2013; Paap et al., 

2015; Paap et al., 2017). Larger studies allowing more control over participants should 

look to capture or control for bilingualism among groups. Thirdly, we examined RT and 

accuracy as separate entities, as is commonplace among studies using task-switching 

paradigms. However, we note that alternative approaches which have combined RT and 

accuracy measures have been developed and proposed for SC in task-switching 

paradigms, with comparable (and sometimes superior) reliability and validity compared 
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to RT alone (Hughes et al., 2014). These approaches have the additional advantage of 

accounting for potential speed-accuracy trade-offs which may be present. Fourthly 

regarding the assessment of PEs, we note that only one retest bout was performed. 

Performance improvement may be observable following many more than two repetitions 

of cognitive test administrations (i.e. Watson et al. (1994). It is possible that should more 

testing bouts have been performed, group differences compared to baseline may have 

been observable for measures such as SC RT or MC accuracy. Our test-retest design did 

not allow such performance improvement to be captured. Lastly, while the sample tested 

in this pilot study was less than 50 individuals (Hopkins, 2000), the sample size used was 

comparable to/ greater than those used in many of the studies used as comparisons (N = 

47, Eckart et al., 2021; N = 34, Soveri et al., 2018; N = 53, Timmer et al., 2018).  

3.5.5. Conclusions 

In conclusion, in the current article we demonstrate the shortened CST to produce reliable 

values for the outcome measures single task RT, single task accuracy, switch cost RT, 

and mixing cost RT. However, researchers should be cautious when seeking to analyse 

SC and MC accuracy based measures of the CST in their experimental designs. Of the 

above outcome measures recommended for use, researchers should be aware that without 

mitigation strategies, test-retest practice effects could confound results when single task 

RT, single task accuracy, or mixing cost RT are considered as outcome measures. 
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3.5.6. Linking Section 

The investigation into the test-retest reliability and practice effects of a shortened CST 

task, presented in this chapter, both augmented and provided confidence in my use of the 

task as a high-salience flexible (HSF) task in my experimental sleep loss study. Firstly, 

all RT based outcome measures (single task, SC and MC) from the shortened CST 

presented with test-retest reliability that was either similar to or superior than other 

comparable task-switching paradigms. However when observing accuracy outcome 

measures, test-retest reliability was poor and insignificant for SC and MC. As stated by 

Paap and Sawi (2016), test-retest reliability should be significant to be suitable for use in 

testing group differences (see also Dorrian et al. (2004) for discussion about test-retest 

reliability specifically in sleep research). Hence, this study informed us that SC and MC 

accuracy were not reliable outcome measures that were suitable for use. Secondly, the 

study informed us that PEs may be a potential source of bias within the test-retest interval 

(1-week) I planned to use in the experimental sleep loss study. Given that recruitment of 

a specialised population was necessary for my experimental sleep loss study (with many 

individuals likely residing outside of Limerick and unable to attend one or multiple prior 

training sessions), prior training to asymptote on the CST was not a feasible option to 

overcome practice effects. I also note prior test-retest studies using task-switching 

paradigms that exhibit evidence of PEs, despite attempts to train to asymptote before 

study commencement (i.e., Couyoumdjian et al., 2010). Statistical approaches to 

overcome PEs (i.e., McSweeny et al., 1993) presented as limiting and overall 

unappealing. Hence, it was decided that counterbalancing was the ideal approach to 

overcome PE issues that may arise from some CST outcome measures in the experimental 

sleep loss study. 

At this stage, I have identified the cognitive tests that I will use in the experimental sleep 

loss study (PVT and CST) to assess the performance of esport players on low salience 

and high salience flexible tasks (as per Chapter 2). The additional benefit to using the 

CST is the single task component of the test, would be considered a high-salience stable 

task using the categorisation rules of Chapter 2, and hence through using these two tests, 

I am covering all three categories outlined in Figure 2-3. However beyond cognitive 

performance, the current thesis aimed to explore how sleep loss would impact in-game 

esports performance. The following two chapters discuss the target esport examined 

within the thesis; Rocket League. Chapter 4 aims to provide an introduction to the esport 
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for the esports naïve reader, while Chapter 5 discusses performance and rank indicators 

(and hence, outcome metrics of interest) within this esport. 
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Chapter 4. An introduction to Rocket League 
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As mentioned in the introduction, a primary outcome of the current thesis is to explore if, 

how, and how much, sleep loss specifically impacts esports performance. Esports refers 

not to specifically one game, but to any video game played competitively in an organised 

manner. A recent compendium identified 1,007 video games which could be considered 

as an esport (Independent Electronic Sports, 2023). Within the esports umbrella is great 

diversity in-game dynamics, strategies, and specific human attributes more influential 

toward in-game success. 

Importantly however, there is great diversity in how practical different esports are for use 

in an experimental research setting, if one wants to consider and measure performance 

in-game. Regarding use practicality, a first important factor is the game length where 

short and predictable is ideal, to allow for multiple matches within a given test session 

which spanning across a predictable (and hence, manageable) period of time. A second 

important factor is game popularity; an otherwise suitable esport is not worth 

consideration if there are not sufficient players of that esport within the community to 

render a study feasible. A third factor is in-game data availability, which varies between 

esports for various reasons, such as fear of “cheaters” using available data to create tools 

which provide an unfair in-game advantage (Reitman et al., 2019). A final factor is 

whether an esport includes competitive play as individuals (1v1), as opposed to as a team; 

this is as the inclusion of teammates greatly complicates analyses due to requiring the 

consideration not only of interactions between opponents but also of interactions between 

teammates (Ofoghi et al., 2013). Measuring gameplay within an 1v1 environment also 

removes the factor of in-game roles, which could complicate the interpretation of any 

performance data collected.  

With a large playerbase (averaging ~90 million players per month, Active Player (2023), 

short and predictable match lengths, data-availability, and competitive play as individuals 

(1v1), Rocket League presented as an ideal esport  with which to perform experimental 

research. Hence, the primary aim of this chapter is to provide the reader with an 

introduction to the esport Rocket League. The secondary aim of this chapter is to provide 

information regarding the process of obtaining in-game metrics within Rocket League, 

and an overview of the types of metrics that are obtained and used frequently in the 

analysis of competitive/ professional Rocket League. The hope is that following this 

chapter, the reader will have sufficient knowledge of Rocket League and in-game Rocket 

League metrics to facilitate an understanding of my analysis of performance and rank 
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indicators (PIs and RIs respectively) within 1v1 Rocket League, which is outlined in 

Chapter 5.   

4.1. Rocket League 

Rocket League, released in 2015 by the video game developer Psyonix LLC (now owned 

by Epic Games) can be described as a vehicular soccer video game (Smithies, Campbell, 

et al., 2021). Conceptually, it is one of the easiest esports to grasp for individuals new to 

esports. At a competitive level, teams consist of either one (1v1), two (2v2) or three (3v3) 

players. Rocket League can be played using both controller (i.e., Dualshock 4 or Xbox 

One controller) or a keyboard and mouse as input modalities.   

In Rocket League, each player controls a single vehicle, viewed from a third-person 

camera angle (of which players have a large degree of control and customisation over). 

Players are free to use vehicles with one of six hitboxes. Vehicles of different hitboxes 

have minor differences in how they manoeuvre and interact with the ball in-game (i.e., 

length, width, height, centre of mass location, and turning circle of the vehicle). There is 

one spherical ball in play, which may spin when it hits the ground but which does not 

curve in the air (i.e., no Magnus effect) due to spin imparted on the ball. Teams must use 

their vehicles to prevent the ball from entering their goal (shaped similarly to a soccer 

goal) while simultaneously trying to hit the ball into their opponent’s goal. The goals are 

situated on opposite ends of the map, which is a playing surface that is standardised in 

terms of length, width, and shape (rectangular, with soft edges), and are completely 

enclosed by walls and a ceiling (see Figure 4-1). Players are able to drive on these surfaces 

if desired. At the start of each match and following a goal, a kickoff commences; this 

places a member of each team at an identical distance to the ball, with a three second 

counter occurring before game (re)commencement.  



  80 

 

 

Figure 4-1. A A simplified birds-eye view of a standardised Rocket League map. Blue 

and orange rectangles denote goal locations. The white circle denotes the location of the 

ball at the start of the match or immediately following a goal. Yellow circles (black 

outline) denote the location of small pads, and black circles (yellow outline) denote the 

location of big pads. B A top-down view of a Rocket League map (“Beckwith Park”), 

allowing view of the map walls and ceiling. C Players view of a kickoff about to 

commence. Kickoffs place a member of each team at equal distance to the ball, and allow 

players to move at an identical time. D A players view mid-game; in this instance, within 

an aerial-based attacking play. In C and D, the current score and time left can be seen in 

the top of the screen, and the player’s current boost total can be seen in the bottom-right 

of the screen; this information is present to players throughout the entirety of a Rocket 

League match. 

 

Throughout the game, players may drive, jump, double jump, and dodge (a game 

mechanic which flips the car in a specified direction) to move and strike the ball. Players 

may also use boost, a finite resource collected at locations on the playing surface of the 

map, which provides acceleration of one’s vehicle (up to an inbuilt maximum speed). By 

using boost and pointing the nose of their vehicle away from the ground, players are also 

able to fly into the air. Lastly, players are able to remove their opponents from the map 

for three seconds by driving into them at ~95-100% of maximum speed and at a certain 

range of angles (this action is called a demo). For a further overview, I guide the reader 

to a 12-minute introductory video for Rocket League (Pilkin, 2022). 



†I considered “Winnings” values presented by rlduels.gg as USD. While rlduels.gg inputs 

prize earnings in the currency they are presented, the vast majority of 1v1 showmatches 

or events with prize money provide potential earnings in USD – however, we accept as a 

limitation of this estimation that not all values included were necessarily provided in 

USD.    81 

 

For the purposes of my experimental research, I focussed on 1v1 Rocket League. While 

most professional Rocket League is 3v3, there is a considerable (and growing) amount of 

competitive and professional Rocket League which is played as 1v1. In 2022 and 2023, 

1v1 formed a major part of the Gamers8 Rocket League event, which possessed a 2 

million USD prize pool on both occasions (Liquipedia, 2022, 2023). Elsewhere, it is  

estimated (using data from rlduels.gg (2023), provided as appendix 4.1) that as of June 

22 2023, >€750,000† has been earnt as prize money through 1v1 Rocket League.

4.2. In-Game Rocket League Metric Categories 

As mentioned, Rocket League is uniquely positioned for research purposes in part 

because in-game data are readily available. In-game data can be made accessible using 

ballchasing.com, which is a large data repository for Rocket League match replays. The 

use of ballchasing.com is universal within the Rocket League gaming community, with 

over 90 million Rocket League match replays publicly uploaded to the repository as of 

30/05/2023; this is inclusive of official Rocket League tournament and World 

Championship matches. One of the key features of ballchasing.com as a data repository 

is its Application Processing Interface (API) applied to all uploaded replays, which strips 

in-game data stored within the replay, and presents them as metrics generally considered 

relevant within the Rocket League community. Further, ballchasing.com subsequently 

allows for the downloading of these in-game metrics as .csv files. Essentially, this means 

that any individual can obtain a complete summary of any of the >90million Rocket 

League matches publicly uploaded to ballchasing.com (alongside any matches they 

upload privately), presented as 72 data points, per individual player, per match. Clearly, 

this is of extreme benefit if one seeks to explore in-game performance, either for an 

individual matches or for trends across many thousands of matches. 

In Chapter 5, I utilise the ballchasing.com API to obtain in-game metrics for 21,588 

Rocket League matches. Following data processing and steps (outlined in Chapter 5), I 

obtained 28 in-game metrics (26 when considering difference scores, i.e., differences 

between player and opponent), for which analysis was undertaken from. These metrics 

are divided into four categories for the purpose of Chapter 5; offense/ defence, boost, 

movement, and positioning. While a brief explanation of all 28 metrics is provided in 
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appendix 4.2., a brief description of these four categories is provided here to assist the 

reader’s understanding of metrics in Chapters 5,  7, and 8. 

4.2.1. Offense/ Defence Metrics: 

These metrics relate to specific in-game events (saves, shots, and demos) rather than 

information regarding boost, movement, or positioning. These metrics are often the first 

considered and discussed by players and analysts alike. Live information regarding shot 

and save count is available to players and spectators throughout any Rocket League 

match. These are akin to metrics such as shots taken, saves made, tackles made, passes 

made etc. within soccer.  

4.2.2. Boost Related Metrics: 

Boost is a finite resource present in Rocket League which, when used, allows for rapid 

car acceleration and greatly assists in the ability to get high in the air. Boost can be 

collected from big pads (6 locations, which provide 100 boost and respawn every 10 

seconds) or small pads (28 locations, which provide 12 boost and respawn every 3 

seconds), which are in standardised locations on each map. A player can only have a 

maximum of 100 boost at any given time. Given that (a) access to boost is competed for 

between players and (b) boost is necessary to fly in the air and provides significantly 

greater speed and steering control, a player’s ability to control their access and use of 

boost is considered highly beneficial to overall performance. 

4.2.3. Movement Related Metrics: 

Players have an incredibly large degree of control over the movement of their vehicles in 

Rocket League. On the ground, they can drive forward, reverse and turn in any direction. 

Just through driving, players can reach a maximum speed of 1400uu/s (unreal units per 

second; unreal units are the distance unit used within game), however through using 

boost, players may reach a maximum speed of 2300uu/s. If a player travels between 

2200uu/s to 2300uu/s (~95-100% of maximum speed), they are considered to be 

supersonic. When supersonic, players will not lose speed even if boost is not inputted, 

provided they do not hit anything or turn beyond a certain angle. Being supersonic also 

allows players to demo opponents. Additionally, players may use powerslide, an ability 

which allows the vehicle to drift and thus have a tighter turning radius; using powerslide 

alongside boost can allow for different and precise turning movements. Powerslide also 
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allows players to maintain forward momentum while landing if a players vehicle is not 

facing in the exact direction of their movement. Players are also able to jump, and if 

within 1.25-1.45 seconds of a first jump (depending on the size of the jump), double jump. 

If a jump occurs while the players vehicle is in the air, the player may use the jump as a 

dodge (flip), which can be performed in a multitude of directions. Dodges can be used for 

hitting the ball or gaining speed beyond the maximum allowable through driving only 

(i.e., without boost), as well as for more sophisticated in-game mechanics, such as a wave 

dash and a flip reset. Lastly, players can fly in the air by boosting while aiming the front 

of their vehicle away from the ground. While in the air, players can control their vehicle 

in all three axis of motion (pitch, roll, and yaw).   

Movement based metrics in Rocket League could draw analogy to metrics regarding a 

players movements on a soccer pitch (as measured by global positioning systems/ GPS), 

such as total distance covered, and proportions of matches spent walking/ jogging/ 

sprinting for example.   

4.2.4. Positioning Related Metrics: 

Like boost and vehicular movement control, optimal positioning is considered to be 

crucial to success in Rocket League. Unlike conceptually similar invasion ball traditional 

sports like soccer or hockey, Rocket League does not have set positions and roles due to 

team and map size (see Pilkin (2022) for elaboration), even when played as 2v2 or 3v3, 

let alone for 1v1 competition. Hence, players must play the roles of both an attacker and 

defended depending on the situation, and position one’s vehicle accordingly. Positioning 

based metrics could again draw analogy to metrics taken by a Global Positioning System 

(GPS) in soccer for example, such as time spent in the penalty area, or time spent in front 

of/ goalside of the ball.  
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Chapter 5. A Random Forest approach to identify metrics 

that best predict match outcome and player ranking in the 

esport Rocket League  

 

 

This chapter has been published in a modified format in Scientific Reports: 

Smithies, T. D., Campbell, M. J., Ramsbottom, N., & Toth, A. J. (2021). A Random 

Forest approach to identify metrics that best predict match outcome and player ranking in 

the esport Rocket League. Scientific reports, 11(1), 1-12. https://doi.org/10.1038/s41598-

021-98879-9 

Changes to the abovementioned publication for the purposes of this thesis are outlined 

below: 

• The original article was written in the format Introduction → Results → 

Discussion → Methods, as per journal guidelines. To ensure consistency with 

other chapters and to facilitate readability, the order of sections has been changed 

to Introduction → Methods → Results → Discussion. As such, the first few 

paragraphs in the Methods section (up to the Data Processing subheading) was 

originally within the Results section, and was moved to ensure coherency within 

the chapter.  

• Change in referencing style (article version is in numbered format). 

• References to supplementary files are changed to the appropriate location within 

the appendix, or to an OSF online repository link for supplementary data. 

• Words emphasised using quotation marks were changed to be emphasised using 

italics, in line with the thesis format.  

• The words Figure and Table in in-text references to figures was capitalised. 

Furthermore, figure/ table numbering convention was changed in line with the 

thesis format.  

• Addition of a linking section for the purpose of thesis flow. 

• Minor amendments have been made based on examiner correction suggestions. 

 

https://doi.org/10.1038/s41598-021-98879-9
https://doi.org/10.1038/s41598-021-98879-9
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5.1. Abstract  

Notational analysis is a popular tool for understanding what constitutes optimal 

performance in traditional sports. However, this approach has been seldom used in 

esports. The popular esport Rocket League is an ideal candidate for notational 

analysis due to the availability of an online repository containing data from millions 

of matches. The purpose of this study was to use Random Forest models to identify 

in-match metrics that predicted match outcome (performance indicators or PIs) 

and/or in-game player rank (rank indicators or RIs). We evaluated match data from 

21,588 Rocket League matches involving players from four different ranks. Upon 

identifying goal difference (GD) as a suitable outcome measure for Rocket League 

match performance, Random Forest models were used alongside accompanying 

variable importance methods to identify metrics that were PIs or RIs. We found 

shots taken, shots conceded, saves made, and time spent goalside of the ball to be 

the most important PIs, and time spent at supersonic speed, time spent on the 

ground, shots conceded and time spent goalside of the ball to be the most important 

RIs. This work is the first to use Random Forest learning algorithms to highlight 

the most critical PIs and RIs in a prominent esport.  
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5.2. Introduction  

The popularity of esports (competitive organised video game play) has grown rapidly 

over the past ten years to the point where viewership now rivals that in many traditional 

sports. In fact, it has been estimated that over one billion individuals viewed esports 

content in 2020 (Ahn et al., 2020). This rapid rise in interest in esports has led to 

increasing professionalisation, investment and attention towards optimising performance 

among the top players with the ultimate goal of individual or team success. However, 

extremely little research exists to date exploring what constitutes optimal performance 

within various esports. Until the factors that determine optimal performance are 

understood within a given esport (or any activity more broadly), it is very difficult to 

create and implement effective and efficient strategies towards achieving optimal 

performance.  

For most tasks, optimizing performance is often predicated on the identification of 

performance indicators (PIs; individual variables that predict the overall outcome of a 

match or performance). A very popular approach to identifying PIs is a notational 

approach. Notational analyses is the study of patterns within a match/ contest/ 

competition/ performance that lead to a successful overall outcome (Hughes & Bartlett, 

2002) and can uncover the components most important for match outcome. In traditional 

sports, identifying the PIs most important for successful task performance helps players 

and coaches to better direct focus to those key components to accelerate learning and, 

ultimately, improve performance. Thus, in traditional sport research, many have 

employed a notational approach to identify PIs in Australian Rules Football (Robertson 

et al., 2016), basketball (García et al., 2013; Leicht et al., 2017), ice hockey (Gu et al., 

2016), rugby league (Whitehead et al., 2020; Woods et al., 2017), and rugby union 

(Bennett et al., 2020; Bennett et al., 2019; Bishop & Barnes, 2013; Hughes et al., 2017; 

Mosey & Mitchell, 2020; Vaz et al., 2010). 

By using notational analysis to understand the components of an activity that are most 

important to success, one can direct their attention to those components to accelerate 

learning and ultimately improve performance. An example of a training method that could 

benefit from this understanding is Variable Priority Training (VPT), in which individuals 

complete a task with focused attention specifically towards improving key PIs within the 

task (Boot et al., 2010). VPT has been demonstrated to enhance learning in video game 
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contexts when compared to Fixed Priority Training (FPT: focussing on all aspects of a 

task) (Boot et al., 2010; Voss et al., 2012). 

In light of the evidence above, notational analyses may stand to benefit esports. Notational 

analysis could be used in a similar way to that in the traditional sport examples mentioned 

above to find the most important PIs within a given game to focus on, resulting in more 

efficient training and use of techniques such as VPT to improve esport performance. 

However, little research has explored this topic in esports to date. One recent study has 

started to identify the important PI’s for differentiating expertise in the First Person 

Shooter (FPS) esport, CS:GO, which has informed commercially available training 

software (Toth, Ramsbottom, et al., 2021), while two others have identified PIs in 

Multiplayer Online Battle Arena (MOBA) esports (Novak et al., 2020; Xia et al., 2017). 

The lack of notational analysis and subsequent analysis in esports is surprising given that 

esports appear ideal for such analyses as they are played digitally, with the ability to store 

in-game metrics directly for any game. However similarly to traditional sports, esports 

are extremely diverse in-game mechanics, objectives, equipment, and team size and 

structure, meaning that PIs from one esport are unlikely to be relevant to another. 

Additionally, in-match data can be difficult to obtain as they are often not made available 

by game development companies. 

One such esport whereby performance data are readily available, making it an ideal 

candidate for notational analyses, is Rocket League. Rocket League is a vehicular soccer 

video game released in 2015 by Psyonix. In Rocket League, players each control a rocket-

powered vehicle with the goal of hitting a large ball into a goal that is similar to a 

football/soccer goal, while simultaneously defending their own goal. The popularity of 

Rocket League has rapidly escalated since it became free-to-play on September 27 2020, 

with its peak concurrent player count of 1.85 million surpassing the popular esport 

mainstay, CS:GO, by more than 500,000 (Hindi, 2020; Moore, 2020). Alongside this high 

concurrent player count, Rocket League has reported ~90 million monthly users every 

month since November 2020 (Active Player, 2021b), approximately triple that received 

for CS:GO (Active Player, 2021a). Additionally, Rocket League has a thriving esports 

scene, with competing teams from top esports organisations such as Team Liquid, G2 

esports, and NRG esports, and with ~12million USD won through Rocket League 

competition (As of 12/03/2021; Esports Earnings (2021)). Overall, its popularity, the 

drive for optimising player performance at the top levels and the wealth of freely and 
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readily available match data position Rocket League as an ideal candidate for notational 

analysis and the identification of the PIs that predict performance outcomes in this esport. 

In Rocket League, players can save match replays and upload them to ballchasing.com, 

which in turn makes over 65 in-match metrics publicly available. As of May 5, 2021, 

there are over 24.5 million match replays available on the ballchasing.com online 

repository, across matches of various formats and with players of various ranks, freely 

available for anyone to download. Such volume of readily available match data is 

unheralded in esports and in traditional sports. 

Previous research has employed the use of general linear mixed effects models (Novak et 

al., 2020) or solitary classification and regression trees (CARTs) (Xia et al., 2017) for PI 

identification within esports. While these methods have their benefits, one superior 

approach that has yet to be adopted in esports is the use of Random Forest models 

(Breiman, 2001). Random Forests are a machine learning ensemble algorithm and refer 

to an ensemble of CARTs each trained using a unique bootstrapped data set and random 

selection of splitting predictor features. Each case in the original data set is then run 

through all CARTs in the forest for which it was not part of the training process (and 

hence is out-of-bag or OOB for these CARTs), and the mean (for a regression model) or 

modal (for a classification model) response is considered the overall response of the 

model for that case.  

Random Forests are a superior option to linear or logistic models and solitary CARTs for 

the current data and objectives for many reasons. Firstly, Random Forests can incorporate 

non-linear effects, and are superior to alternate methods at modelling complex 

interactions when the interactions are not, or cannot be, pre-specified (Cutler et al., 2007). 

This is ideal given the exploratory nature of PI identification in esports research and the 

unknown properties of the metrics included in model creation. Moreover, Random 

Forests have no distributional assumptions for predictor or response variables and are thus 

resistant to bias from non-parametric data, skewed data, and even nominal data, and 

perform exceptionally well even when many predictors are weak (or noise) (Breiman, 

2001; Cutler et al., 2007; Díaz-Uriarte & Alvarez de Andrés, 2006). Moreover, the fact 

that Random Forests are an amalgamation of many CARTs using a bootstrapped data 

samples and a random selection of predictor variables for node splitting per tree, they 

inherently provide much greater predictive ability and reduce propensity for overfitting 

when compared to the CART method alone (Breiman, 2001; Siroky, 2009), making them 
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suitable for large datasets. Given the above advantages over existing methods and that 

Random Forest have been used previously to identify PIs within traditional sports 

(Bennett et al., 2020; Bennett et al., 2019; Mosey & Mitchell, 2020; Whitehead et al., 

2020; Woods et al., 2017) they are arguably the most optimal method to identify PIs in 

Rocket League and esports more broadly. 

By leveraging the immense amount of freely available match data in Rocket League and 

utilising the state-of-the-art notational approach of Random Forest machine learning 

modelling, the purpose of this study is to identify metrics that predict performance (PIs) 

and expertise (RIs) within the esport, Rocket League. Specifically, we aimed to first 

identify a suitable match outcome measure that could capture more information than 

provided by binary win vs. loss. We then aimed to identify in-match metrics that best 

predict our match outcome measure, across a variety of player ability levels. Finally, we 

aimed to also identify in-match metrics that best predict the ability level of the players 

within matches themselves. 
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5.2.1. Methods 

While Rocket League can be played either individually (1v1) or in teams of two or three, 

the analyses of multiplayer competition requires consideration of the interactions between 

teammates, which is a necessary factor for team sports/esports and can greatly complicate 

analyses (Ofoghi et al., 2013). Therefore, this study focused solely on 1v1 Rocket League, 

which benefits from the fact that match metrics in this format are a direct result of player 

actions or interactions between player and opponent.  

The data from four Rocket League rank groupings were considered for our analyses: 

Bronze, Gold, Diamond, and Grand Champion (GC). These rank groups were chosen to 

allow for the capture of a broad range of ability levels while simultaneously creating clear 

distinctions between each rank group (see Figure 5-1). Ranks within Rocket League 

correspond to a player’s matchmaking rating (MMR). A players MMR increases after 

every win and decreases after every loss, with the magnitude of the increase/decrease 

determined by the difference between players’ MMR before the match. 

 

Figure 5-1 A density plot showing the distribution of accounts within the Rocket League 

rank system. Colour shaded areas correspond to the skill brackets, and associated MMRs, 

considered for the current study. This distribution is as per season 14 of Rocket League, 

which was the season at the time of the most recent match used in the analysis. 

 

Data from 33,854 total matches were downloaded from ballchasing.com 

(http://www.ballchasing.com), a repository of Rocket League match replays and 

statistics, on 16/12/2020. In addition to downloading all the data for all Bronze (4,111 

matches) and GC matches (9,743 matches), we downloaded all the data for the most 

recent 10,000 Gold and Diamond rank matches respectively. Data were gathered from 
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matches prior to September 29, 2020, and this was done for two reasons. Firstly, an update 

to the game with an accompanied rank redistribution saw additional ranks added after this 

date. Secondly, this update hindered the ability for ballchasing.com to recognise the 

ranking of players within a match. These issues have since been resolved, however were 

such during our data collection and analysis that we did not include match data from after 

September 29, 2020. These data were downloaded directly from the public domain, are 

freely available to all individuals, and results are completely de-identified. Further, all 

General Data Protection Regulations (GDPR) have been fulfilled.  

5.2.2. Data Processing 

Using the website’s inbuilt filters and replay group function, match statistics were 

downloaded as a .csv file. Each match file contained general descriptions of the match 

(i.e., map, player names, cars used) as well as 65 columns corresponding to data 

describing the performance for 65 in-match metrics (potential performance (PIs) and rank 

(RIs) indicators) (https://osf.io/z2fjg/ contains an anonymised sample file directly from 

ballchasing.com). 

From here, many processing steps were undertaken to result in the final 28 raw-score 

metrics and 26 difference-score metrics included in the Random Forests analyses (see 

Table 5-1). We have provided a brief description of these steps below, however the reader 

is directed to appendix 5.1 where we provide a detailed description of these steps, 

allowing for reproduction. 

First, we calculated match length using metrics provided, and used this to normalise all 

metrics that were not already presented as a percentage of match length to the average 

length of a rocket league match (360 seconds). Second, we removed all draws in the data, 

as well as matches that did not exceed 150 seconds duration to avoid overestimation of 

time normalised data. Next, we recalculated average speed using these time measures, 

and used metrics provided to calculate the metric True boost wastage. True Boost 

Wastage represents the proportion of boost used when a player is already travelling at 

max or near max speed. It is generally considered a measure of poor boost use, or wasted 

boost (Rocket Sledge, 2019; SquishyMuffinz, 2020). Appendix 4.2 contains descriptions 

for boost, true boost wastage and all other metrics are described in greater detail. 

From here, we calculated difference-scores for each metric (the difference between a 

given player and their opponent’s metric values). This was done in light of evidence that 

https://osf.io/z2fjg/
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difference-scores can provide superior predictive ability compared to raw-score metrics 

in a Random Forest analysis of PIs in Rugby Union (Bennett et al., 2019). We then 

maximised independence of data by removing all games besides the most recent ten from 

a given player, and de-identified the data. Penultimately, we ensured that no metrics could 

be combined to entirely explain the variance of another included metric. Lastly, shots 

conceded difference and demos taken difference were removed, as these metrics mirrored 

shots taken difference and demos inflicted difference metrics respectively (see appendix 

4.2 & 5.1). 

Following the above processing steps, 28 raw-score predictor metrics and 26 difference-

score predictor metrics were retained per match. Raw-score metrics and difference-score 

metrics were split into two in separate dataset files and metrics in each file were divided 

into four categories, offense/defence metrics, boost metrics, player movement metrics and 

player positioning metrics (see Table 5-1).  
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Table 5-1 Predictor metrics obtained through ballchasing.com and subsequent processing. Metrics are time normalised to an average match length (360 

seconds) unless provided as a percentage of total time in the original dataset, Metrics are expressed both as raw-score and difference-score except those 

denoted by a †, which are raw-score only. 

 Offense/Defense Boost Movement Positioning 

Shots taken Boost used  Average speed Time spent on the ground 

Shots conceded† Average boost reserve Time spent at slow speed Time spent high in the air 

Demos inflicted Total boost collected Time spent at supersonic speed Time spent goalside of the ball 

Demos taken† Count boost collected from big pads Average duration for a powerslide Time spent in the defensive third 

 Count boost collected from small pads Instances of powerslides Time spent in the offensive third 

 
Total boost stolen 

  

 
Count boost stolen from big pads 

 
 

 
Count boost stolen from small pads  

 

 
True boost wastage (%) 

  

 
Total boost overfill collected 

  

 
Total boost overfill stolen 

  
 Time spent at 100 boost   

 Time spent at 0 boost   
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5.2.3. Analysis 1: Identifying a continuous outcome measure 

Upon identifying the relevant matches and metrics to carry forward for analyses, and in 

line with the first aim of this study, we determined a continuous match outcome metric 

that that could be reasonably substituted for the binary win vs. loss outcome measure 

while providing additional information regarding the severity of a win or loss. To do this, 

the in-game score difference (IGSD) and goal difference (GD) metrics were considered 

as candidates. Point-beserial correlations were conducted between the candidate measures 

and the dichotomous Win vs. Loss (WL) metric across all rank groups and with matches 

from all ranks combined. Additionally, we explored the accuracy of the two candidate 

metrics in separating WL, using zero as the cut-off.  

5.2.4. Analysis 2: Obtaining Performance Indicators (PIs) 

Our second objective was to identify the metrics that best predicted our match outcome 

measure (GD) within matches across individual rank groupings, and within matches 

across all included ranks combined (PIs). To address this objective, individual Random 

Forest regression models were created each for matches within given ranks (i.e., Bronze 

matches only) and for all matches, regardless of rank. Two models were created per rank 

(and with all matches combined); one using raw-score metrics and one using difference-

score metrics. Random Forest regression models were created using the statistical 

software, R: A Language and Environment for Statistical Computing (Vienna, Austria).  

In addition to the steps taken in data processing to remove metrics that, when combined, 

could entirely account for the variance of another metric, multicollinearity was assessed 

for each dataset using qr-matrix decomposition (p < .05) in the rfUtilities package in R 

(Evans & Murphy, 2018). Average speed within the model with GC matches only was 

identified as multicollinear and was subsequently removed from further analyses. 

Random Forest models were then created using the randomForest package in R (Liaw & 

Wiener, 2002). The sole purpose of these models was to determine the optimal value of 

ntree for each model (amount of CARTs within the Random Forest model). The optimal 

ntree was the number under 1,000 that gave the lowest mean square error of GD, provided 

the mean square error in the number of trees surrounding this number was also stable. 

Mean square error was measured using out-of-bag (OOB) data; that is, using only matches 

that were not involved in the creation of a given tree within the forest. A maximum of 

1,000 trees was chosen as it was likely that this would be sufficient to produce highly 
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predictive models if this was possible given the data (default is 500) while simultaneously 

balancing computational speed. The default mtry value was used, due to evidence that the 

default values provided within the RandomForest package perform well (Liaw & Wiener, 

2002), and that this number does not tend to affect the performance of the model greatly 

(Breiman, 2001; Díaz-Uriarte & Alvarez de Andrés, 2006). 

Using the optimal ntree, new Random Forest models were then created using the 

rfPermute package in R (Archer, 2020). As well as making a Random Forest model, the 

rfPermute package provides significance values for metric importance. The percentage 

increase in mean square error (%incMSE) observed when a metric is permuted compared 

to when no metrics are permuted was used as the measure of metric importance score for 

each metric. %incMSE was chosen over Mean Decrease in Impurity (Gini), as Gini has 

shown to be biased when the scale that features are measured on varies (Strobl et al., 

2007). To obtain a significance value, rfPermute additionally permutes the outcome 

metric (GD) a specified number of times, so that there is to be no relationship between 

any predictor metric and GD. Significance values are obtained per predictor metric each 

time GD is permuted, forming a null distribution of importance scores per predictor 

metric. P-values are then calculated from the fraction of metric importance scores within 

this null distribution that are greater than the metric importance score obtained when GD 

was not permuted, with p <.05 being considered a significant metric.   

5.2.5. Analysis 3: Obtaining indicators of in-game rank (RIs) 

The third objective of this research was to identify the metrics that were able to predict 

the rank of players within a match regardless of match outcome (i.e., win vs. loss, IGSD 

& GD). To do so, a Random Forest classification model was created in R using data from 

all included ranks. Unlike a regression model, which provides a numerical outcome 

prediction, a Random Forest classification model provides a categorical prediction. 

Feature dependence was explored in the same manner as in Analysis 2. For metric 

importance, GD was permuted 50 times.   

Raw-score Mean Decrease in Accuracy (MDA) was chosen as the measure of metric 

importance over Mean Decrease in Impurity (Gini) and normalised MDA, for the same 

reasons as mentioned for the regression models and %incMSE. A Random Forest 

classification model was only created using raw-score metrics because difference-score 

metrics should always tend to approach 0 when not considering match result. 
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A flowchart outlining the methods for this study can be found in Figure 5-2. 
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Figure 5-2 Flowchart depicting the methods of the current study. The three outlined analyses are labelled in blue. The † highlights where average speed 

was removed due to multicollinearity.  
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5.3. Results 

5.3.1. Obtaining a continuous performance outcome measure 

In line with the first aim of this study, we determined a continuous match outcome metric 

that could be reasonably substituted for the binary win vs. loss (WL) outcome measure 

while providing additional information regarding the severity of a win or loss. To do this, 

the in-game score difference (IGSD) and goal difference (GD) metrics were considered 

as candidates. 

We conducted point-biserial correlations that tested the association between each metric 

and WL across all matches and across matches within each specific rank group. All point-

biserial correlations demonstrated large (rpb > 0.70) significant (p < .001) associations, 

however GD yielded larger association with WL for matches within each rank and when 

matches for all ranks were combined (Bronze: r = 0.77, Gold: r = 0.80, Diamond: r = 0.79, 

GC: r = 0.78, all ranks: r = 0.79) compared to IGSD (Bronze: r = 0.76, Gold: r = 0.78, 

Diamond: r = 0.77, GC: r = 0.75, all ranks: r = 0.77). Finally, we noted that when using 

zero as a cut-off for IGSD and GD (positive scores corresponding to win, and negative 

scores corresponding to loss), IGSD correctly identified wins 93.56% of the time, and 

losses 93.70% of the time, while GD correctly identified wins and losses 99.94% of the 

time. Figure 5-3 displays the distribution of the data from all skill brackets combined 

using a density plot (default bandwidth). 
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Figure 5-3 Density plots showcasing a: the distributions of goal difference and b: in-

game score difference as a function of win vs. loss.  

 

Through these analyses, we demonstrate that GD and IGSD are both appropriate 

continuous variables for game outcome. However, due to the superior association of GD 

with WL across all matches and matches within each rank group, GD was used as the 

performance outcome measure in subsequent analyses. 

 

5.3.2. Obtaining indicators of performance (PIs) 

Random Forest regression models were created using the raw-score metrics (player 

metrics, not accounting for opponent) and difference-score metrics (player metrics 

accounting for opponent). These models were created for 1v1 Rocket League matches 

occurring in Bronze rank (lowest in-game rank; 2,527 matches), Gold rank (7,226 

matches), Diamond rank (7,193 matches) and Grand Champion (GC) rank (highest in-

game rank; 4,642 matches), as well as in all matches regardless of rank (21,588 matches). 

The match outcome variable for these regression models was the goal difference (GD) 
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between players within a match. These models were used to identify the in-game metrics 

that best predicted in match outcome and could thus be described as PIs for Rocket 

League. 

All of the models created were highly predictive of GD (R2 > 0.7). As can be seen in 

Table 5-2, models created using the difference-scores were better able to predict match 

outcome compared to models using raw-scores in all cases. 

Table 5-2 R2 (mean of squared residuals) of the Random Forest models created using the 

raw and difference-score metrics for each ranks and for all ranks combined 

  Bronze Gold Diamond GC All 

Raw-score 0.793 (3.91) 0.741 (3.55) 0.725 (3.66) 0.713 (4.06) 0.747 (3.61) 

Difference-score 0.841 (2.99) 0.823 (2.43) 0.823 (2.35) 0.816 (2.59) 0.839 (2.29) 

 

5.3.2.1. Raw-Score Models 

In all Random Forest regression models using raw-score metrics, the following metrics 

led to a significant (p < .05) increase in mean square error (MSE) when permuted, and 

hence were identified as PIs: shots taken, shots conceded, time spent goalside of the ball, 

saves made, demos taken, and demos inflicted. Figure 5-4a shows the relative contribution 

that each PI metric made to the total MSE increase when all PIs were included together 

for matches within each rank category, as well as for matches across all ranks combined, 

for the raw-score models. For matches in the Bronze rank, Gold rank, and when all ranks 

are combined (i.e. all matches without considering player rank), shots taken and shots 

conceded were more important than time spent goalside of the ball, whereas for matches 

in the Diamond rank and GC rank, time spent goalside of the ball was more important 

than shots taken, and shots conceded. 
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Figure 5-4 Heat map displaying the percentage of the total increase in MSE that can be 

found when a metric is permuted individually compared to the sum of increase in MSE 

for all metrics when permuted individually. Only metrics that were significantly 

important for predicting GD within each raw-score and difference-score model are 

presented. White squares represent metrics that were not significant for the rank they are 

assigned to. a: results from raw-score regression models, and b: results from difference-

score regression models. 
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5.3.2.2. Difference-Score Models 

In all Random Forest regression models using difference-score metrics, the following 

metrics led to a significant (p < .05) increase in MSE when permuted, and were hence 

classified as PIs: shots taken difference, time spent goalside of the ball difference, and 

saves made difference. Figure 5-4b shows the relative contribution that each PI makes to 

the total MSE increase when all PIs are included together for matches within each rank 

category, as well as for matches across all ranks combined, for the difference-score 

models. For matches in the Bronze rank, Gold rank, and when all ranks are considered, 

shots taken difference and saves made difference were more important than time spent 

goalside of the ball difference, whereas for matches in the Diamond rank and GC rank, 

time spent goalside of the ball difference was more important than shots taken difference 

and saves made difference. Saves made difference was also more important than time 

spent goalside of the ball difference for matches in the Gold rank and when all ranks are 

considered.  

  

5.3.3. Obtaining indicators of in-game rank (RIs) 

The Random Forest classification model correctly classified the rank of players within 

1764 of 2527 Bronze matches (69.81%), 5394 of 7226 Gold matches (74.65%), 5098 of 

7193 Diamond matches (70.87%), and 3417 of 4642 GC matches (73.61%), resulting in 

an overall out-of-bag (OOB) accuracy of 72.6%. 

All metrics were found to significantly decrease the accuracy of the model when permuted 

(p < .05), and so were deemed RIs in Rocket League (Figure 5-5).  
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Figure 5-5 Metrics found to be of significant importance to the classification model 

created to predict the ranks of individuals playing 1v1 Rocket League, ordered by the 

increase in mean decrease in accuracy experienced within the model when each metric 

was permuted.  

 

Overall, time spent at supersonic speed, time spent on the ground, shots conceded, and 

time spent goalside of the ball were the four RIs most important to the Random Forest 

model for correctly classifying data according to the rank of the players within the match. 

Violin plots showing the means and distributions of these four RIs across included ranks 

are displayed in Figure 5-6.  
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Figure 5-6 Violin plots displaying the means and distributions, within each rank, of the 

four most important features for predicting rank, a: Time spent at supersonic speed, b: 

Time spent on the ground, c: Shots conceded, d: Time spent goalside of the ball.  
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5.4. Discussion 

In this work, we used a Random Forest machine learning algorithm analysis to identify 

key performance metrics that predicted expertise (RIs) and match outcome (PIs) for the 

first time in a prominent esport, Rocket League. Specifically, we first aimed to identify a 

continuous match outcome metric that provided more information on in-game 

performance than the binary win vs. loss measure. Goal difference (GD) was identified 

as this suitable match outcome metric. Secondly, we aimed to identify metrics that are 

significantly important to influencing our outcome metric, GD (labelled as PIs), both 

across matches played by players of specific ranks and across matches played by those of 

all ranks. Hence, these PIs differentiate good and poor performance within a given rank. 

Here, we found specific PIs that are important to GD across all ranks, as well as PIs that 

are only important to GD in matches with players of specific ranks. Thirdly, we aimed to 

identify metrics that best predicted player expertise or rank within matches (labelled as 

RIs). These RIs differentiate between players of different ranks. All metrics were 

significantly important to the classification of rank in our Random Forest classification 

model. Importantly, we show for the first time the order of importance that each metric 

has for the prediction of rank within our model, with time at supersonic speed, time spent 

on the ground, shots conceded, and time spent goalside of the ball being the four that 

decreased the performance of the model the greatest when permuted. The following 

discusses the implications of these findings. 

Firstly, our finding that difference-score metrics lead to better match outcome prediction 

compared to raw-score metrics corroborates previous literature in rugby union (Bennett 

et al., 2019). Models incorporating difference-score metrics for any rank were able to 

account for over 80% of the variance in GD between two players in a given match. This 

highlights the utility of the in-game statistics obtained from the online repository 

ballchasing.com for Rocket League and the utility of Random Forest models for 

predicting performance within Rocket League.  

Focussing on PIs within the difference-score models, when compared to a rank-matched 

opponent, taking more shots, making more saves, and spending more time goalside of the 

ball all appear to be beneficial for success in Rocket League matches, regardless of one’s 

rank. The difference in time spent goalside of the ball was found to be most important 

within higher ranked matches (Diamond & GC), suggesting that as the quality of players 

increases, so does the relative importance of maintaining one’s positioning between the 
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ball and one’s own goal, compared to simply taking more shots or making more saves. 

This could be due to the greater ability of higher ranked players to swiftly and accurately 

shoot a ball into a goal left unattended due to an opponent’s poor positioning. This also 

may suggest that higher ranked players may generally be well served to adopt a safer 

playstyle, reducing the number of high-risk attacking plays such as air dribbles (referring 

to when a player achieves many controlled touches on the ball while both the player and 

ball are in the air) that if failed, might leave them positioned in front of the ball. For GC 

rank players, this is further supported by the finding that increasing time spent high in the 

air (a necessity for air dribbles) did not predict performance, whereas this was a PI of 

match outcome in all other ranks.  

When considering the application this new awareness of important PIs, Rocket League 

players of all ranks can leverage Variable Priority Training (VPT), which has already 

been demonstrated to be superior to Fixed Priority Training (FPT) (Boot et al., 2010), to 

actively focus on improving performance on the key metrics that are actually shown to 

be important for match outcome. Based on the results, a player might specifically work 

to improve spending more time goalside of the ball than their opponent during their 

matches. Our results also suggest that lower ranked players (Bronze and Gold) could 

harness VPT by monitoring the shots they take relative to their opponent during matches 

and focussing on skills that facilitate improvement on this PI. This has been discussed by 

professional Rocket League coaches previously as a beneficial strategy as similarly 

lower-ranked opponents are less likely to save shots regardless of quality (Virge, 2020). 

Inflicting more demos on your opponent than they do on you also appears to provide a 

performance benefit in matches for all ranks except those in the Bronze rank group. A 

demo (short for demolition) is achieved when one player drives into an opposing player 

at supersonic speed at the correct angle and removes them from the field for three seconds 

before the opposing player respawns in one of two prespecified locations in their 

defensive third. The fact that this metric was not found to be a PI for Bronze level matches 

may be due to the fact that Bronze players may not possess the skills to capitalise on the 

three second advantage awarded by a demo to score, whereas higher ranked players may 

be better able to use demos to score or prevent goals.  

The metrics that best predicted differences between ranks (RIs) were not necessarily 

predictive of performance when two rank-matched players play against one another (i.e., 

within rank). For example, the percentage of time that a player spent at supersonic speed 

was the most important RI (Figure 4-6), whereas this metric it did not significantly 
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improve the ability of regression models to predict the outcome of a match within a given 

rank group. The fact that time at supersonic speed was found to be a RI and not a PI may 

be due to the fact that playing at higher ranks requires one to have the ability to play at 

near maximum speed for longer durations so as to match the speed of the opponent in 

case they were to attack at maximum speed. However, once both players are able to do 

so, attacking at supersonic speed does not provide additional benefit within the match 

between two similarly ranked players. This explanation can also be applied to the PI 

number of powerslides, which, when permuted from the model, led to a large decrease in 

accuracy (which demonstrates its high importance) in the classification model predicting 

rank. Powerslides are a difficult manoeuvre that provide the opportunity to maintain speed 

when landing on the ground and turning sharply, however powerslide turns can be 

difficult to control. Higher skilled players appear to use this mechanic more often to 

achieve greater control of their car, however when players are of similar rank, 

powersliding more or less than an opponent within a match does not appear to provide an 

advantage. Taken together, higher rank players show better control over the movement 

of their car and are able to play a greater proportion of their matches at high speed. 

However, within rank-matched matches, this metric does not predict match outcome. 

Therefore, our findings suggest that while focussing on game speed and car movement 

may not provide immediate benefit to the outcome within matches, these PIs are 

important to develop as they may facilitate one’s improvement in overall expertise over 

time.  

5.4.1. Significance 

While the identification of PIs to predict match outcome and in-game ranking within 

Rocket League provides new knowledge regarding how Rocket League players and 

coaches may structure training programs, the results from this analysis are also 

foundational for future experimental work utilising esports as a performance arena. 

Esports have been identified as a promising new avenue to study expertise (Campbell et 

al., 2018), due to their data rich nature, continuous and accurate skill rating systems (Elo), 

and the naturally controlled, laboratory like environment that esports are typically 

engaged in. More recently, esports have been identified as an ideal framework for 

exploring whether task expertise moderates task performance deficit experienced from 

sleep loss (Smithies, Toth, et al., 2021), with applications spanning beyond esports due 

to the shared work environment and cognitive skills required between esports and pilots, 
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air traffic controllers, and military drone operators for example (Smithies et al., 2020). 

This framework could be extended to study how ability level on a task moderates the 

effect of a given intervention on task performance.     

1v1 Rocket League in particular is an ideal esport to use as a performance task in an 

experimental setting as it has a short & predictable match length (5 - 10 minutes), 

allowing for many trials within an experimental setting, a simpler experimental design 

than other esports due to the ability for one to play individually, and experimenters can 

easily access player rank and in-match metrics. The results of our analysis specifically 

inform as to the important PIs of interest when evaluating the efficacy of an experimental 

intervention on Rocket League performance. A reduction of the outcome variable, GD, 

alongside key PIs such as difference in shots taken, difference in saves made, and 

difference in time spent goalside of the ball, would represent a negative effect on the 

intervention on task performance. Interestingly, a reduction in time spent at supersonic 

speed or instances of powerslides following an intervention, but a maintenance of 

performance, could suggest an adaptation by players to simplify their play style to 

maintain performance following an intervention. 

This is the first study to use Random Forest models to identify PIs within an esport. 

Random Forests are robust to data of any distribution from a large number of features 

(regardless of if many are actually predictive of the outcome or not) and can ascertain 

non-linear effects and complex interactions without prior specification. Thus, Random 

Forests present as a valuable tool for notational analysis within esports, which is in its 

infancy and has limited prior information available on potential PIs for various games and 

genres. Random Forests for notational analysis in esports could be used to explore what 

predictor metrics are most important for match outcome in other genres, such as FPS’s 

and MOBA’s. 

5.4.2. Limitations and Future Research 

When considering the power of Random Forests as a notational analysis, one limitation 

is that feature importance measures from Random Forest models can show bias when 

features are correlated (Hooker & Mentch, 2019; Strobl et al., 2008). To mitigate this, 

where the variance of one predictor metric could be entirely explained by one or more 

other metrics, these additional metrics were removed, and multicollinearity was assessed 

for each model with multicollinear metrics being removed. Additionally, features shown 
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to be important for game outcome or skill within each model showed no greater 

correlation with other features compared to those not found to be important (correlation 

matrices for all models can be found in appendix 5.2). Future research should consider 

feature importance measures such as permutation conditional on remaining features 

(Strobl et al., 2008), leave-one-covariate-out (Lei et al., 2018), and permute and relearn 

(Hooker & Mentch, 2019) to address correlated features, however given the large amount 

of data and extra computational resources required for these methods, they were not 

feasible here.  

In this study, we chose to exclusively explore 1v1 Rocket League. While identical in 

game mechanics, positioning and decision making vary between 1v1, 2v2, and 3v3 

formats of Rocket League. Hence, PIs and RIs for team-based Rocket League may be 

different to 1v1. However, this analysis would have been greatly complicated if we 

additionally included team-based Rocket League, as interactions between teammates 

would have to be considered, further complicating analysis (Ofoghi et al., 2013). 

Interestingly, 1v1 is considered by many professional Rocket League players (i.e., 

Flakes) to be the best way to improve in Rocket League overall due to affording players 

more time to interact with the ball compared to other formats. Hence, the PIs and RIs here 

can provide great benefit for all Rocket League players and coaches, even if improvement 

specifically in 1v1 Rocket League is not the primary goal. However, future research 

should attempt to use similar analysis methods to those described here to identify the PIs 

and RIs for 2v2 or 3v3 Rocket League. 

5.4.3. Conclusions 

In summary, this study is the first to use Random Forest models to identify PIs and RIs 

that could predict match outcome and rank respectively across over 20,000 matches in 

the rapidly emerging esport of Rocket League. Overall, spending more time goalside of 

the ball, taking more shots, conceding less shots, and making more saves, were all 

identified as beneficial for in-match performance across all ranked matches. All metrics 

were found to be significantly important (and thus, RIs) for a Random Forest model’s 

ability to predict player rank, and we have classified the order of importance of these 

metrics using our model. Interestingly, we found that time spent at supersonic speed, time 

spent on the ground, shots conceded, and time spent goalside of the ball were the most 

important RIs. This type of analysis can provide useful insight to Rocket League players 

and coaches regarding the structuring of VPT programs to improve match success of in-
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game rank. The findings from our analysis also provides researchers with key metrics to 

consider if using Rocket League as a performance task in experimental research.
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5.5. Linking chapter 

The analysis outlined in this chapter served several purposes for the thesis. Firstly, I 

demonstrated that Goal Difference (GD), referring to the time-normalised difference in 

goals scored between players, was the most ideal continuous outcome metric for overall 

in-game performance. Secondly, the in-game performance indicator (PI) metrics outlined 

within the current study provide further metrics to explore when considering the effect of 

experimentally induced sleep loss on in-game Rocket League performance. Such analysis 

could elucidate whether sleep loss induces in-game playstyle changes within Rocket 

League. I decided to use difference score PIs as outcome variables of interest within 

exploratory analyses in the experimental sleep loss study, owing to models created using 

difference-score metrics consistently outperforming those made using raw-score metrics. 

This included shots taken difference, time spent goalside of the ball difference, and saves 

made difference, however also included time spent high in the air difference and demos 

inflicted difference, owing to these metrics being significantly important within the 

majority of ranks and when all ranks were combined.  
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Chapter 6. Key methodologies for the experimental sleep 

loss study 
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The current chapter serves to outline some key methodologies relevant to the 

experimental sleep loss research, which is disseminated in the following chapter. The first 

two sections pertain to the use of actigraphy (specifically the ReadibandTM (v5) by Fatigue 

Science) as the primary sleep-measurement method of choice within this study. Firstly, a 

brief outline of common sleep measurement methods is provided, with this outline 

narrowing to a specific description of the Readiband device. Secondly, my novel 

approach used to manage missing actigraphy derived sleep data is outlined, along with a 

demonstration of its efficacy. The third section of this chapter will specifically discuss 

the use of Mixed Effect Models (MEMs) within the analytical approach. MEMs are 

becoming increasingly common within sleep research for good reasons, including the 

inclusion of all data despite sources of dependence (this can be more than one source, and 

can be complex in nature), robustness to missing or unbalanced data, and the ability to 

manage categorical and continuous independent variables (or fixed effects) 

simultaneously. However, given the inherent increase in complexity associated with 

MEMs, along with the variation in implementation, it was necessary to provide a detailed 

explanation of how they were used in the research outlined in Chapter 7. I describe the 

best-practice guidelines followed in model selection and dissemination of results. 
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6.1. Using Readibands for Actigraphy-Derived Sleep Outcomes 

Sleep measurement was undertaken in the research outlined in Chapter 7, and the 

analysis described in Section 6.2 of this chapter, using concurrent wrist-worn actigraphy 

(Readiband TM (v5)) and consensus sleep diary (CSD; Carney et al. (2012)). The following 

section outlines different methods of measuring individual nights of sleep within 

contemporary research, providing insight as to why these methods were chosen.  

6.1.1.  Polysomnography 

The measurement of individual nights of sleep for research purposes is normally 

undertaken using one of three approaches. On one end of the spectrum is 

polysomnography (or PSG), widely considered to be the gold standard of sleep 

measurement (Marino et al., 2013; Rundo & Downey, 2019). PSG (typically) employs 

the use of concurrent electroencephalography (EEG), electrooculography (EOG), chin 

and leg electromyography (EMG), pulse oximetry, nasal prongs, oronasal thermistors, 

respiratory inductance plethysmography, body position sensors, microphones and video 

recording. Naturally, such a set-up requires a dedicated sleep laboratory, with trained 

sleep researchers present to continuously monitor the various channels of information and 

use it to manually score sleep stages according to prespecified criteria; the most common 

of which are provided by the American Academy of Sleep Medicine (AASM; Troester et 

al. (2023)). Due to this, PSG tends to not only be expensive (estimated as $1500-

2000USD per night in the United States; Arnal et al. (2020)), but also may not be 

representative of an individual’s natural sleep, due to a change in environment, discomfort 

arising from the instruments used, and stress. This disturbance to one’s natural sleep may 

persist beyond a single day of habituation (Le Bon et al., 2001). Although there is 

continual and promising development of more practical derivatives of PSG for sleep 

measurement, which use automated sleep scoring and less instruments (generally EEG 

only or EEG and limited other instruments; i.e., Arnal et al. (2020); Myllymaa et al. 

(2016); Shambroom et al. (2012)), the use of these instruments remains mostly limited to 

single-night assessments or studies concerning sleep disorders.  

6.1.2. Sleep Diaries 

On the opposite end of the spectrum are sleep diaries, the most commonly used being the 

Consensus Sleep Diary or CSD (Carney et al., 2012). Sleep diaries such as the CSD (the 



115 

 

gold standard of subjective sleep measurement) certainly have their benefits; they are 

extremely easy to administer, and present with little to no time or effort burden for 

participants. They are recommended by the AASM to be used concurrently with 

actigraphy (discussed in the following paragraph) for non-standard populations 

(Morgenthaler et al., 2007), and are required by some actigraphy devices in order to 

determine sleep onset and wake times. However, their subjective nature creates concerns 

regarding the reliability and agreement of the data obtained (Carney et al., 2012). Many 

sleep variables derived from sleep diaries present with consistent group-level biases when 

compared both to the gold standard PSG and to actigraphy; namely, a ~20 minute greater 

time in bed (TIB), ~15 to 55 minute greater total sleep time (TST), ~0 - 8% greater overall 

sleep efficiency (SE%), ~1 to 36 min smaller sleep onset latency (SOL), ~2 to 38 minute 

smaller wake after sleep onset (WASO), and a ~6-7-fold decrease in total number of 

awakenings (Kaplan et al., 2012; Lehrer et al., 2022; Matthews et al., 2018; McCall & 

McCall, 2012). Furthermore, the tendency to under or overestimate sleep variable 

quantities (& the severity of over or underestimation) compared to objective measures is 

highly variable between individuals, as shown by Moore et al. (2015) for Breast Cancer 

Survivors, and in Section 6.2 for a young male population.  

6.1.3. Actigraphy 

With PSG and sleep diaries at either end of the sleep measurement spectrum, sleep 

wearables or actigraphy devices provide a happy balance of objectivity and practicality, 

and hence are the default for field-based or longitudinal sleep measurement in research. 

Such devices are generally wrist-worn, and either exclusively or predominantly use tri-

axial accelerometery to detect periods of movement or rest. This movement information 

is converted to sleep and wake data through pre-defined algorithms, which can be 

implemented both manually or automatically.  

Research-grade actigraphy devices such as the ActigraphTM are the overall most widely 

used actigraphy devices in research. However, within contemporary research there has 

been a substantial increase in the use of alternative (and often commercially available) 

actigraphy devices, coinciding with validations of these devices within peer-reviewed 

literature (Evenson et al., 2015). Two major contemporary articles of this kind found 

many of these alternative actigraphy devices to be comparable to or outperform research 

grade actigraphy devices, when compared both to in-lab PSG and at-home EEG (Chinoy 

et al., 2021; Chinoy et al., 2022). 
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One of these devices is the ReadibandTM (v5) wrist-worn activity monitor (Fatigue 

Science, Canada). When compared to at-home PSG, the Readiband has been shown to 

outperform the research-grade Actiwatch 2 (Philips Respironics), with no significant bias 

for TST, SE%, SOL and WASO (Chinoy et al., 2021). When compared to at-home EEG, 

the Readiband has been shown to provide superior specificity vs. the Actiwatch 2, and 

overall presents as a “viable option for sleep-wake tracking and with longer battery life 

(~30 days) compared with the other devices tested (~4-7 days)” (p. 512, Chinoy et al. 

(2022)). A separate study comparing both the Readiband and the research-grade 

ActiGraph found both actigraphy devices to be suitable for use when considering the sleep 

variables TST, time at sleep onset (TASO) and time at wake (TAW) (Dunican, Murray, 

et al., 2018). However, the authors encouraged exercising caution when interpreting the 

outcome variables SOL, WASO, and SE%, derived from either actigraphy device. The 

Readiband uses a proprietary sleep scoring algorithm which performs favourably 

(accuracy = 93% vs. PSG) compared to the commonly used Sadeh algorithm (91-93%; 

Sadeh et al. (1994)) and Cole-Kripke algorithm (88%; Cole et al. (1992)) on sleep data 

collected by the validated AMI-32 (Ambulatory Monitoring Inc) (Russell et al., 2010). 

This algorithm automatically scores all sleep and wake periods as well as bed-time, and 

as such, the Readiband does not possess an event marker. Sleep and wake scoring from 

this proprietary algorithm was assessed by an experienced researcher and cross-validated 

against consensus sleep diary measures.  

The Readiband has high (ICC ≥ 0.8) inter-device reliability (including ICC = 0.99 for 

total sleep time) and a mean inter-device difference of only two minutes per night of sleep 

(Driller et al., 2016). Readibands have been used in previously published sleep research 

for a variety of populations, including traditional and esport athletes (Bonnar et al., 2022; 

Dunican et al., 2023; S. Lee et al., 2021; Power et al., 2023; Smithies, Eastwood, et al., 

2021), medical personnel (James et al., 2019; Min et al., 2023), pilots (Rocha & Silva, 

2019), and military personnel (Edgar et al., 2023). For the reasons outlined above, the 

Readiband was used as the objective sleep measurement device within the study described 

in Chapter 7.  
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6.2. Managing Missing Actigraphy-Derived Sleep Data 

6.2.1. Brief Background 

One issue encountered within data collection for the study outlined in the following 

chapter was the existence of missing actigraphy-derived (Readiband) sleep data. 4.56% 

of total collected nights worth of actigraphy-derived sleep data were missing, while 

3.64% of nights within three nights of test sessions (the range reported in Chapter 7) 

were also missing. The presence of missing actigraphy-derived sleep data was foreseen 

in the analytical approach, given how pervasive this issue is within actigraphy-based sleep 

research. This is demonstrated by three large-scale (>500 nights of data) actigraphy 

studies on different populations (healthy adults, Ustinov and Lichstein (2013); healthy 

women, Tworoger et al. (2005); children and adolescents, Acebo et al. (1999)) reporting 

rates of missing data between 14-28%. 

There are five strategies generally employed to deal with missing actigraphy-derived 

sleep data (I note that published articles have documented methods to deal with missing 

epochs of actigraphy data, rather than missing sleep data for an entire night (Fuster-Garcia 

et al., 2013; Jang et al., 2020; Smith et al., 2021); For a detailed summary of missing data 

methods for summary and epoch actigraphy data, see Di et al. (2022)). These are listwise 

deletion, use of summary statistics, simple imputation, multiple imputation, and the use 

of analytical approaches which are robust to missing data (i.e., models that use maximum-

likelihood estimation, such as MEMs). The pros and cons for each strategy, along with 

the scenarios which warrant a specific strategy, are beyond the scope of this section.  

In this section, I outline a novel simple imputation approach (named Diary ± Individual 

Bias) and compare its agreement to other simple imputation strategies (adapted to the data 

collected). A simple imputation strategy was chosen for use as it was required to have a 

specific estimated value (as opposed to MI or maximum-likelihood approaches which do 

not provide one specific value) provided for any missing actigraphy data within the 

critical nights in my experimental design (the three nights prior to each test session), for 

the purposes of Figure 7-4. Also given that the rate of missingness was relatively small, 

the computational and theoretical complexity is not particularly warranted (Sainani, 

2015). 
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6.2.2. Testing Approach 

I considered data collected as part of the study described in the following chapter; 

however, I only considered participants who provided written informed consent and who 

did not have any missing data, so as to avoid bias risk. This resulted in data from 21 

healthy young males (20.48 ± 2.50 y/o) being considered, providing 282 days of 

concurrent actigraphy-derived (Readiband) and Consensus Sleep Diary (CSD; (Carney et 

al., 2012)) data. The number of days with concurrent Readiband and CSD data varied 

between participants (as a function of days collected, not as a result of missing days); 

Table 6-1 shows the distribution of participants by number of days worth of data 

available. Data collection was approved by the Education and Health Sciences Research 

Ethics Committee (2021_06_13_EHS) and conducted in accordance with The 

Declaration of Helsinki. 

Table 6-1  Number of participants with N amount of days available 

Days Available 14 13 12  
N 10 10 1  

 

6.2.2.1. Simple Imputation Approaches Tested 

6.2.2.1.1. Proximity Imputation 

This approach has been described by Bjorvatn et al. (2006), Bjorvatn et al. (2007), 

Forberg et al. (2010) and Saksvik et al. (2011). For a day of missing actigraphy data, this 

approach takes the mean actigraphy-derived value for the previous and following day as 

the imputed value, unless one of which is not available (i.e., when the first or last day 

within a date-range is missing), in which the value of the remaining available day was 

directly imputed as the replacement value. If three consecutive days are missing, the mean 

of the previous and following days around this three-day missing block were imputed for 

all consecutive missing days. 

6.2.2.1.2. Hot-Deck Imputation 

This approach has been used by Rigney et al. (2015). Hot-deck imputation is a process 

whereby missing data is replaced with a value from an observation (donor) which exhibits 

similar characteristics. Characteristics that determine donor suitability are researcher-

determined. When multiple donors are available, a donor is randomly selected from the 

pool of donors (for more detail, see Myers, 2011). 
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I considered two Hot-Deck approaches; one in which donor values were from the same 

individual in which the data is imputed for (Within-participant or WP hot-deck) and the 

other in which the donor values are from other participants (Between-participant or BP 

hot-deck). For within-participant hot-deck, potential donor values were categorised only 

by whether the data was from a weekday or weekend. For between-participant hot-deck, 

donor values were determined by the following characteristics (in order of importance; 

weekday/ weekend, overall Pittsburgh Sleep Quality Index (PSQI) score, self-report mean 

sleep duration, age).  

6.2.2.1.3. Diary Only 

This approach refers to the replacement of a missing actigraphy-derived sleep variable 

with the equivalent variable obtained from the same individuals’ CSD on the 

corresponding day. 

6.2.2.1.4. Diary ± Individual Bias  

This approach refers to imputation using the corresponding CSD value (as per above), 

however also factoring in the mean difference between the participants CSD value and 

the actigraphy derived value for all other days in which both values were available. For 

example, if a participant overestimated TST by an average of 30 minutes, 30 minutes was 

taken off the CSD value subsequently used for imputation. 

6.2.3. Imputation and Testing Procedure 

I tested the performance of the five approaches on three actigraphy-derived sleep 

variables: 

Time at Sleep Onset (TASO; hh:min) The time of day in which the first epoch of sleep 

occurs in a nighttime sleep period 

Time at Wake (TAW; hh:min) Time of day following the last epoch of sleep occurs in a 

nighttime sleep period, following by a prolonged period of wake 

Total Sleep Time (TST; mins): Amount of time between TASO and TAW, minus any time 

spent awake (i.e., Wake After Sleep Onset). I also included napping periods (periods of 

sleep outside of a nighttime sleep period, with naps occurring before 12:00 added to the 

previous night, and naps occurring after 12:00 added to the upcoming night. 
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An imputed value was obtained for each day and for each participant, using all five 

imputation approaches. However, some approaches used data available from previous or 

following days from the same participant. For the data collected in Chapter 7, the 

minimum amount of days available for a given participant was 10, and the maximum 

(with at least one day of missing data) was 13. Thus, separate imputed value for each day, 

participant, and approach, were obtained for when participants had 13, 12, 11, and 10 

days of other days worth of data available. For 13 days of available data, only the data 

from ten participants (140 days of total data) was available. Once an imputed value was 

obtained each day, participant, and approach, I removed one day’s worth of data from 

each participant, such that each participant had 13 days of concurrent actigraphy-derived 

and CSD data available. This also allowed me to include participants with only 13 days 

available, increasing the days of data available (N = 20, 260 days of total data). From 

these data, I again obtained an imputed value for each day, participant, and approach. 

This process was iterated until the included participants had 11 days of concurrent 

actigraphy-derived and CSD data available (N = 21, 231 days of total data). This allowed 

for the testing of imputation approaches across the range of missingness present within 

the data in Chapter 7.  

6.2.4. Analysis 

The following analyses were performed to compare sleep variables for all imputation 

approaches and across all amounts of data available per participant. Alpha was set to p < 

0.05 (two-tailed) for all analyses. 

Agreement was assessed using two measures. Firstly, I calculated Absolute Percentage 

Error (APE; as per Stone et al. (2020)), according to the formula below:   

𝐴𝑃𝐸 =  
|𝐼𝑚𝑝𝑢𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 − 𝑅𝑒𝑎𝑑𝑖𝑏𝑎𝑛𝑑 𝑉𝑎𝑙𝑢𝑒|

𝑅𝑒𝑎𝑑𝑖𝑏𝑎𝑛𝑑 𝑉𝑎𝑙𝑢𝑒
 × 100 

 

To explore whether mean APE differed among imputation methods, a series of pairwise 

least-squared comparisons were made, with Satterthwaite’s approximation for degrees of 

freedom, and using Tukey’s HSD to correct for familywise error rate. Imputation 

approaches were inputted as fixed effects, with random intercepts for both participant and 

the participant day combination, to account for correlation between imputed values 

attributable to the specific day measured and to the specific individual.  
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Secondly, I assessed agreement using a mixed-effects Limits of Agreement (LoA) 

analysis with accompanying Bland-Altman plots (Parker et al., 2020). LoA analysis is a 

common method of measuring agreement (particularly in actigraphy-based research) due 

to its easy interpretability. While I did not specify a clinically acceptable difference 

threshold a priori, I considered the imputation methods with the narrowest confidence 

limits to demonstrate the best agreement.  

Lastly, I tested for presence of bias (tendency for imputation method to under or 

overestimate actigraphy-derived values) through a series of pairwise least-squared 

comparisons of mean derived values for each imputation approach, against actigraphy-

derived values. Source of sleep variable values (imputation approaches and actigraphy-

derived values) were inputted as fixed effects, with identical random effects to that 

mentioned for APE. Again, Satterthwaite’s approximation for degrees of freedom was 

used. As only comparisons between each approach and actigraphy-derived values were 

relevant (as opposed to comparisons between all imputation approaches), Dunnett’s test 

was used to correct for familywise error rate (Dunnett, 1955). 

6.2.5. Outcomes and Discussion 

6.2.5.1. Absolute Percentage Error 

The following results are with reference to all levels of available data per participant (10 

– 13 days) and for all sleep variables considered (TST, TASO & TAW). Firstly, the BP 

Hot Deck approach yielded a significantly larger APE compared to all other approaches 

(p < 0.001), except for TST with 13 days available, where APE was significantly larger 

only when compared to the diary-based approaches, and TAW with 13 days available, 

where APE was significantly larger than all approaches except for WP Hot Deck. 

Secondly, WP Hot Deck and Proximity Approach did not significantly differ in APE (p > 

0.05), but yielded a significantly larger APE than diary based approaches (p < 0.05) using 

all sleep variables with all numbers of days available. Lastly, APE did not significantly 

differ between diary-based approaches. Figure 6-1 shows the APE for each approach as 

across all days of available data per participant; Figures showing the APE for all sleep 

variables within individual amounts of data available per participant can be found as 

appendix 6.1. 
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Figure 6-1 Line graphs depicting the mean absolute percentage error (APE) of imputed 

values, obtained using the five outlined imputation approaches, for A TST, B TASO, and 

C TAW.  

6.2.5.2. Limits of Agreement  

Limits of Agreement (LoA) were consistently and considerably narrower for the two 

diary-based imputation approaches. Of the diary approaches, limits were equidistant from 

0 for the Diary ± individual bias approach, but not for the Diary Only approach. Figure 

6-2 displays Bland-Altman plots for imputed vs. actual TST values, when 13 days of data 

were available per participant. Replicated figures for other sleep variables with 13 days 

of data available, as well as all sleep variables with 10 days of data available, can be found 

as appendix 6.2. 
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Figure 6-2. Bland-Altman Plots displaying the agreement between actigraphy-derived 

Total Sleep Time (TST) values, and values derived from the five considered imputation 

approaches (with 13 days available per participant): A Diary ± Individual Bias, B Diary 

Only, C Proximity Imputation, D WP Hot Deck, and E BP Hot Deck. Blue dashed line 

represent the mean for TST (imputed) minus TST (actigraphy-derived). Red dashed lines 

represent 95% Confidence Limits. Black dotted lines represent the 95% bootstrap 

confidence intervals for these values.  
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6.2.5.3. Group Level Bias 

For all levels of days of data available per participant, the Diary Only approach was the 

only approach with a mean TST significantly different to actigraphy-derived TST, 

overestimating TST by 29.76 to 31.84 minutes (p < 0.001). The only other approach 

which resulted in a significant group-level difference from actigraphy-derived values was 

the BP Hot Deck approach when 12 days of data per participant were available, for which 

it underestimated TASO by 19.31 minutes (p = 0.01). Table 6-2 provides the mean values 

for actigraphy-derived and imputed sleep variables, assessments of bias, and limits of 

agreement, for analysis with 13 days of data available per participant; replicated table 

with 10 days of data available per participant can be found as appendix 6.3. 

6.2.5.4. Discussion 

This section outlined analyses performed to uncover an optimal simple imputation 

approach for imputing missing actigraphy-derived sleep variable data. I assessed a 

method which used values from day/s immediately before and/ or following the missing 

day (Proximity Approach), and two hot-deck approaches, based on previous use in studies 

within the current scientific literature. I also assessed two approaches which utilised 

concurrent sleep diary derived data; direct diary imputation (Diary Only) and the use of 

diary values factoring in one’s tendencies to over or underestimate sleep variable values 

when compared to actigraphy (Diary ± individual bias). 

Both the diary approaches demonstrated much greater agreement with all actigraphy-

derived sleep variable values than the other approaches, as outlined both by lower 

absolute percentage error (APE) values, and narrower limits of agreement. Agreement 

between both diary-based approaches remained indistinguishable throughout the range of 

days available per participant assessed. However, when assessing bias, I found a 

consistent tendency for the Diary Only approach to overestimate TST by ~30min. 

Comparatively, the Diary ± Individual Bias approach did not yield any group-level bias. 

Hence, the Diary ± Individual Bias approach presents as the superior approach for simple 

imputation of actigraphy derived TST, while remaining equivalent to a diary-only 

approach for TASO and TAW. Due to this, the Diary ± Individual Bias was chosen as the 

simple imputation approach for the study outlined in Chapter 7.
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Table 6-2  Mean values for actigraphy-derived and imputed sleep variables, assessments of bias, and limits of agreement, for analysis with 13 days of 

data available per participant. 

Method TST (± SE) Overall Bias (± SE) t (p) Cohen's d Lower LoA Upper LoA 

Total Sleep Time (TST) 

Readiband data 435 ± 9 min   

Diary ± Bias 435 ± 9 min 0 0 (1.00) 0 -1 hr 33 min 1 hr 33 min 

Diary  465 ± 9 min 30 ± 7 min 4.19 (<0.001)*** 0.84 -1 hr 8 min 2 hr 8 min 

Proximity 433 ± 9 min -2 ± 7 min -0.28 (0.99) -0.06 -2 hr 55 min 2 hr 51 min 

WP Hot-Deck 430 ± 9 min -5 ± 7 min -0.70 (0.89) -0.14 -2 hr 56 min 2 hr 46 min 

BP Hot-Deck 436 ± 9 min 1 ± 7 min 0.11 (1.00) 0.02 -3 hr 16 min 3 hr 18 min 

Time at Sleep Onset (TASO) 

Readiband data 25:31 ± 18min   

Diary ± Bias 25:31 ± 18min 0 0 (1.00) 0 -54 min 54 min 

Diary  25:24 ± 18min -7 ± 8 min -0.82 (0.83) -0.12 -59 min 45 min 

Proximity 25:33 ± 18min 2 ± 8 min 0.25 (0.99) 0.04 -2 hr 15 min 2 hr 19 min 

WP Hot-Deck 25:31 ± 18min 1 ± 8 min 0.07 (1.00) 0.01 -3 hr 7 min 3 hr 8 min 

BP Hot-Deck 25:34 ± 18min 3 ± 8 min 0.35 (0.98) 0.05 -4 hr 42 min 4 hr 48 min 

Time at Wake (TAW) 

Readiband data 33:13 ± 15min   

Diary ± Bias 33:13 ± 15min 0 0 (1.00) 0 -48 min 48 min 

Diary  33:10 ± 15min -4 ± 7 min -0.50 (0.95) -0.06 -52 min 45 min 

Proximity 33:13 ± 15min -1 ± 7 min -0.08 (1.00) -0.01 -2 hr 41 min 2 hr 40 min 

WP Hot-Deck 33:07 ± 15min -6 ± 7 min -0.81 (0.84) -0.10 -3 hr 18 min 3 hr 6 min 

BP Hot-Deck 33:13 ± 15min 0 ± 7 min 0.03 (1.00) 0 -3 hr 22 min 3 hr 22 min 
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An interesting point to note is that while the Dairy Only approach overestimated 

actigraphy-derived TST by ~30min, which is consistent with previous literature from 

other samples, there were large individual differences in TST over/under estimation. This 

is demonstrated in Figure 6-3, and again is consistent with previous literature in other 

samples (i.e., breast cancer survivors; Moore et al., 2015), highlighting the utility of 

considering bias within participant. 

 

Figure 6-3. Boxplots showing individual tendencies to over/ underestimate total sleep 

time (TST), in comparison to actigraphy-derived values. Each box represents an 

individual. Values below the dotted horizontal line resemble a tendency to overestimate 

TST. * indicate outliers as determined by Tukey’s method (Tukey, 1977). 

Obtaining a simple imputation approach with strong agreement does not entirely render 

the approach faultless. It is noted that simple imputation reduce variance estimates as they 

do not factor in any uncertainty into the estimation of missing values (Sainani, 2015); this 

is an accepted limitation of my approach. Secondly, if data is not missing-completely-at-

random (MCAR), simple imputation methods can induce bias. I do not identify any reason 

for actigraphy-derived sleep data to be missing which is not detectable from other data 

collected (i.e., not-missing-at-random, or NMAR). A Little’s MCAR test (Little, 1988) 

was used to determine that the actigraphy-derived sleep data within Chapter 7 could be 

considered MCAR, and as such, my diary ± individual bias approach was used to impute 

such data. 



† I note that MEMs can also provide enhanced power when compared to other methods 

requiring aggregation; Aarts et al., 2014 
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6.3. A Description and Discussion of Mixed Effect Models 

Chapter 7 includes the analysis of multilevel data; that is, rows of data which are likely 

to be correlated by a factor not considered as an independent variable (or fixed effects). 

Multilevel data is extremely common in cognitive testing, which typically involve taking 

many (>50) trials per given test session from many participants, who are further grouped 

(intervention vs. control for example). In this instance, trials taken from a certain 

individual are correlated to other trials from the same individual. Extending the cognitive 

testing example, often participants will be required to respond to a set of n items (i.e., one 

of ten possible stimuli), with multiple exposures of each item per test session; multiple 

trials with the same item are also likely to be correlated. Similar issues of dependence are 

extremely common in longitudinal research, with multiple measurements of a participant 

across a period of time. In these scenarios, performing subsequent statistical analysis 

which does not consider the dependence attributable to multiple trials from either the 

same participant/ item is sometimes called psuedoreplication, and can result in inflation 

of Type I error rate (Judd et al., 2009; Judd et al., 2012). 

An increasingly popular way of dealing with multilevel data is through use of mixed-

effect models (MEMs). MEMs are regression models built using all available rows of 

data. Hence, there is no need for aggregation† (i.e., mean response across a test session 

for each participant), even when data possesses correlation between rows not attributable 

to fixed effects (independent variables). This is facilitated by the inclusion of correlating 

factors as random effects within the created model. Essentially, random effects allow for 

the explicit modelling of variance components, including these otherwise problematic 

dependencies. Random effects can be included as random intercepts, which allow the 

intercept (zero-point) of a created model to vary as a function of the random effect. For 

example, say a model is to be built to predict response time within a population at two 

time-points; once when rested, and once when sleep deprived. If participant is included 

as a random intercept, the model allows the response speed to vary between participants, 

however this variance will be irrespective of the time-point. Random effects can also be 

included as random slopes, which allow magnitude of one or more fixed effects (or even 

their interaction) to vary as a function of the random effect. Following the earlier example, 

the inclusion of a time-point by participant random slope allows the effect of time-point 

to vary between participants. A thorough description of MEMs are beyond the scope of 

this thesis, however the reader is guided to descriptions by Brown (2021). MEMs with a 
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continuous outcome variable are called linear mixed models, while MEMs with a 

categorical outcome variable are called generalised linear mixed models. 

Regarding the use of MEMs, the fields of experimental psychology and ecology are 

trailblazers both for the use, and improvement of use, of MEMs (i.e., Baayen et al. (2008); 

Barr et al. (2013); Bolker et al. (2009); Brehm and Alday (2022); Jaeger (2008); 

Matuschek et al. (2017); Meteyard and Davies (2020)). However, MEMs have begun to 

feature very prominently both in sleep science and sport science journals within the past 

decade (i.e., Basner et al., 2017; Dunican, Higgins, et al., 2018; Dunican et al., 2019; Flaa 

et al., 2021; Honn & Van Dongen, 2023; Knufinke et al., 2018; Lastella et al., 2015; 

Rigney et al., 2015; Sargent et al., 2014; Smith et al., 2021; Smithies, Eastwood, et al., 

2021 as a few of many examples). Unfortunately however, many of these articles suffer 

from the same flaws as in many psychology papers as outlined by Brehm and Alday 

(2022) and Meteyard and Davies (2020); namely, a severe lack of information regarding 

fixed and random effect selection and structure, and insufficient information regarding 

contrast coding (the numerical coding of categorical fixed effects). In particular, many 

studies report using intercept-only models without justification, which can severely 

inflate risk of Type I error when not justified by the data (Barr et al., 2013; Judd et al., 

2009; Judd et al., 2012; Matuschek et al., 2017). To avoid these concerns, I have provided 

a brief summary and justification of the modelling choices made regarding my MEM use 

in Chapter 7: 

Fixed Effect Selection: Models included fixed effects that were directly relevant to the 

specific hypothesis being tested, as well as all possible interactions (i.e., full factorial). I 

used treatment coding for all categorical fixed effects. Treatment coding refers to the 

coding of the two-levels of a dichotomous variable as 0 and 1 respectively (Brehm & 

Alday, 2022). Treatment coding was considered the intuitive option as there are sensible 

baseline levels within each fixed effect considered.  

Random Effect Selection (Including Structure Selection): Random effect structure 

was selected using a data driven approach outlined by Matuschek et al. (2017) for each 

model created. This approach begun by building a MEM with a maximal random effect 

structure. Following this, a model was created simplifying the random effect structure by 

the smallest possible amount. These two models were compared using a likelihood ratio 

test (LRT; goodness-of-fit measure). If αLRT > 0.2, a new model is made, which further 

simplified the random effect structure by the smallest possible amount; this model was 
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subsequently compared to the previous model created. This process was continued until 

a model is created for which αLRT ≤ 0.2. At that point, the model with the simplest random 

effect structure and for which αLRT > 0.2 when compared to the model it was simplified 

from, was selected. Our procedure used here differed from that outlined by Matuschek et 

al. (2017) only when the model to be selected was singular (i.e., overfitted; as detected 

by using the default convergence control settings in the lme4 package in R (Bates et al., 

2015). Singular models were not interpreted as they can produce conservative fixed effect 

estimates and can result in inappropriate/ inaccurate results from inferential analysis 

procedures (Bates et al., 2015). Hence if a selected model was singular (/overfitted), then 

the next most complex model which was not singular was selected, and if all models prior 

were singular, random effect simplification continued until the next most complex model 

that was not singular was identified, and this model was subsequently selected.  

Assumption Checking: Assumptions for linear mixed models include the normality of 

conditional residuals (i.e., differences between observed and fitted values should follow 

a normal distribution) and of random effects, constant variance (homoscedasticity), 

influential observations (/outliers), multicollinearity (I note that multicollinearity was not 

an issue for any MEM within Chapter 7 due to no possibility of fixed effect correlation), 

linearity of simple/ main effects, as well as sensibility of overall model fit. Once a model 

was selected (using the abovementioned procedures), these assumptions were visually 

examined using the model_check() function within the performance package (0.10.4; 

Lüdecke et al., 2021). Assumptions for binomial generalised linear mixed models are 

checked additionally using the simulation-based approach from the DHARMa package 

(0.4.6; Hartig, 2022) and include sensibility of overall model fit, the uniformity of scaled 

conditional residuals (i.e., differences between scaled observed and fitted values should 

follow a uniform distribution), normality of random effects, constant variance 

(homoscedasticity), influential observations (/outliers), and multicollinearity. The outputs 

from these packages (and hence, the assumption checking process) for Psychomotor 

Vigilance Task (PVT) Response Speed, Lapse likelihood, and raw reaction time, within 

the study described in Chapter 7, are provided as an example in appendix 6.4. 

Transformations performed to satisfy the assumptions listed above are specified in the 

results section of Chapter 7 where applicable. 

Degrees of Freedom Estimation & Significance Testing: The calculation of p-values 

can be performed in multiple ways within linear mixed models. Luke (2017) 

demonstrated that the use of Satterthwaite or Kenward-Roger approximations for degrees 
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of freedom produced the most robust significance tests, while other approaches can be 

anticonservative. Hence, I used the Satterthwaite approximation of degrees of freedom.  

Degrees of Freedom cannot be estimated using these methods in generalised linear mixed 

models, and as such, Wald tests are used on z-scores produced within the model to 

determine the significance of fixed effects included (Wald, 1943).  

Model Reporting: The reporting of model selection steps and details of the final model 

selected was undertaken using a table format provided by a best practice guide (Meteyard 

& Davies, 2020). These are provided for each model created as appendix 6.5.  
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Chapter 7. Don't lose sleep over esports: exploring how 

total sleep deprivation affects the cognitive and in-game 

performance of rocket league players  

 
This chapter is currently under review for publication in a peer-review journal:  

 

UNDER REVIEW: Smithies, T. D., Toth, A. J., Campbell, M. J. (2023).  Don't lose 

sleep over esports: exploring how total sleep deprivation effects the cognitive and in-

game performance of rocket league players. 

 

 

 

 

Changes to the version submitted for publication for the purposes of this thesis are 

outlined below: 

• Change in referencing style (article version is in numbered format). 

• References to supplementary files are changed to the appropriate location within 

the appendix. 

• Words emphasised using quotation marks were changed to be emphasised using 

italics, in line with the thesis format.  

• The words Figure and Table in in-text references to figures was capitalised. 

Furthermore, figure/ table numbering convention was changed in line with the 

thesis format.  

• References to previous chapters, instead of supplementary files, for information 

presented within previous chapters. 

• Minor amendments have been made based on examiner correction suggestions. 

•  
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7.1. Abstract  

Study Objectives: It is presumed by many that acute sleep loss results in degraded in-game 

esports (competitive, organised video game play) performance. However, this has not been 

experimentally investigated to date. The objective of the current experiment was to elucidate 

whether ~29hrs of total sleep deprivation impacts in-game performance for the popular esport 

Rocket League. 

Methods: Twenty skill-matched pairs (N = 40 total) were recruited. Within each pair, one 

participant was assigned to an intervention group (TSD), while the other was assigned to a 

control group (CON). Two test sessions occurred; one while both participants were rested, and 

the other while the CON participant was rested, but the TSD participant was sleep deprived.  

Results: Following total sleep deprivation, TSD participants reported higher Karolinska 

Sleepiness Scale-measured subjective sleepiness, and lower subjective alertness and 

motivation, as well as worsened PVT response speed (~50msec) and ~5 times greater PVT 

lapse incidence, and worsened response speed on a two-choice categorisation task (~40msec) 

(p < 0.05 for all). However, overall in-game Rocket League performance (goal differential or 

‘GD’) did not worsen due to total sleep deprivation (∆GD = 0.23±0.34, p = 0.50). Exploratory 

analyses on performance indicators suggest a potential shift toward a simpler and safer strategy 

following sleep deprivation.  

Conclusions: Following a bout of ~29hrs total sleep deprivation, and in spite of increased 

subjective sleepiness, decreased subjective alertness and motivation, and decreased 

performance on the PVT and single task component of the category switch task, overall in-

game Rocket League performance remained unaffected. This presents as a promising finding 

given high potential for acute pre-competition sleep disturbance in esports, though habitual 

sleep remains as a concern for esport athletes.  

Keywords: esports, performance, sleep deprivation, cognitive, task-switching, PVT, Rocket 

League 

Statement of Significance: Esports are quite comfortably the fastest growing competitive 

activity worldwide. The work presented is the first experimental study exploring how a bout of 

sleep loss impacts in-game performance in any esport. We found ~29hrs acute total sleep 

deprivation to have no impact on in-game outcome.  This presents as a positive finding for 
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esport athletes and coaches alike, but certainly does not absolve sleep from being an impactful 

human factor within esports. Future studies should explore other esports with characteristics 

(i.e., longer bouts of sustained attention, such as Multiplayer Online Battle Arena or MOBA 

esports) purportedly sensitive to sleep loss, to see if the impact of sleep loss on esports 

performance is specific or agnostic to esport genre. 
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7.2. Introduction: 

Esports are by far the fastest growing competitive and high-performance activity 

worldwide. Defined as the competitive play of video games through the medium of 

cyberspace (Campbell et al., 2018), esports are a key part of the gaming industry, which 

has a projected market value of €375billion in 2023 (Statista, 2023). The value of esports 

as an industry can be largely attributed to the size of its audience and public engagement. 

With viewership estimates exceeding one billion individuals in 2020 (Ahn et al., 2020) 

(and growing yearly), esports is and continues to be an enticing arena for investment. As 

a result, companies such as Xfinity, Kraft Group, PepsiCo, FTX, Red Bull, Coca-Cola, 

BMW, Nike, Asos, Ralph Lauren, and DC Comics (to name a few), over 319 traditional 

sporting teams (Code Red Esports, 2017), as well as even government organisations such 

as the U.S. Army (Nicholson, 2021) and Air Force, are either heavily invested in one or 

more esport teams, or own an esport team themselves. In response to this prolific interest 

in esports, there is an ever-increasing interest in understanding the human factors which 

influence esport competition performance in order to maximise the success of players.  

One frequently highlighted human factor is sleep, or more specifically, the disturbance/ 

loss of sleep experienced by players. Previously published literature has cited sleep loss 

in esports as a cause for concern specifically due to potential adverse impact on in-game 

performance (Bonnar, Castine, et al., 2019; Bonnar, Lee, et al., 2019; Bonnar et al., 2022; 

Kemp et al., 2021; S. Lee et al., 2021; Sanz-Milone et al., 2021), a sentiment shared with 

some esport athletes themselves (Baumann et al., 2022; Rudolf et al., 2020). Habitually, 

on average, professional esport athletes obtain a similar amount of sleep to others in their 

demographic (mid-late teenagers/ young adults, mostly male) (Bonnar et al., 2022; 

Gomes et al., 2021; S. Lee et al., 2021; Moen et al., 2022). However, esport athletes are 

characterised by incredibly late sleep onset (01:30 – 05:00) and wake (09:00 – 12:00) 

times on average, though large cultural/ regional group level differences have been noted 

(S. Lee et al., 2021). Sleep efficiency has also been cited as a concern, with a large 

longitudinal study of 1,243 nights of habitual esport player sleep data reporting a mean 

sleep efficiency of only 67.7% (Moen et al., 2022). Additional concern regarding the 

habitual sleep of esport players is warranted, given that multiple studies report mean 

insomnia severity index values at or beyond the cut-off for insomnia (Bonnar et al., 2022; 

S. Lee et al., 2021) and mean Pittsburgh Sleep Quality Index (PSQI) values well beyond 

the cut-off for poor sleep quality in this population (Gomes et al., 2021; Sanz-Milone et 
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al., 2021), somewhat mirroring the poor PSQI assessed sleep quality prevalent within 

traditional sport athletes (Doherty et al., 2021).  

Furthermore, while elite esport athletes share many of the well-cited risk factors of sub-

optimal sleep of traditional-sport athletes (i.e., pre-competition arousal/ anxiety, post-

competition arousal, caffeine use, travel/ jet-lag), there are further risk factors uniquely 

associated with esports. Firstly, as esports are played through blue-light emitting 

computer monitors, there is a propensity for evening or night-time play leading to 

melatonin suppression, which can increase in sleep latency and reduce in sleep quality/ 

quantity (Green et al., 2017; Schöllhorn et al., 2023). Secondly, video games played as 

esports are cognitively/ physiologically arousing by design (i.e., high-intensity gaming), 

and as such, evening or night competition can reduce sleep quality and quantity through 

heightened arousal (Higuchi et al., 2005; Roberts, Teo, & Warmington, 2019). Such risk-

factors have already been identified as potential mechanisms underlying associations 

between various sleep problems (poorer sleep quality, lower total sleep time [TST], 

increased prevalence of insomnia) and gaming frequency/duration (Kemp et al., 2021). 

Tying these risk factors together is a culture among professional esport athletes which 

promotes (and seemingly necessitates) training and playing late at night and into the early 

hours of the morning (Bonnar, Lee, et al., 2019; Lee et al., 2020). Overall, despite mean 

TSTs that are generally comparable to their peers, esport athletes are exposed to a cocktail 

of factors which together appear particularly conducive to bouts of acute sleep loss. 

As mentioned, a common reason given for why sleep loss should be a major concern for 

esport athletes is that it can lead to in-game performance decrements. In contrast to many 

traditional sports, esports performance is predicated largely on cognitive abilities rather 

than physical abilities, leading some researchers to refer to esport athletes as cognitive 

athletes (Campbell et al., 2018). Though specific cognitive demands differ between 

different esports (Dobrowolski et al., 2015; Toth, Conroy, et al., 2021), most esport titles 

(especially those considered action video games) require rapid perception, processing and 

integration of multisensory stimuli originating from various sources (taxing visuospatial 

working memory systems), alongside fast and accurate decision making and responses 

through a peripheral device (keyboard/ mouse/ controller). Convincing evidence can be 

found for the robust cognitive demands of esports by looking at the now large body of 

quasi-experimental and intervention studies demonstrating how exposure to video games 

commonly played as esports improve aspects of cognition, even when tested outside of 

the specific game’s context (see Bediou et al., 2018; Bediou et al., 2023; Toth et al., 2020 
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for relevant reviews/ meta-analyses). These improvements remain present even when 

disentangled from general improvements in motor execution (Bediou et al., 2023). Robust 

evidence is present for such video games improving attentional capacities (particularly 

visual attention), information processing speed and accuracy, and cognitive flexibility (in 

particular, task-switching), speaking to the importance of such elements for gameplay 

success.  

Simultaneously, it is understood that acute sleep loss (i.e., total sleep deprivation/ sleep 

restriction) degrades performance in these same aspects of cognition (Lim & Dinges, 

2010; Lowe et al., 2017). Though effects tend to be larger and more robust for simple 

(i.e., Psychomotor Vigilance Task or PVT) rather than complex attentional tasks 

(Glenville et al., 1978; Lim & Dinges, 2010; Pilcher & Huffcutt, 1996; Smithies, Toth, et 

al., 2021), sleep loss protocols have found response times and accuracy to worsen for 

tasks taxing visual attention, information processing, working memory, decision making, 

and executive functioning. A specific aspect of executive functioning, cognitive 

flexibility, has been highlighted as a domain particularly susceptible to sleep loss 

(Harrison & Horne, 2000; Honn et al., 2019; Whitney et al., 2019). Given that task-

switching ability (a primary component of cognitive flexibility (see Ionescu, 2012; Uddin, 

2021) appears integral to esports performance, the degradation of task-switching 

performance through sleep loss has been previously highlighted as an avenue for sleep 

loss to impact esports performance (Toth et al., 2020).  

Despite this logical link between sleep, cognition, and esports performance, there has 

been no formal investigation into the effects of experimentally induced sleep loss on 

esports performance. Moen et al. (2022) investigated associations between habitual sleep 

and in-game performance for CS:GO (a popular first-person shooter esport) as a 

secondary analysis, finding no effect of TST on performance; however this approach was 

uncontrolled and only based on habitual sleep, and hence was unlikely to capture any 

subtle effects of TST on in-game performance, should they have been present. A 

controlled, experimental approach appears warranted to elucidate what (if any) 

observable effect acute sleep loss may have on the cognitive and in-game performance of 

esport players. Implications of such an experiment may be large for esport athletes and 

organisations alike, who have great desire to optimise every human factor which may 

impact their in-game performance.  
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The purpose of the current study is to explore how a bout of acute sleep deprivation (~29 

hours awake) affects the cognitive and in-game performance of esport players in the 

esport Rocket League. Rocket League is a popular vehicular soccer video game, which 

averages ~90 million active players per month (Active Player, 2023), and as an esport, 

ranks 10th for most prize money earnt (Esports Earnings, 2023b). The weight of evidence 

linking sleep loss to decreased cognitive performance, combined with the substantial 

cognitive demands of esports, leads us to hypothesise that sleep deprivation will worsen 

both cognitive (specifically, vigilance and task-switching performance) and in-game 

performance. We also aim to explore if (and how) certain established in-game Rocket 

League performance indicators are affected by sleep deprivation.
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7.3. Methods: 

All procedures and data collection were approved by the Education and Health Sciences 

Research Ethics Committee (2021_06_13_EHS) and conducted in accordance with The 

Declaration of Helsinki.  

7.3.1. Participants 

7.3.1.1. Sample  

An a priori power analysis was conducted, based on the predicted model structure for the 

primary analysis exploring the effect of total sleep deprivation on our overall in-game 

outcome measure, goal difference (GD), and following simulation processes outlined by 

DeBruine and Barr (2021). The details of this power analysis and R script can be found 

as appendix 7.1, however in short, we used an estimated effect size equivalent to the 

average effect size from all cognitive domains within a prior meta-analysis on sleep loss 

and cognitive performance (Lim & Dinges, 2010), combined with estimated variance 

components obtained through analysis of large databases of Rocket League matches, and 

a predicted level of warranted random effect complexity (correlated random intercept and 

slope). Using an alpha of 0.05, this power analysis suggested that 19 player pairs were 

required to achieve a power of 0.8. Using this (and adding one for the sake of evenness 

in counterbalancing), we sought to recruit 40 participants within the current study, 

allowing for 20 pairs.  

46 young (18-35 years) adults provided written informed consent to participate in study. 

However, due to protocol non-adherence and participant drop-outs, we obtained a final 

sample of 40 (19.88±2.07 years, 1 female) participants (20 pairs). Initially, we sought for 

participants to fulfil the criteria of a “normal healthy sleeper” according to the “Revised 

Research Diagnostic Criteria for Defining Normal Sleeping Controls” (RRDC)  (Beattie 

et al., 2015), using answers obtained through an eligibility questionnaire. However due 

to extreme difficulty recruiting participants who were Rocket League players and also 

fulfilled this criteria, this was relaxed such that participants were eligible if they (a) 

habitually slept for six or more hours per night, (b) had no history of diagnosed sleep 

disorders and (c) were not alcohol dependant, nor were habitual users of other recreational 

drugs (besides tobacco). A summary of the included population with reference to the 

RRDC criteria can be found as Table 7.1. Of particular note, one included participant self-

reported a seemingly inverted sleep-wake pattern (06:00 bed time, 17:00 rise time).  
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Table 7-1. Summary of included participants with reference to the Revised Research Diagnostic Criteria for Defining Normal Sleeping Controls (Beattie 

et al., 2015). 

Component Aspect How Answered Criteria/Cutoff Mean(±SD)/ Median 
N above/ below 
threshold Range 

Sleep 

quality 
Sleep duration PSQI - Question 4 ≥ 6hrs 7.53±1.17 hrs 0 6 - 11 hrs 

Time in bed PSQI - Question 1 and 3 ≤ 9hrs 8.64±1.25 hrs 11 6.5 - 11 hrs 

Sleep continuity PSQI - Component 4 SE ≥ 85% 87.62±9.98 % 14 65 - 100 % 

 PSQI - Question 2 SL ≤ 30min 23.44±14.85 mins 8 5 - 60 mins 

 PSQI - Derived from Questions 1, 2, and 4 
WASO & 
EMA ≤ 30min 46.81±52.09 mins 18 0 - 172.5 mins 

Subjective sleep 

impression PSQI - Component 1 score ≤ 2 1 (median) 0 0 - 2 

Associated daytime 
effects PSQI - Component 7 score ≤ 2 1 (median) 1 0 - 3 

Sleep 

timing 
Habitual bed times PSQI - a  22:00 - 01:00 00:57±91 mins 13 23:00 - 06:00 

Habitual rise times PSQI - c 06:00 - 09:00 09:35±114 mins 21 07:00 - 17:00 

Stability of sleep 

timing (bedtime) 

On a normal week, how many days would your (a) bedtime and 

(b) wake time deviate from your average by more than 1hr total ≤ 3 2.38±0.95 5 0 - 4.5 

Stability of sleep 
timing (wake) 

On a normal week, how many days would your (a) bedtime and 
(b) wake time deviate from your average by more than 1hr total ≤ 3 2.23±1.32 7 0 - 5 

Associated daytime 

effects PSQI - component 7 score ≤ 2 1 (median)  1 0 - 3 

 

Diurnal Preference Horne-Östberg Morningness-Eveningness Questionnaire 

Eve ≤ 41 
42 < Int > 58 

Morn ≥ 59 45.58±7.40 NA 29 Intermediate, 11 Evening 

Sleep 
disorders 

Insomnia disorder HSDQ - 1, 7, 10, 12, 13, 14, 15 & 21 ≤ 3.68 2.02±0.63 1 1 - 3.88 

Circadian rhythm sleep 
disorder HSQD - 5, 10, 13, 26, 27, 30 ≤ 3.41 2.11±0.68 2 1 - 4 

Sleep apnea HSDQ 3, 17, 18, 19 ≤ 2.87 1.57±0.43 0 1 - 2.75 

PLMS/RLS HSDQ ≤ 2.70 1.80±0.59 2 1 - 4.2 

Narcolepsy SNS ((6*Q1 + 9*Q2 - 5*Q3 - 11*Q4 - 13*Q5) + 20) ≥ 0 21.63±14.50 2 -3 - 60 

Parasomnia HSDQ - 4, 16, 20, 22, 24, 31 ≤ 2.42 1.21±0.30 0 1 - 2.33 

General 
health Physical health 

Diagnosed with an ongoing physical/neurological 
disorder/problem? No NA 0  

 
Mental health Diagnosed with an ongoing psychological disorder/problem? No NA 0  
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Medication use Current medication use (besides hormonal contraceptives)? No NA 5 

3: antihistamines, 1: asthma 
medication, 1:indigestion medication 

 
Substance abuse: 

>400mg caffiene per 
day 

Do you habitually (i.e. most days) consume more than 400mg 
of caffeine (i.e. >4 coffees or >3 large energy drinks) No NA 1 NA 

 No habitual nicotine or 

recreational drug use 

Do you habitually (i.e. most days) consume tobacco/nicotine or 

any other recreational drugs (other than alcohol)? No NA 4 (all tobacco) NA 

 
no alcohol dependency FAST/ AUDIT 

≥ AUDIT 

SCORE 15 

For those with an AUDIT 

score (N = 11); 8.64±2.11 0 0 - 14 
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Critically, participants were required to be players of the video game Rocket League. 

Participants were required to provide their in-game ranking using the rank tracking 

website https://rocketleague.tracker.network. This website provides a constantly updated 

record of a given player’s in-game rank and matchmaking ranking (MMR). A players 

MMR is measured on a continuous scale and is indicative of expertise within the 1v1 

game mode of Rocket League (Smithies, Campbell, et al., 2021) & Chapter 5. Through 

https://rocketleague.tracker.network, we obtained each participant’s highest and lowest 

1v1 MMR over the most recent three months and calculated the mean of these two values 

to represent the participants current expertise level. Additionally, the rank tracking 

website provides the participants current rank percentile (i.e., the percentile of the current 

playing population in which the participant’s rank resides in). Lastly, we also obtained an 

estimate of the total number of hours that the participant had accumulated playing Rocket 

League. A description of the method used to obtain this estimate is provided as appendix 

7.2.   

Where the MMR of two participants differed by less than 150 (equivalent of 15-21 total 

win vs. loss disparity), they were paired with one another. Paired individuals would 

complete aspects of the study at the same time, and play against one another in Rocket 

League matches during the two test sessions. We note that individuals who habitually use 

tobacco (N = 4) were paired with one another. For each pair, one member was randomly 

selected to partake in the overnight sleep deprivation protocol (TSD), while the other 

individual was assigned as control (CON) (described below), using an automated web-

based randomisation service (Haahr, 2021). 

7.3.2. Materials 

7.3.2.1. Eligibility Questionnaires & Participant Demographics 

The eligibility questionnaire provided to each participant included the Pittsburgh Sleep 

Quality Index (PSQI), Holland Sleep Disorder Questionnaire (HSDQ), Swiss Narcolepsy 

Scale (SNS), Horne-Östberg Morningness Eveningness Questionnaire (MEQ), and the 

Fast Alcohol Screening Test (FAST) & Alcohol Use Disorders Identification Test 

(AUDIT).  

https://rocketleague.tracker.network/
https://rocketleague.tracker.network/
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7.3.2.1.1. Pittsburgh Sleep Quality Index (PSQI):  

The ten-item PSQI is the most commonly used and gold standard self-report measurement 

of sleep quality (Buysse et al., 1989). The PSQI shows strong reliability and validity and 

is appropriate for use in clinical and non-clinical populations (Mollayeva et al., 2016). 

7.3.2.1.2. Holland Sleep Disorder Questionnaire (HSDQ):  

The HSDQ is a 32-item questionnaire designed to screen for multiple sleep disorders as 

defined by the International Classification of Sleep Disorders (ICSD-2, 2005) (Kerkhof 

et al., 2013). We used the HSDQ (cut-off: sensitivity, specificity) to screen for; insomnia 

(2.02: 0.82, 0.51), circadian rhythm sleep disorder (CRSD) (3.41: 0.81, 0.75), sleep 

disordered breathing (2.87: 0.86, 0.81), periodic limb movement disorder (PLMS)/ 

restless leg syndrome (RLS) (2.70: 0.82, 0.77), and parasomnia (2.42: 0.90, 0.90), as per 

Beattie et al. (2015). The HSQD has been found to be one of only two comprehensive 

questionnaires which screens for multiple sleep disorders (Klingman et al., 2017). 

7.3.2.1.3. Swiss Narcolepsy Scale:  

The SNS is a five-item questionnaire designed to screen for narcolepsy (Sturzenegger & 

Bassetti, 2004). The SNS exhibits superior performance (sensitivity = 0.93, specificity = 

0.88) to other self-report screening tools for narcolepsy (Sturzenegger et al., 2018). 

7.3.2.1.4. Horne-Östberg Morningness Eveningness Questionnaire (MEQ): 

The MEQ is a 19-item questionnaire used to assess diurnal preference (Horne & Östberg, 

1976). The MEQ shows agreement with actigraphy-derived measures around sleep timing 

(Thun et al., 2012), and its validity has been demonstrated against many other subjective 

and objective measures of human circadian rhythm (see Panjeh et al. (2021), p. 235, for 

a summary). 

7.3.2.1.5. Fast Alcohol Screening Test (FAST) & Alcohol Use Disorders 

Identification Test (AUDIT):  

The FAST was used to identify participants who may be at risk of alcohol use disorder 

(Hodgson et al., 2002). If participants were FAST positive (total ≥ 3; N = 11), the 

remaining questions of the AUDIT were administered. The AUDIT is the gold-standard 

self-report measure for alcohol use disorder screening (Reinert & Allen, 2007; Saunders 

et al., 1993). We used cut-off values recommended by the World Health Organisation 

(Babor et al., 2001) (0 – 7: Zone I/ low risk, 8 – 15: Zone II/ hazardous drinking, 16 – 19: 

Zone III/ harmful drinking, ≥20: Zone III/ possible dependence). 
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7.3.2.2. Subjective Sleep Measurement 

7.3.2.2.1. Consensus Sleep Diary 

The Consensus Sleep Diary (Core) was used to obtain subjective sleep measures 

throughout the protocol (Carney et al., 2012). The Consensus Sleep Diary was created 

through collaboration of a large number of field experts (Carney et al., 2012), and is the 

research gold-standard for subjective sleep measurement.  

7.3.2.3. Objective Sleep Measurement 

7.3.2.3.1. Actigraphy 

Sleep variables were objectively measured using the ReadibandTM (v5) wrist-worn 

activity monitor (Fatigue Science, Canada). This device uses tri-axial accelerometery 

(sampling frequency = 16Hz) to record wrist acceleration data, which are used to calculate 

sleep and wake events through a proprietary algorithm. The Readiband has demonstrated 

superior performance (most notably, less bias on sleep summary measures and greater 

sleep/ wake specificity) than the research standard Actiwatch 2, both at-home and in lab 

(when compared to the gold-standard polysomnography (PSG)) (Chinoy et al., 2021; 

Chinoy et al., 2022). It  has also been independently found to be suitable when recording 

measures of total sleep time (TST), time at sleep onset (TASO) and time at wake (TAW) 

(Dunican, Murray, et al., 2018). Finally, the Readiband has high (ICC ≥ 0.8) inter-device 

reliability (including ICC = 0.99 for total sleep time; Driller et al. (2016)), and has been 

used in sleep research for a variety of populations, including traditional and esport athletes 

(Bonnar et al., 2022; Dunican et al., 2023; S. Lee et al., 2021; Power et al., 2023; Smithies, 

Eastwood, et al., 2021), medical personnel (James et al., 2019; Min et al., 2023), pilots 

(Rocha & Silva, 2019), and military personnel (Edgar et al., 2023). 

A single trained researcher downloaded and processed the Readiband data. Outcome 

measures considered were TST, TASO, and TAW. Daytime naps were included in TST, 

with naps occurring before 12:00 added to TST for the previous night, and naps occurring 

after 12:00 added to the TST for the upcoming night, as per Smithies, Eastwood, et al. 

(2021).  

7.3.2.4. Subjective Sleepiness, Alertness & Motivation 

To capture subjective sleepiness, alertness, and motivation of participants throughout the 

experimental protocol, participants completed The Karolinska Sleepiness Scale (KSS) as 

well as Alertness & Motivation Visual Analog Scales (VAS). The KSS is a widely used 
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single-item measure of individual subjective sleepiness at a given time-point (i.e., 

situational sleepiness). The KSS is answered on a nine-point Likert scale, with 1 denoting 

extremely alert, and 9 denoting very sleepy, great effort to keep awake, fighting sleep. 

Levels of subjective alertness and motivation were assessed using slider scales, with 

values (between 0 and 100) hidden. The alertness VAS ranged from sleepy (0) to alert 

(100), and the motivation VAS ranges from motivated (0) to unmotivated (100), as per 

Mathew et al. (2021). Motivation VAS scores were subsequently reverse scored for 

analysis, such that higher scores resembled greater motivation.  

7.3.2.5. Cognitive Performance 

Cognitive performance during the experimental protocol was assessed using the 

psychomotor vigilance task (PVT) and Category Switch Task (CST).  

The 10 minute PVT was used to assess each participant’s vigilance and reaction time. 

Participants were required to respond as fast as possible to the appearance of a red 

stopwatch in the centre of their screen by pressing the space bar on their keyboard. The 

inter-stimulus interval was set at random between 2,000-10,000ms for each trial. 

Participants were provided with feedback on their response time following each response, 

as well as their mean response time at the end of the testing session. If a response was 

made without the presence of the red stopwatch, a visual error message was displayed on 

the screen before the next trial commenced. The 10-minute PVT is the gold-standard 

performance test for vigilance, and exhibits stable performance over repeated measures 

testing (Balkin et al., 2004; Basner & Dinges, 2011; Basner et al., 2017). A one-minute 

practice block is undertaken prior to the ten-minute testing block. The test block is 

executed straight after the practice block with no break or indication it has changed, as 

per Thomann et al. (2014). False starts were removed from the data prior to analysis, as 

were trials responded to in ≤100ms (as per Basner and Dinges (2011)). Dependent 

variables considered were response speed (equivalent to 1000 / reaction time(msec), and 

hereafter denoted as RS), and lapses, defined as trials where reaction time ≥ 500ms 

(alternatively, RS ≤ 2), as these two measures have shown to display the best conceptual 

and statistical properties (including robustness to extreme values) and sensitivity to sleep 

loss for the PVT (Basner & Dinges, 2011).  

The CST assesses task-switching ability, a component of executive functioning requiring 

cognitive flexibility. A detailed description of the CST used in this study can be found in 

Chapter 3. In short, participants were required to categorise words that appeared on a 
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screen according to a categorisation rule denoted by a cue. In some test blocks (single 

task), the cue was constant, while in others (mixed task), the cue (and categorisation rule) 

switched between one of two cues at random, and participants had to adapt to the 

corresponding change in categorisation rule. Stimulus-response mapping (SRM) changed 

from the first to second test sessions in a consistent manner between all participants (for 

the living cue but not size cue). We did not consider Switch Cost (SC) or Mixing Cost 

(MC) error rate, as per Chapter 3.  

7.3.2.6. In-Game Rocket League Performance 

The primary aim of the current study was to assess if an acute sleep deprivation 

intervention influenced in-game performance on the esport Rocket League. In Rocket 

League, players use a rocket-powered vehicle to hit a large ball into an opposing goal, 

while simultaneously defending one’s own goal (as per soccer or hockey). Rocket League 

is played competitively in teams of 1, 2, or 3 players; in this study, we solely investigated 

1v1 matches of Rocket League. 

Paired participants played against one another on a local area network (LAN) connection. 

Participants were able to use their own input device for gameplay, however a DualShock 

4 and Xbox Elite Controller (series 2), as well as a gaming mouse, keyboard, and 

headphones were provided if necessary. All input devices were used with a wired 

connection.  

Participants were asked to log into their own Rocket League account on Steam or Epic, 

however were provided an account if they were unable. Participants were free to use 

headphones for game sound and/ or play music through the duration of the Rocket League 

matches. Participants were free to use in-game settings of their choosing (i.e., controller 

settings, camera settings etc.). Once both participants within the pair were ready, they 

were afforded five minutes for a warm-up. Participants were free to warm up however 

they chose (i.e., free-play training, training packs, workshop maps), with the exception of 

playing an online match. Once the five minutes have elapsed, participants joined a LAN 

(local area network) match, which was created by the researcher. Prior to the gameplay 

commencing, participants were (a) asked to save replays of the matches (a feature allowed 

at the end of any match by all users), and (b) asked to perform to the best of their ability 

for the entirety of each match, aiming to score as many goals as possible while 

simultaneously preventing their opponent from scoring, regardless of the match score. 

Participants then played seven consecutive matches against their paired opponent (for one 
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pair on one week, only six matches were played due to a participant needing to leave 

early). Short breaks (< 5 minutes) in between matches were afforded ad libitum.  

Outcome measures were obtained via. use of the ballchasing.com application 

programming interface (API) on saved match replays and processed as outlined by 

Smithies, Campbell, et al. (2021) and in Chapter 5. 

7.3.3. Procedure  

Figure 7-1 provides a visual outline of the study protocol. The study protocol lasted a 

minimum of 15-days per participant pair. On the first day (D1), participants were briefed 

on the study protocol, and provided their actigraphy device and consensus sleep diary. 

Participants determined a target bed (between 22:00 – 01:00+1) and wake time (between 

06:00 – 09:00, to correspond with Beattie et al. (2015)). Participants were asked to adhere 

to their set target bed and wake times (± 1hr), particularly within the three days prior to 

each test session. Participants also agreed upon a target gameplay amount (hours) within 

the following week, of which they were asked to remain within ±20% of (i.e., 80-120% 

of target hrs). Target bed and wake times and target gameplay amount remained 

consistent for individuals, but did not need to be consistent between participants within a 

given pair.  

Participants were asked to synchronise their Readiband with their smartphone device 

upon waking to provide researchers access to their sleep data. Participants were reminded 

via text message to complete their sleep diary and synchronise their Readiband if they 

had not synchronised their Readiband by midday for all days in the protocol.  

 

Figure 7-1. A timeline of the 15-day protocol for all participants within the protocol. The 

icons within this figure depict the following. Wristband = Readiband; book = Consensus 
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Sleep Diary; coffee mug and beer = caffeine and alcohol; clipboard = subjective 

measures. Computer with keyboard = computerised cognitive tests. Computer with 

controller = Rocket League gameplay; bed = sleeping; man running = strenuous activity; 

light and thermometer = light and temperature-controlled environment. TSD = 

participants within the sleep deprivation group; CON = participants within the control 

group. 

 

7.3.3.1. Test Session Protocol 

Following 12:00 on day seven (D7) and up until the upcoming test session (D8), 

participants were asked to refrain from consuming caffeine, alcohol, non-essential 

medication or any other drugs, as well as napping. Participants were also instructed to 

obtain a minimum of six hours of sleep in the upcoming night. On the eighth day of the 

protocol and between the hours of 11:30 to 15:00, participants attended the laboratory for 

test session 1. Sleep diary information were collected from each participant, and a new 

sleep diary was provided. Participants self-reported the amount of Rocket League 

gameplay undertaken in the previous seven days, and indicated their adherence to the 

abovementioned procedures.  

Following this, the participants completed (in order) the PVT, CST, KSS, alertness & 

motivation VAS, and played their set of Rocket League matches against one another. 

Following completion of the Rocket League matches, participants again completed the 

KSS and alertness & motivation VAS. All procedures described were collected using 

gaming computers, comprising of a 27-inch monitor with a 144Hz refresh rate. All 

measures except for those in the Rocket League performance section were taken using 

identical input devices (Logitech Pro mouse, keyboard, and headphones). Following the 

set of Rocket League matches, both participants were asked “on a scale from 0 [not at all] 

to 10 [extremely], how much do you feel like fatigue affected your in-game 

performance?”, and “do you think the other participant had completed the overnight sleep 

deprivation protocol?”. 

Following test session 1; the protocol was repeated, such that participants wore their 

Readiband and completed the sleep diary daily, played the agreed upon amount of Rocket 

League, adhered to the target bed and wake times within three days of the upcoming test 

session, and avoided consuming caffeine or alcohol, taking medication or drugs, or 

napping, within 24hrs of the upcoming test session 2. For 80% of pairs, the second test 
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session was exactly seven days following the test session. However due to participant 

availability, the timespan between tests was 14 days for three pairs, and 37 days for one 

pair. 

7.3.3.2. Total Sleep Deprivation Protocol 

Within each pair, the protocol for the participant assigned to the control condition (CON) 

was exactly as described above. For the participant assigned to the TSD condition, one of 

the two test sessions (and the week prior) was exactly as described, however for the other 

test session, the participant completed the total sleep deprivation protocol prior. The test 

session for which the prior sleep deprivation was administered was counterbalanced (i.e., 

ten participants were sleep deprived prior to first and second test session respectively). 

Participants were (a) aware that they may be asked to complete the total sleep deprivation 

protocol prior to either of the test sessions, (b) unaware if they or their paired opponent 

were in the CON or TSD group, and (c) told at least three days in advance whether they 

were required to complete the total sleep deprivation protocol prior to the upcoming test 

session.  

For the total sleep deprivation protocol, the participant arrived to the laboratory at 21:00 

the night before the test session. The following day, the participant would remain in the 

laboratory until 30 minutes before the start of the test session. Participants were free to 

engage in activities of their choosing, except for strenuous exercise, or playing video 

games using the same input modality (i.e., keyboard or controller) they used to play 

Rocket League with. From 22:00 onwards, participants completed a 5-minute PVT and 

the SynWin multitask (Elsmore, 1994) on the hour each hour. The results of these tests 

are not within the scope of this article. 

The light (~425 lux) and temperature (21±2°c) in the laboratory environment remained 

constant throughout this time and during all laboratory sessions. Each participant was 

supervised throughout the duration of the sleep deprivation protocol to ensure 

wakefulness. Water, fruit, low-sugar snacks, and caffeine-free hot beverages (i.e., 

peppermint tea) were available to participants ad libitum throughout the sleep deprivation 

protocol. Another standardised meal (toast with peanut butter and honey, fruit, and fruit 

juice) was provided at 08:00 the following morning. In the 30 minutes prior to the test 

session, participants left the laboratory, and were supervised on a walk; this was to 

simulate a walk to the laboratory, as would occur if they were the CON participant. This 
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protocol resulted in an average of 28.78±1.22 hours between last wake time and the start 

of Rocket League gameplay. 

7.3.4. Statistical Analysis 

Statistical analyses were performed using R: A language and Environment for Statistical 

Computing (Vienna, Austria) and/ or IBM SPSS Statistics v26 (Armonk, N.Y.) software. 

Alpha was set to p < 0.05 (two-tailed) for all analyses. Variance measures (±) are 

presented as standard error unless explicitly specified.  

7.3.4.1. Participant Pairs & Rank 

Means and standard deviations are provided for participant MMR. The relationship 

between time spent playing Rocket League (hours) and in-game expertise (MMR) was 

assessed through a simple linear regression, which was subsequently used to impute 

missing hours played for individuals from whom we could not obtain a confident 

estimate.  

7.3.4.2. Protocol Adherence 

Means and standard deviations are provided for each individual’s TASO and TAW within 

the three days preceding either test session. Additionally, means and standard deviations 

are provided for TST, both for the night before each test session (TST[1]) and the two 

nights (combined) prior to TST[1] (TST[2-3]), within each group x session combination. 

Independent-sample t-tests and paired-sample t-tests were used to assess by-group and 

by-session group differences, respectively. Nonparametric equivalents (Mann-Whitney U 

and Wilcoxon Signed-Rank Test) were used when values within one or more groups were 

significantly non-normal (Shapiro-Wilk test, p < 0.05).  

Rate of adherence to target Rocket League gameplay was expressed as a percentage, 

Additionally, the mean and standard deviation for the proportion of target gameplay 

achieved was calculated for the entire sample, and for each group x session combination. 

By-group and by-session differences in target RL gameplay achieved were assessed 

identically to that described for TST above.  

7.3.4.3. Cognitive Performance 

Cognitive Performance Measures (PVT & CST) were assessed using Mixed Effect 

Models (MEMs). All MEMs were created using the lme4 package in R (1.1-31; Bates et 
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al. (2015)). Random effect structures were determined using a backward-selection 

approach as outlined by Matuschek et al. (2017) and described in chapter 6.3, deviating 

only to avoid selection of singular models or models which did not converge. If a selected 

model was singular, then the next most complex model which was not singular was 

selected, and if all models prior were singular, random effect simplification continued 

until the next most complex model that was not singular was identified, and this model 

was subsequently selected. Within the selection process, random slopes were considered 

for each fixed effect (and their interaction) that vary within a given random effect (Barr, 

2013). Once the most appropriate random effects structure was identified, mixed-model 

assumptions (see Chapter 6.3) were visually examined using the performance package 

(0.10.4; Lüdecke et al. (2021)), and DHARMa package (0.4.6; Hartig (2022)). For fixed 

effects, degrees of freedom were estimated using the Satterthwaite method to allow for 

significance testing of fixed effects, while the Wald method was used for confidence 

interval estimation. Additionally, Wald tests were used to determine fixed effect 

significance for any MEMs created with categorical outcomes (binomial generalised 

linear mixed effects models; i.e., for PVT lapses). We used treatment coding for all 

categorical fixed effects. Treatment coding refers to the coding of the two-levels of a 

dichotomous variable as 0 and 1 respectively (Brehm & Alday, 2022). Treatment coding 

was considered the intuitive option as there are sensible baseline levels (always coded as 

0) within each fixed effect considered. Details regarding both model selection (including 

specific model selection decisions made) and the details of the final model selected are 

provided within table layouts based on a best practice guideline (Meteyard & Davies, 

2020) and are provided as appendix 6.5.  

For PVT measures, MEMs were created for RS and lapses, respectively. We note a 

deviation from normality observed at low RS values, however given that (a) this is 

representative of an expected phenomenon (lapses), (b) RS is an already transformed 

outcome measure which satisfies MEM assumptions substantially better than raw RT, 

and (c) RS is considered alongside lapses to be the best outcome variable to use for the 

PVT (Basner & Dinges, 2011), RS was retained as the outcome measure within the model 

created. The models created for RS and lapses included the between-participant fixed 

effect group (CON vs. TSD) and the within-participant fixed effect session (baseline vs. 

experimental), as well as their interaction, with participant considered as a random effect.  

For CST, we planned on using RT(msec) as an outcome measure for Single Task, SC and 

MC, however MEM assumptions were not met using this outcome measure. When RTs 
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were converted to RS using the same transformation used for PVT (RS = 1000 / reaction 

time(msec)), MEM assumptions were satisfied. Hence, MEMs were created for Single Task 

RS and error rate, Switch Cost RS, and Mixing Cost RS. For Single Task models, they 

included the between-participant fixed effect group (CON vs. TSD) and the within-

participant fixed effect session (baseline vs. experimental), as well as their interaction, 

while for the SC and MC models, group, session, and trial type (for SC, this was switch 

vs. repeat; for MC, this was repeat vs. single task), as well as their interactions (i.e., full 

factorial), were included as fixed effects. For all of these models, participants, word (i.e., 

the specific word displayed), cue (living or size), and a cue by word interaction, were 

considered as random effects.  

7.3.4.4. Subjective Measures 

By-group and by-session differences in KSS, Alertness VAS and Motivation VAS were 

analysed using independent/ paired sample t-tests or nonparametric equivalents, as per 

protocol adherence measures. We note that data from one pair are missing due to a 

technical error (N pairs = 19). Participant’s self report of how much fatigue affected their 

in-game performance was also analysed in an identical manner.  

7.3.4.5. Rocket League Performance 

The primary aim of the study was to test the null hypothesis that TSD would not affect 

our in-game outcome variable, GD. To test this, we created a MEM with session (baseline 

vs. experimental) as a fixed effect, and pair as a random effect. 

Irrespective of the result of the above analysis, we sought to conduct exploratory analysis 

on whether TSD impacted any performance indicators in Rocket League. We built five 

separate MEMs with identical fixed and random effects to that above, to predict the 

following outcome measures: Shots Taken Difference, Time Spent Goalside of the Ball 

Difference, Saves Made Difference, Time Spent High in the Air Difference, and Demos 

Inflicted Difference. These five PIs were chosen as they were the five PIs shown to predict 

game performance in 1v1 Rocket League when all in-game ranks are considered 

(Smithies, Campbell, et al., 2021), see Chapter 5. All metrics were calculated as the value 

of the TSD participant minus the value of the CON participant within each pair. As this 

analysis is exploratory, we did not conduct any familywise error rate adjustment; 

however, we do not make claims based on the results of these analyses, instead using 
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them as ways to highlight potential effects of TSD on in-game strategy to be explored in 

future research. 
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7.4. Results: 

7.4.1. Participant Pairs & Rank 

The mean MMR for participants in the study was 874.01 (SD = 203.59), corresponding 

to the top 20.62% of the overall playerbase. A simple linear regression was conducted to 

examine the relationship between hours played (from participants where a reliable value 

estimate could be obtained, N = 37) and MMR. This model was significant, F(1,35) = 

93.48, p < 0.001, R2 = 0.73, with hours played explaining 73% of the variance of 

participant 1v1 Rocket League Expertise. The equation for the regression model can be 

found below 

𝑀𝑀𝑅 = 0.08853 × 𝐻𝑜𝑢𝑟𝑠 𝑃𝑙𝑎𝑦𝑒𝑑 + 696.8 

This equation was used to predict missing values for hours played, however for two of 

the three participants it predicted a negative value. Hence for these participants, hours 

played was conservatively estimated as zero. After including these participants, mean 

hours played among the sample was 2014.15hrs (SD = 1881.30hrs), or ~85 days. Figure 

7-2A shows the rank distribution of the participants and their paired opponent, and Figure 

7-2B shows the abovementioned relationship between Hours Played and MMR. 

 

Figure 7-2 A Rank distribution and pairing of included players. Clear diamonds resemble 

CON participants, and red diamonds resemble TSD participants. Pairs are denoted by 

lines joining participants. The x-axis denotes the participants in-game MMR (a proxy for 

expertise) relative to the esports overall player base at the time of recruitment, such that 

lower values resemble a lower-ranked player and vice versa (i.e., 99% denotes a player 
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in the top 1% of players). To better visualize pairs in the top 3% of ranked 1v1 Rocket 

League players, a magnified display is depicted above the main graph. B Relationship 

between estimated total hours of Rocket League played (x-axis) and player expertise (y-

axis). Dashed lines represent 95% CI for line fitted using the linear regression equation. 

For both A and B, colours represent the in-game rank of the participants (in order from 

bottom to top; bronze, silver, gold, platinum, diamond, champion, grand champion, 

supersonic legend).  

 

7.4.2. Protocol Adherence 

7.4.2.1. Subjective & Objective Sleep Data 

For sleep data within 3 nights of each test session, 3.64% of days of actigraphy derived 

sleep data were missing or unusable, while 4.55% of days of Consensus Sleep Diary 

(CSD) data were missing or unusable. A missing value analysis using Little’s MCAR test 

(Little, 1988) was not significant (χ2 = 7.32, p = 0.50), suggesting the data can be treated 

as MCAR and as such, missing actigraphy-derived sleep data were imputed using a 

simple imputation method described in Chapter 6.2.  

Actigraphy-derived TASO and TAW, in comparison to participant-defined target bed and 

wake times, are shown for each participant (and pair) in Figure 7-3. 48.2% of nights 

within three days of a test session had a TASO within one hour of the individuals target 

bedtime (mean difference = 1.09hrs (SD = 1.39)), while 54.84% of TAW values were 

within one hour of the individuals target wake time (mean difference = 0.55hrs (SD = 

1.62). 

Mean TST (including naps) the night before each test session (TST[1], 7-4A), as well as 

the mean TST for two nights prior (TST[2-3], 7-4B), are shown for each condition in 

Figure 7-4. All between- and within-participant comparisons for TST[1] and TST[2,3] 

were not significant (p< 0.05) with the exception of those involving TST[1] values for 

TSD on the experimental session. In other words, for the three nights preceding test 

sessions, the only observable difference in TST was as a direct result of the sleep 

deprivation protocol.  
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Figure 7-3 Mean (±SD) discrepancy between A target bedtime and TASO, and B target 

wake-time and TAW, for each participant within each pair. Participants in CON are 

denoted by clear diamonds, while TSD participants are denoted by the red diamonds. The 

green band denotes TASO or TAW within 1hr of the target bed/ wake time, while the red 

area denotes TASO or TAW outside of that range. 

 

 

Figure 7-4 Box and whisker (min → max) plots showing the group mean TSTs for CON 

and TSD A the night before test sessions, and B the mean of the two nights prior to that 

shown in A.  
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7.4.2.2. Caffeine, Alcohol, Napping  

No participants reported caffeine or alcohol use within 24-hours of any test session. One 

participant (CON) reported medication use within 24-hours of test sessions; a daily 

asthma medication on the morning of both test sessions, and one dosage of cough 

medication the night before the experimental test session. Two participants (one CON, 

one TSD) napped (45-60mins) within 24-hours of the baseline test session, as both self-

reported and corroborated through actigraphy.  

7.4.2.3. Weekly Rocket League Play 

Participants remained within ±20% of their target gameplay prior to testing for 56.25% 

of test sessions (M = 89.44% of target hours, SD = 38.02%). No significant differences 

were found between % target gameplay achieved prior to baseline and experimental test 

sessions for either group (p< 0.05). 

7.4.3. Cognitive Performance 

Model selection process and details of the final MEMs (as per Meteyard and Davies 

(2020)) can be found as appendix 6.5. 

7.4.3.1. Psychomotor Vigilance Task  

Distributions of PVT Response time across groups and sessions are shown in Figure 7-5. 

For PVT response time, neither group nor session alone significantly contributed to the 

model (p > .05), however a significant condition by session interaction was present (b = 

-0.72±0.11, 95% CI [-0.94, -0.51], t(1, 37.38) = -6.58, p < .001), such that being in the 

TSD group on the experimental day resulted in a mean reaction time worsening of 

48.61msec. 

For PVT lapses, neither group nor session alone significantly contributed to the model (p 

> 0.05), however a significant condition by session interaction was present (b = 

2.38±0.40, 95%CI [1.56, 3.16], z = 5.91, p < 0.001), such that being in the TSD group on 

the experimental day resulted in 4.91 times more lapses occurring.  
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Figure 7-5 Frequency distribution of RS (1000/RT(msec)) for participants in the A CON 

group and B TSD group. I direct the reader to B, and note both a leftward shift and 

leftward skew of the response distribution in the experimental test session for the TSD 

participants, consistent with previous literature (i.e., Figure 4, Grant et al. (2017)) and 

demonstrative of both the broadband decrease in RS and increase in lapses observed 

(trials to the left of the dotted line).  

 

7.4.3.2. Category Switch Task  

For performance on the Single Task component of the CST, both RT (msec) and error 

rate were examined. RT was transformed to RS (1000/ RT(msec), as per PVT analysis) to 

fulfil MEM assumptions. For RS, neither group nor session alone significantly 

contributed to the model (p > .05), however a significant condition by session interaction 

was present (b = 0.10±0.40, 95%CI [-0.19, -0.01], t(1, 37.90) = -2.27, p = .029), such that 

being in the TSD group on the experimental day resulted in a 42.19msec increase in mean 

reaction time. No fixed effect, nor interaction were significant within the model predicting 

errors in the Single Task component of the CST (p > 0.05). 

For SC RS, only trial type significantly contributed to the model (b = 0.24±0.40, 95%CI 

[-0.30, -0.19], t(1, 37.83) = -8.40, p < 0.001), corresponding to a switch cost of 

102.19msec. No other main effects or interactions were significant (p < 0.05). For MC 

RS, there was a simple main effect for trial type (b = -0.27±0.05, 95% CI [-0.36, -0.18], 

t(1, 52.78) = -5.79, p < 0.001), corresponding to a mixing cost of 83.45msec. There was 

also a significant condition by session interaction present (b = -0.10±0.04, 95% CI [-0.19, 

-0.01], t(1, 37.88) = -2.27, p = 0.029), such that according to the model, being in the TSD 

group on the experimental day resulted in a 42.21 msec increase in mean reaction time 
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for single task trials (identical to that in the single task only model). No other main effects 

or interactions were significant (p < 0.05). 

7.4.4. Subjective Sleepiness, Alertness and Motivation 

KSS, alertness VAS and motivation VAS scores for CON and TSD within both the 

baseline and experimental test sessions are shown in Figure 7-6. 

KSS scores for CON participants did not differ between baseline (3.53±0.37) and 

experimental (3.79±0.33) sessions (p = 0.367). Additionally, KSS scores obtained in the 

baseline test session did not differ between CON and TSD participants (p = 0.191). 

However, significant differences were found between the KSS scores of TSD participants 

at baseline (2.84±0.24) vs. experimental (6.47±0.49) sessions (Z = -3.74, p < 0.001) and 

between CON and TSD participants on the experimental session (Z = -3.66, p < 0.001).   

Alertness VAS scores for CON participants did not change between baseline (79.26 ± 

3.32) and experimental (73.53±3.64) sessions (p = 0.184). Additionally, alertness VAS 

scores obtained in the baseline test session did not differ between CON and TSD 

participants (p = 0.130).  However, significant differences were found between the 

alertness VAS scores of TSD participants at baseline (84.74±3.56) vs. experimental 

(39.21±6.30) sessions (Z = -3.82, p < 0.001) and between CON and TSD participants on 

the experimental session (t(36) = 4.72, p < 0.001, Hedges g = 1.50).  

Motivation VAS scores for CON participants did not change between baseline 

(83.32±2.25) and experimental (82.26±3.76) sessions (p = 0.948). Additionally, alertness 

VAS scores obtained in the baseline test session did not differ between CON and TSD 

participants (p = 0.094).  However, significant differences were found between the 

alertness VAS scores of TSD participants at baseline (88.21±1.75) vs. experimental 

(48.63±6.76) sessions (t(18) = 6.75, p < 0.001, Hedges g = 1.48) and between CON and 

TSD participants on the experimental session (Z = -3.29, p < 0.001).  

In summary, KSS, alertness VAS, or motivation VAS scores did not change except as a 

direct result of the sleep deprivation protocol. Within 10 minutes of the Rocket League 

matches commencing, participants who had undertaken the sleep deprivation protocol 

reported higher subjective sleepiness, and lower subjective alertness and motivation. 
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Figure 7-6 Box and whisker (min → max) plots showing A KSS scores, B Alertness VAS 

scores, and C Motivation VAS scores (reverse scored) for CON and TSD participants in 

the baseline and experimental sessions. 

7.4.5. In-Game Performance 

To assess the effect of the TSD protocol on overall in-game performance, a model was 

created with GD as the outcome variable, session (baseline vs. experimental) as a fixed 

effect, and with a by-pair random intercept.  

By-pair random intercept standard deviation was 2.61, and residual standard deviation 

was 2.83. The model intercept (corresponding to GD for the baseline session) was -

1.01±0.63, which was not significantly different to 0 (t(1, 22.05) = -1.61, p = 0.12), 

suggesting that neither group of participants were significantly better than the other at 

baseline. The effect of day (i.e., change from baseline to experimental) was not significant 

(∆GD = 0.23±0.34, t(1, 258.02) = 0.68, p = 0.498), suggesting that the sleep deprivation 

protocol did not significantly impact GD. Figure 7-7A shows the distribution of GD for 

baseline and experimental sessions.  
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Similar models were created to assess whether the TSD protocol impacted any of the top 

five PIs within 1v1 Rocket League. The only PI to significantly change from baseline to 

test session was Time Spent High in the Air Difference (p = 0.013) (Figure 7-7E), such 

that (compared to their opponent) the TSD individual spent 0.48±0.19% less time in the 

air in the experimental session, compared to the control session. 

Lastly, participant’s self-reported ratings for how much fatigue affected their in-game 

performance did not change between baseline (1.85±0.39) and experimental (2.40±0.46) 

sessions (p = 0.251). Additionally, ratings obtained in the baseline test session did not 

differ between CON and TSD participants (p = 0.779). However, significant differences 

were found for TSD participants at baseline (1.70±0.44) vs. experimental (4.75±0.50) 

sessions (Z = -3.33, p < 0.001) and between CON and TSD participants on the 

experimental session (Z = --2.96, p = 0.003). Participants in the CON group correctly 

guessed when their TSD group opponents were rested (baseline) 80% of the time, and 

when TSD group opponents were sleep deprived (experimental) 95% of the time. 

Participants in the TSD group correctly guessed that their CON group opponents were 

rested 85% of the time.   

 

Figure 7-7 Violin plots displaying the distribution of A GD and B-F exploratory PIs for 

baseline and experimental sessions, across all 279 matches. Box and whisker (min → 

max) plots inside the violin plots resemble the distribution of mean outcome variables 

across a test session for a given pair (N = 20 for each box and whisker plot). Diamonds 



161 

represent pair means for each session, with pair means connected via the dotted lines. The 

solid red line represents the estimated mean±SE from each model used for analysis.  
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7.5. Discussion: 

The current study aimed to establish whether an acute bout of total sleep deprivation 

(TSD) decreased in-game performance in the popular esport Rocket League. We recruited 

40 Rocket League players, pairing them based on expertise level, with half of the 

participants completing two test sessions while rested (CON) and the other half (TSD) 

completing one test session while rested (baseline), and the other test session following 

~29 hours of TSD (experimental). Following this bout of TSD, we found these individuals 

to respond ~50msec slower and lapse (responses >500msec after stimulus onset) almost 

five times more often on the Psychomotor Vigilance Task (PVT).  They also responded 

slower on the two-choice component of the Category Switch Task (CST), however, error 

rate on this component of the CST as well as Switch Cost and Mixing Cost (SC and MC 

respectively; measures of task-switching ability) response speeds were unchanged. 

Additionally, immediately (~10min) before Rocket League play, participants reported 

higher subjective sleepiness and lower subjective alertness and motivation when sleep 

deprived, when compared both to their own scores when well rested and compared to 

their paired opponents for Rocket League gameplay. Despite the cognitive impairments 

observed as a result of TSD, as well as the fact that participants felt that fatigue affected 

their in-game performance more following TSD, we did not find evidence that TSD 

impacted game outcome in Rocket League matches. The implications of our findings are 

discussed. 

While we hypothesised that TSD would negatively impact our in-game esports outcome 

measure (GD), in line with the sentiment of previous articles (Bonnar, Castine, et al., 

2019; Bonnar, Lee, et al., 2019; Bonnar et al., 2022; S. Lee et al., 2021; Sanz-Milone et 

al., 2021) and some esports athletes themselves (i.e., Baumann et al., 2022; Rudolf et al., 

2020), we can identify (at least) four rational arguments for why such an effect was not 

found in the current study. Firstly, we note that not all aspects of cognitive performance 

are equally affected by sleep loss (Lim & Dinges, 2010; Lowe et al., 2017; Smithies, Toth, 

et al., 2021; Wickens et al., 2015), with the general trend being that as task complexity 

increases (for which, esports would be considered particularly complex), the magnitude 

of measurable adverse effect of sleep loss decreases (Harrison & Horne, 2000). Secondly 

(however relatedly), motivation (both intrinsic and extrinsic) appears to play an important 

role in the maintenance of performance (top-down mechanisms) in spite of sleep loss 

(Massar, Lim, & Huettel, 2019). As stated by Massar and Colleagues (p. 2), “In conditions 

in which incentives are high to perform, e.g., in military emergency situations, people 
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may be able to maintain performance. However, situations that do not contain significant 

extrinsic incentives may fail to generate sufficient motivation—and thus lead to reduced 

performance.” Our study involved the play of an esport highly familiar (and judging by 

total hours played, highly enjoyed) by participants in a highly competitive (and hence, 

motivating) environment. It is understood that task-specific factors can influence the 

degree to which performance occurs, specifically through promoting/ dissuading 

motivation. Regarding task complexity for example, Harrison and Horne (2000) (p.g. 

236) state “the prevailing view in SD [sleep deprivation] research is that high-level 

complex skills are relatively unaffected by SD because of the interest they generate and 

the implicit encouragement for participants to apply compensatory effort to overcome 

their sleepiness”. Not only is Rocket League a highly cognitively complex activity, the 

play of Rocket League in the current study was undertaken in a set of circumstances which 

lends itself to compensatory mechanisms being activated. Thirdly, very repetitive tasks 

(often labelled monotonous) may experience greater performance loss due to persistent 

use of a very specific brain circuitry (Hudson et al., 2020), while tasks with greater 

stimulus/ response diversity (for which Rocket League very much fits) may not 

experience this effect. Fourthly (and again, relatedly), we note that the time-on-task effect 

(or vigilance decrement), which is accelerated and exaggerated by sleep loss (Doran et 

al., 2001), may not have been a factor within Rocket League gameplay. Rocket League 

matches are only ~6-7 minutes in length, and allow ~10 second breaks between each goal 

(occurring every ~40 seconds in the current study), allowing for frequent brief rest 

opportunities. This is not consistent among all esports. For example, major multiplayer 

online battle arena (MOBA) esports such as DOTA2 and LoL (the first and fourth largest 

esports by prize money earned; Esports Earnings (2023b), have average match lengths of 

~20-30minutes (but can extend to >90 minutes) with very limited and unpredictable rest 

break opportunities. Lastly, while esports performance appears to be largely predicated 

on cognitive performance, there are a myriad of other factors involved, such as mood, 

biomechanics related factors, playstyle (individual differences in in-game abilities and 

strategy preferences) and interactions between competitor’s playstyles. Such factors 

could increase performance variation, confounding any expected effects of sleep loss.  

With regards to the last argument, the authors argue that even if there are many extraneous 

factors in play, it is very unlikely that these factors would have completely nullified the 

effects of TSD on GD in the current study. A power analysis conducted a priori provided 

an estimated power of 0.829 for our analysis on GD, using estimated effect size and 
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variance measures, and an estimated MEM design. We observed variance that was larger 

than predicted (random intercept SD = 2.61 [predicted  = 1.94], residual SD = 2.83 

[predicted = 1.83]), however also found that our data did not (according to the procedure 

outlined by Matuschek et al. (2017)) warrant a model including a session by participant 

random slope. Retaining the estimated mean effect of TSD as a GD change of 1.218 from 

the a priori power analysis and including the variance measures and model structure from 

the results, an updated power analysis suggested that if the predicted mean effect 

magnitude was accurate, the power to detect it would have been 0.958 (the R script for 

this reanalysis can be found as appendix 7.3). Hence, we argue that our underestimation 

of variance is highly unlikely to be the root cause of the inability to reject the null 

hypothesis that TSD has no impact on in-game Rocket League performance, and that if 

an effect of ~29hrs of TSD on GD exists, the magnitude of this effect is most likely 

substantially smaller than anticipated. 

It should be explicitly stated that our results do not suggest that sleep is a human factor 

to be disregarded within the world of esports. Sufficient sleep health is imperative for 

physical and mental wellbeing (Itani et al., 2017), and plays an instrumental role in 

memory consolidation (Stickgold, 2005; Walker & Stickgold, 2004); these are all critical 

factors when considering the everyday life of esport athletes and the downstream effects 

of sleep on competition performance. Furthermore, we certainly do not suggest that an 

acute bout of sleep deprivation does not impact alertness or cognitive performance, as our 

measures for such (as well as many decades of research; see Lim and Dinges (2010) for 

meta-analyses) are mostly in direct conflict with such a notion. What our results do 

suggest however, is that an acute bout of ~29 hours of sleep deprivation is unlikely to 

impact in-game esports performance to any measurable degree. This perhaps provides a 

positive message to esports players and coaches; that a night of poor sleep immediately 

prior competition is unlikely to adversely impact in-game performance. This message has 

high importance given some traditional athletes often experience sleep disturbances the 

night prior to competition (Juliff et al., 2015), with scholars suggesting that these 

disturbances are equally likely for esport athletes (Bonnar, Castine, et al., 2019). 

In addition to the in-game outcome measure (GD), we gathered in-game data pertaining 

to a myriad of game-specific factors (i.e., offense/ defense, boost, movement & 

positioning; see Smithies, Campbell, et al. (2021) & Chapter 5) and explored whether 

established performance indicators (PIs) in 1v1 Rocket League (Smithies, Campbell, et 

al., 2021) varied as a function of sleep deprivation. Through this exploratory analysis, we 
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identified the PI time spent high in the air difference (TSD minus CON) to lower quite 

substantially (0.48%; average time spent high in the air across all matches in our sample 

= 3.13%) between baseline and experimental sessions. We also noted numerical increases 

in the time spent goalside of the ball difference, though with greater overall uncertainty 

as indicated by p = 0.059. These two PI’s were specifically discussed by Smithies, 

Campbell, et al. (2021) as potentially indicating safer or riskier playstyles, with greater 

time goalside of the ball and less time high in the air resembling a safer overall playstyle. 

However, changes in these specific PIs could alternatively be argued to resemble an 

individual adopting an easier in-game strategy, as voyages high in the air typically 

involve much more difficult and precise movements, while staying grounded and goalside 

of the ball and relying primarily on counterattacking may present as a strategy requiring 

comparatively less effort than complicated attacking approaches. Sleep deprivation 

resulting in either (or both) safer or simpler decision making have theoretical support. 

While sleep loss is generally considered to result in riskier decision making (Satterfield 

& Killgore, 2019; Womack et al., 2013), decision making tasks (i.e., the Balloon Analog 

Risk Task or BART) typically show safer strategy employment following sleep 

deprivation (when 48hrs or less) (Killgore, 2007; Killgore et al., 2008), a trend mimicked 

by subjective risk-taking propensity following sleep deprivation of 48hrs or less 

(Chaumet et al., 2009; Killgore, 2007; Killgore et al., 2008). Interestingly, when 

discussing why sleep deprivation leads to a safer strategy on the BART but not other 

decision making tasks (i.e., Iowa Gambling Task), Satterfield and Killgore (2019) note 

that riskier decisions on the BART are also more effortful, and that “sleep deprived 

individuals appear to be less willing to expend effort to engage in risky activities.” (p. 

353). Work by Engle-Friedman and colleagues (Engle-Friedman et al., 2010; Engle-

Friedman et al., 2003) can be looked to for additional support for the notion that TSD 

evoked a simpler strategy among our participants. Despite these hypotheses regarding our 

observed PI differences, we emphasise the exploratory nature of this analysis and 

emphasise the need for more formal testing before claims can be substantiated. 

Nonetheless, we note this as an interesting line of future enquiry, especially given 

participants tended to feel (self-report) that fatigue affected their in-game performance 

following TSD.  

Along with in-game performance, we also examined how sleep loss impacted the 

cognitive performance of esport players using the PVT and CST. As expected, overall 

response speed worsened, and the likelihood of lapses increased substantially (~5 times) 
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following TSD, indicating that players’ vigilance was impaired. In the single task 

component of the CST, response speed slowing was similar in magnitude to that observed 

in the PVT, which was somewhat surprising given previous research (i.e., Smithies, Toth, 

et al., 2021) suggested the level of impairment decreases as task complexity increases so 

long as cognitive flexibility is not introduced as a task requirement. Even more 

surprisingly, we found no evidence for decreases in task-switching ability (measured both 

by SC and MC response time), contrasting findings by Couyoumdjian et al. (2010). 

However, these findings were consistent with Nakashima et al. (2018), who noted no 

change in SC reaction time following TSD, and somewhat in agreement with Slama et al. 

(2018) who noted a change in SC accuracy but not SC reaction time following TSD. 

Overall, these contrasting findings may be a result of subtle task-characteristics (i.e., types 

of stimuli, stimulus-response mappings, interstimulus intervals, frequency of task-

switches) which warrant further investigation. The ability to rapidly switch ones’ 

attention between multiple information sources appears integral to esports performance 

(in the context of Rocket League, this could be the switching of visual attention between 

the ball, the opponent, the players vehicle and the players boost meter), as demonstrated 

by improvements in task-switching ability coinciding with the play of action video games 

(Nuyens et al., 2019; Toth et al., 2020). Although the results of our study suggest that this 

ability may be unaffected by acute sleep loss for esport athletes, we interpret with caution 

given mixed findings in the literature.  

7.5.1. Limitations 

We outline several limitations regarding the presented experimental study. Firstly, despite 

our best efforts, we had only one female participant in our final sample of 40, resulting in 

a clear sex imbalance. Similar difficulties recruiting female esport players have been 

previously noted (Bonnar et al., 2022; Ratan et al., 2015). We also note that this large 

gender imbalance is (regrettably) reflective of elite esport demographics (with estimates 

of only 5% of professional esport athletes being female; Hilbert (2019)), a disparity 

actively highlighted in many articles (Darvin et al., 2021; Taylor & Stout, 2020). 

Secondly, we note a lesser degree of control over factors such as participant 

demographics, sleep, and weekly gameplay than desirable. We note the extreme difficulty 

in recruiting participants sufficiently experienced with Rocket League while also 

fulfilling the somewhat strict criteria for healthy sleeping participants outlined by Beattie 

et al. (2015). Due to this, affordances were made to the inclusion criteria and as such, our 

participant pool included some individuals screening at risk for sleep disorders, and one 
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participant with habitual caffeine use > 400mg. We found that many participants reported 

great difficulty maintaining a regular sleep and wake time in particular, as resulting in 

some participants experiencing less than desired TST (i.e. ~3hrs) in the 1-3 nights prior 

to testing, even when meant to be well rested (see Figure 7-4). This is noteworthy and we 

would encourage future research to explore sleep/ wake variability within habitual esport 

playing populations, potentially through use of the sleep regularity index (SRI; Phillips 

et al. (2017)), as done recently in elite team sport athletes by Halson et al. (2022). 

Continuing the topic of sleep and wake times, implementing somewhat standardised 

target bed (22:00 – 01:00) and wake times (06:00 – 09:00) that were outside of those 

habitually experienced by some participants may have affected the sleep experienced by 

some participants within the three nights prior to test sessions, potentially leading to the 

higher-than-desired variability in TST on these days within control conditions. However, 

we note that this research design decision was made to better comply with the RRDC 

criteria (Beattie et al., 2015) and for logistical reasons (i.e. some participants habitual 

wake times could interfere with test session availability. We also caution that the results 

of the current study may have limited applicability to other esports besides Rocket 

League. Although most major esports share a lot of similarities (fast and accurate 

responses to rapidly changing stimuli executed through fast and precise fine motor 

movements, complex interactions with other individuals, use of computer peripheries, 

seated environment etc.), their diversity has resulted in some observed differences in the 

relevant importance of specific cognitive abilities (Dobrowolski et al., 2015; Toth, 

Conroy, et al., 2021), and hence potentially, diversity in the impact of acute sleep loss. 

Also as previously mentioned, Rocket League has short match lengths with frequent break 

opportunities when compared to other esports, which may lend to a lesser ability of the 

time-on-task effect (which sleep loss accelerates and exaggerates) to negatively impact 

performance. We note however that the short and predictable match lengths within Rocket 

League are also one of the key characteristics which make it a feasible esport to conduct 

experimental research on (as it allows for multiple and consistent amounts of trials per 

test session (Smithies, Campbell, et al., 2021; see Chapter 5)). Nonetheless, generalising 

the results of the current study to other esports should be done with caution. Lastly, we 

note that our subjective measure of motivation (motivation VAS; as per Mathew et al. 

(2021)) was not suitably timed or worded to appropriately capture participants motivation 

to perform within the Rocket League gameplay. Had this item been implemented 

immediately following either the warm-up provided or in between the matches played, it 
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may have been able to shed light on whether this mechanism may have played a role in 

performance preservation in spite of sleep loss. 

7.5.2. Conclusion 

Overall, the results of our study suggest that an acute bout of sleep loss (~29hrs TSD) 

does not adversely impact in-game Rocket League performance, despite degrading 

vigilance and attentional capabilities as measured by both subjective and objective 

instruments. Our findings suggest that efforts may be better placed optimising day-to-day 

sleep health, as opposed to austere avoidance of sleep loss immediately prior to 

competition. 
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Chapter 8. The BART effect: Rocket League players 

appear to play both simpler and safer when sleep deprived 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“There’s a 4:30 in the morning now?” – Bart Simpson (The Simpsons; S6, E1)
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8.1. Introduction: 

In the previous chapter, I examined the effects of ~29hours of total sleep deprivation 

(TSD) on in-game performance, in the esport Rocket League. While I did not observe an 

effect of the TSD protocol on match outcome, I performed exploratory analysis to see 

whether any in-game performance indicators (PIs; as identified by Smithies, Campbell, 

et al. (2021) and in Chapter 5) differed as a result of TSD.  

Through this analysis, I observed a 15.34% decrease in the PI Time Spent High in the Air 

Difference (from 3.13% of match to 2.64% of match), and (a less certain, p = 0.059) 

1.89% increase in the PI Time Spent Goalside of the Ball Difference. In the discussion of 

this chapter, I stated that these changes in PI values could be reminiscent of a shift toward 

a safer (vs. riskier) in-game strategy, or alternatively a simpler (vs. more complex) 

strategy (though I was careful to avoid making strong claims about this evidence given 

the exploratory nature of the analyses). Evidence from previous literature suggesting 

either (or both) of these changes to be feasible due to sleep loss is discussed below. 

Regarding a simpler playstyle, there is a substantial body of literature suggesting that 

under conditions of sleep deprivation, tasks with high cognitive demands are perceived 

as more effortful (see Massar, Lim and Huettel (2019) for an overview). A 2003 article 

outlines multiple experiments in which sleep deprived university students, when provided 

a choice between easier and more difficult math questions, tended to choose easier 

questions than when well rested or when vs. well rested counterparts, with the authors 

concluding that “These studies demonstrate that sleep loss results in the choice of low-

effort behaviour that helps maintain accurate responding.” (p. 113, Engle-Friedman et al. 

(2003)). Another study with competitive adolescent ice-skaters found that those who slept 

less perceived relevant skating-specific manoeuvres as more difficult, while those with 

greater sleep disturbances (awakening count & wake after sleep onset) were more likely 

to choose easier manoeuvres to perform (Engle-Friedman et al., 2010). These are two nice 

examples suggesting that when given options between easier and more difficult 

alternatives, sleep loss drives individuals toward the easier alternative, likely due to an 

increase in perceived task effort demands when sleep deprived (Massar, Lim, & Huettel, 

2019). 

Regarding a safer playstyle, the evidence base is substantially more conflicting. While 

sleep deprivation of 48hrs or less has been demonstrated to result in self-reported 

reductions in risk-taking (Chaumet et al., 2009; Killgore, 2007; Killgore et al., 2008), the 
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current body of experimental work suggests that sleep deprivation tends to lead to riskier 

decision making in practice (for reviews, see Satterfield and Killgore (2019) and Womack 

et al. (2013)). However, there is one decision making paradigm called the Balloon Analog 

Risk Task (BART) which typically shows sleep deprived individuals adopting safer 

strategies compared to well rested counterparts (Killgore, 2007; Killgore et al., 2008). In 

discussing why sleep deprived individuals adopt safer strategies on the BART but riskier 

strategies on other decision making paradigms (like the Iowa Gambling Task or IGT), 

Satterfield and Killgore (2019) propose that while riskier decisions require no more effort 

on the IGT, they do on the BART. This suggests that a safe strategy and less effortful 

strategy are equivalent on the BART. In a similar vein, I proposed in Chapter 7 that 

spending less time high in the air (and to a lesser extent, more time goalside of the ball) 

is both safer and simpler in 1v1 Rocket League.  

However, I note that the link between the mentioned PIs and both safe vs. risky and simple 

vs. complex was established by one author (TDS), albeit with extensive familiarity with 

the esport (~2,800 hours played) and in-game metrics. In order to instil more confidence 

in the interpretation of PIs and their relationship with in-game strategy, I see great value 

in gaining the opinion of field experts within the given esport; that is, former professional 

players, coaches, analysts, and/ or casters who possess significant knowledge and 

experience of Rocket League and its in-game metrics. 

Hence, the current study aimed to establish a stronger understanding of which Rocket 

League in-game metrics best differentiate both safe vs. risky and simple vs. complex 

playstyles. Using this understanding, I then aimed to explore whether ~29 hours of TSD 

resulted in a playstyle perceived to be more safe, more simple, or both. I hypothesised 

that there would be a large amount of overlap between in-game metrics that distinguish 

playstyle risk and playstyle complexity, and as such, the TSD protocol would lead to 

changes in playstyle perceived as safe and simple.  
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8.2. Methods 

All procedures and data collection was approved by the Education and Health Sciences 

Research Ethics Committee (2021_06_13_EHS) and conducted in accordance with The 

Declaration of Helsinki.  

8.2.1. Participants 

Eleven individuals were contacted to participate in the current study, to which nine 

responded, and seven provided informed consent and participated. Participants were 

sought on the basis of their prior playing/ coaching/ casting/ analyst experience, and were 

contacted through email or through social media (i.e., Twitter, Discord). Each participant 

had significant experience playing, coaching, analysing or casting Rocket League, and 

expressed familiarity with the in-game metrics provided through ballchasing.com, and 

hence could be considered field experts. The expertise of each participating individual is 

given below: 

Participant 1: Two-years of experience casting professional level Rocket League 

(predominantly 1v1; >500 matches casted). Top <~2% (of total player base) player. 

Participant 2: Two-years of coaching Rocket League (predominantly 3v3) focussing on 

individuals between the top ~0.33-5% of total playerbase. Has achieved top 0.2% of 

playerbase in 1v1 Rocket League. 

Participant 3: Retired professional Rocket League player (7 years, >$80,000USD 

winnings). Current professional coach. 

Participant 4: Former coach of world championship winning Rocket League team, current 

analyst. 

Participant 5: Retired professional Rocket League player (3 years, >$10,000USD 

winnings). Four-years of casting professional level Rocket League (including 1v1). 

Participant 6: Current professional Rocket League player (3 years, ~$200,000USD 

winnings), international tournament winner. One year of coaching experience at all levels. 

Frequently ranked number 1 in 1v1 Rocket League. 

Participant 7: Seven years of high-level Rocket League gameplay, including being top 

0.2% of playerbase in 1v1 Rocket League since 2021, scrimmaging at a semi-professional 
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level, and substituting professionally. Experience coaching at international collegiate 

level, and casting/ analyst roles at a national level. 

 

8.2.2. Instruments & Procedure 

Participants completed a survey instrument via. Qualtrics. A copy of this survey can be 

found as appendix 8.1. 

The survey instrument included two questions. For each question, participants were 

provided all 26 in-game Rocket League metrics provided by ballchasing.com (see 

appendix 4.2, and note the removal of Shots Conceded and Demos Taken as difference 

scores were to be used within the analysis), along with the capacity to rank-order them 

according to the question. The two questions requested were worded in the following 

manner: 

The following question is with regards to Rocket League player(s) within a 1v1 match, 

who are between 500MMR (i.e. gold) to 1300MMR (i.e. high GC3/ low SSL 

[supersonic legend, the highest rank in Rocket League as of 22/09/2020]). 

 

From the options below, please rank the in-game metrics that you feel would best 

discriminate between a player playing a strategy which is [question 1; 'safer' or 

'riskier', question 2; ‘more simple’ or ‘more complex’]. Note that we only require 

the top 10, with 1 being the metric that best discriminates. Feel free to ignore the 

ordering below 10 

 

8.2.3. Data Processing and Statistical Analysis 

For each question (called playstyle risk and playstyle complexity from here onwards), 

metrics chosen by each individual were assigned points according to their ranking, in a 

reverse scored manner (such that a metric ranked number 1 was given 10 points, and a 

metric ranked 10 was assigned 1 point). The five metrics which received the most points 

(per question) were considered the metrics that best distinguish (a) playstyle risk and (b) 

playstyle complexity.  
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The mean difference scores (TSD participant – CON participant, see Chapter 5&7) 

obtained per pair and per test session for (a) playstyle risk and (b) playstyle complexity 

metrics, were subsequently inputted into two separate repeated-measures multivariate 

analyses of variance (MANOVAs), with session (baseline vs. experimental) as the 

independent variable. This analysis was performed using the MANOVA function in IBM 

SPSS Statistics v28 (Armonk, N.Y.) software. MANOVA uses all inputted dependent 

variables to create a canonically derived dependent variable (called playstyle variable 

hereafter) which maximally discriminates between groups in the independent variable (in 

my case, baseline and experimental test sessions). It is an appropriate analytical technique 

to analyses conceptually interrelated variables together (as opposed to conceptually 

unrelated variables; Huberty and Morris (1992)), as is present in the current study. I 

provided descriptive information and performed a follow-up analysis on these playstyle 

variables (a process called descriptive discriminant analysis or DDA) to examine 

differences between sessions, using paired-samples t-tests (as per Enders, 2003). Data 

and syntax used in this analysis can be found at https://osf.io/z2fjg/. Alpha was set as p < 

0.05 unless otherwise specified.  

https://osf.io/z2fjg/
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8.3. Results 

8.3.1. Metrics Relevant to Playstyles 

The metrics that best distinguish playstyle safety and playstyle complexity in 1v1 Rocket 

League according to field experts are shown in Figure 8-1. I note a considerable overlap 

between metrics considered to best distinguish between the two playstyles, consistent 

with the notion that a simple playstyle is analogous to a safe playstyle in 1v1 Rocket 

League.  

 

 

Figure 8-1. The five in-game metrics that received the most points, corresponding to field 

expert determined ability to distinguish playstyle risk and playstyle complexity in 1v1 

Rocket League. Metrics labels highlighted in blue or orange are metrics that are also a 

top five distinguisher of the other playstyle, which metrics labels highlighted in grey are 

metrics that are also a top ten distinguisher of the other playstyle 

8.3.2. MANOVA Analysis 

For playstyle risk metrics, a statistically significant MANOVA effect for session (baseline 

vs. experimental) was found (Hotelling’s T2 = 1.15, F(5, 15) = 3.46, p = 0.028, ηp
2 = 0.54), 

such that 54% of the variance in the playstyle variable could be accounted for by session 

(baseline vs. experimental). For playstyle complexity metrics, a statistically significant 

MANOVA effect for session (baseline vs. experimental) was found (Hotelling’s T2 = 
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1.03, F(5, 15) = 3.09, p = 0.041, ηp
2 = 0.51), such that 51% of the variance in the playstyle 

variable could be accounted for by session (baseline vs. experimental). Exploratory 

univariate post-hoc t-tests of PIs included in each MANOVA found only the PI Time 

Spent High in the Air Difference to significantly change from baseline to experimental 

sessions (Δ value = -0.47±0.18, F(1, 19) = 6.99, p = 0.016, 95% CI [-0.84, -0.10], ηp
2 = 

0.27), corroborating findings in Chapter 7 and suggesting that session alone (i.e., ~29hrs 

TSD) accounts for 27% of variance within this PI.  

The eigenvalue, standardised discrimination function coefficients (SDFC), and 

correlation between these coefficients and the playstyle variable (structure coefficient) 

can be found in Table 8-1. The former gives a measure of the relative contribution from 

each metric to the linear equation which creates the playstyle variable, while the latter 

gives a measure of the actual relationship between the metrics and the playstyle variable 

(K. N. Smith et al., 2019). Metrics with a large |SDFC| but a small structure coefficient 

(i.e., Time Spent On the Ground Difference in both models, and Overfill Stolen Difference 

in the playstyle complexity model) are suppressor variables, meaning that while they have 

little to no relationship with the playstyle variable alone, they function to strengthen the 

relationship between other metrics and the playstyle variable.  

Paired-sample t-tests were performed to test the magnitude of effect of session (baseline 

vs. experimental) on each playstyle variable, as per Enders (2003). A conservative alpha 

of p < 0.001 was used for these analyses, due to differences in sampling distribution 

between univariate variables and canonically derived variables (Neufeld & Gardner, 

1990). Nonetheless, I found significant between session (baseline → experimental) 

effects on both the risk playstyle variable (Δ value = 1.48±0.32, t(1, 19) = 4.68, p = 

0.0002, 95% CI [0.82, 2.14], g = 1.03) and complexity playstyle variable (Δ value = 

1.40±0.32, t(1, 19) = 4.42, p = 0.0003, 95% CI [0.74, 2.06], g = 0.97). 
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Table 8-1 Eigenvalues, canonical correlation, standard discrimination function 

coefficients (SDFC) and structure coefficients, for metrics (note that all are considered as 

difference scores) that distinguish playstyle risk and playstyle complexity in 1v1 Rocket 

League. The linear equation for the playstyle variables is given at the bottom of the table 

using raw discrimination function coefficients.    

Playstyle Risk Playstyle Complexity 

 
Eigenvalue 

Canonical 

Correlation 
 

Eigenvalue 

Canonical 

Correlation 

 
1.15 0.73 

 
1.03 0.71 

In-Game Metrics SDFC 

Structure 

Coefficient In-Game Metrics SDFC 

Structure 

Coefficient 

A. Time Spent 

High in the Air 1.10 0.56 

A. Time Spent 

High in the Air 0.74 0.60 

B. Time Spent 

On the Ground 0.56 -0.04 B. Boost Used 1.40 0.43 

C. Time Goalside 

of the Ball -0.87 -0.39 

C. Time Spent 

On the Ground 0.49 -0.04 

D. Saves -0.24 -0.26 

D. Number of 

Powerslides -0.26 -0.12 

E. Average Speed 0.01 0.22 

E. Overfill 

Stolen -0.94 0.06 

Playstyle Variable = 1.95A + 0.32B - 0.36C - 

0.19D - 0.0003E 
Playstyle Variable = 1.31A + 0.05B + 0.28C - 

0.03D - 0.02E 
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8.4. Discussion 

The aim of the further analysis undertaken in this chapter was to follow-up on exploratory 

analysis undertaken in Chapter 7, which indicated that TSD may have led Rocket League 

players to employ a safer or simpler (or both) playstyle. Specifically, I sought the opinions 

of field experts to uncover the metrics perceived to best distinguish playstyle risk and 

playstyle complexity for 1v1 Rocket League players within the bounds of those studied in 

Chapter 7. Using these metrics in a multivariate approach, I found that ~29hr TSD could 

account for ~54% of variance in the canonically derived risk playstyle variable and ~51% 

of variance in the canonically derived complexity playstyle variable, with follow-up 

analyses showing both of these variables to be highly sensitive to sleep loss.  

The first standout observation is that many of the metrics which the field experts felt best 

distinguished playstyle risk were the same that distinguished playstyle complexity. Of the 

five metrics determined to best distinguish between each playstyle, two were present in 

both; Time Spent on the Ground, and Time Spent High in the Air. This is notable when 

considering that (a) Time Spent High in the Air Difference was rated the best metric to 

distinguish both playstyle risk and playstyle complexity,  Time Spent High in the Air 

Difference is a PI, with higher values being generally associated with better match 

outcome (Chapter 5), and that Time Spent High in the Air Difference was the only PI that 

changed as a result of ~29hrs of TSD, within the univariate exploratory analysis outlined 

in Chapter 7. I also note that two of the five (and six of the top ten) metrics that best 

distinguish playstyle risk were present in the top ten metrics that distinguish playstyle 

complexity. This provides weight to the argument that within the context of 1v1 Rocket 

League, a subjectively defined safe playstyle is (at least to a moderate degree) analogous 

to a subjectively defined simple playstyle, and is best demarked (if only considering a 

single metric) by Time Spent High in the Air Difference.  

Additionally, MANOVAs produced by the five most agreed-upon distinguishing metrics 

for playstyle risk and complexity both produced playstyle variables that varied by a 

similar amount as a function of ~29hr TSD (~29% and ~26% respectively), and for which, 

values obtained for baseline and experimental sessions were highly significantly 

different. It appears that the slightly larger variance value for the risk playstyle variable 

was driven primarily by the inclusion of the Time Goalside of the Ball Difference metric 

(having the second largest structure coefficient), which was the equal sixth best 

discriminator of playstyle complexity according to the field experts, and was highlighted 
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in Chapter 7 as a metric that likely resembles both a safer and simple playstyle. 

Conversely, the second largest contributor to the complexity playstyle variable was Boost 

Used Difference; a metric which only received five points from field experts and was 

rated 18 out of 26 in-game metrics for determining playstyle risk. This could suggest that 

~29hrs TSD leads to a simpler playstyle employed, which mostly (but not completely) 

equates to a safer playstyle within the context of 1v1 Rocket League. However, I stress 

the tentative nature of this interpretation given the non-significant univariate post-hoc t-

test on this metric (p = 0.071).  

My analysis presented here appears to support the idea that ~29hr TSD led players to 

employ a safer playstyle in 1v1 Rocket League, however with the caveat that this safer 

playstyle was also a simpler playstyle. Drawing an analogy between playstyle complexity 

and effort required, my results are in line with studies by Killgore (2007) and Killgore et 

al. (2008) using the Balloon Analog Risk Task (BART), and observations from Satterfield 

and Killgore (2019) that risk-taking (while appearing to generally increase following 

acute sleep loss) actually decreases when greater risk is also associated with greater effort/ 

complexity. Riskier plays in 1v1 Rocket League (best exemplified by taking the ball high 

in the air on attack) appear to be inherently more complex/ difficult, as shown by field 

expert opinion and supported by similar discriminability of the derived playstyle 

variables. 

8.4.1. Limitations & Future Research 

I stress that the analysis presented in this chapter is based on data discussed in Chapter 

7 and not new data, and as such, the analysis remains exploratory rather than 

confirmatory. Furthermore, I note that playstyle variables are not variables derived from 

a shared variance/ correlation (such as the output of a factor analysis for example), but 

rather are a variable that, taking five field expert chosen metrics, weight the metrics in 

such a way to maximise discrimination between rested and sleep deprived gameplay. This 

approach was chosen due to understanding that safe or simple playstyles may manifest in 

multiple different (and potentially uncorrelated) ways. In other words, there may be 

multiple ways to play safely or more simple, and these ways may not be correlated with 

one another. An alternative data-driven approach could have been to use factor analysis 

to determine playstyle variables derived from highly correlated variables, and performing 

paired-samples t-tests on the differences between sessions on these variables. However, 

sensible interpretation of derived variables from such an approach may prove difficult. 
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Here, this problem of interpretability is circumvented by directly asking field experts 

which metrics best distinguish safe vs. risky and simple vs. complex playstyles. 

The analysis provided showcases that the differences observed following ~29hr TSD 

appear to not be based on random fluctuation in an individual in-game metric, but instead 

are more representative of a fundamental change in the way that Rocket League players 

played the game while sleep deprived. In other words, should differences found be 

actually attributable to chance, it would be that players just happened to play safer and 

simpler Rocket League when they were sleep deprived, rather than just happening to go 

high in the air less. This potential safer and simpler approach when sleep deprived idea 

(to which I coin ‘the BART Effect’) presents as an interesting line of enquiry for future 

research within Rocket League but also within other esports, perhaps considering varying 

levels of in-game expertise as well. 
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Chapter 9.  Discussion 



† This statement could be argued as technically untrue if one was to consider the use of Tetris 

score as measure of esport performance; for which I note one study (Kariv et al., 2007) that 

used it as a general measure of the cognitive performance of physicians before and after a night 

shift. 
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The ultimate aim of the work presented in this thesis was to illuminate how sleep loss impacts 

the in-game ability of esport athletes. This avenue of enquiry was explored for three key 

reasons. Firstly, the negative effects of sleep loss on performance within traditional sports has 

been a burgeoning research field since the 1980s, as athletes, coaches, and stakeholders seek 

to examine and understand the human factors which may contribute to success in their given 

sport. However, esports performance is more predicated on cognitive performance than 

virtually all traditional sports (Campbell et al., 2018), and sleep loss tends to cause larger and 

more robust deficits in cognitive rather than physical performance. Secondly, much of the 

seminal research regarding sleep and esports has discussed sleep loss with respect to its 

hypothesised detrimental effect on performance, due to the abovementioned assumptions 

(Bonnar, Castine, et al., 2019; Bonnar, Lee, et al., 2019; Bonnar et al., 2022; S. Lee et al., 2021; 

Sanz-Milone et al., 2021). Lastly and most importantly, the relationship between sleep loss and 

esports performance has not been studied within any capacity† beyond exploring associations 

between habitual sleep and in-game outcome measures in an uncontrolled setting and against 

unknown opponents (i.e., online ranked matches; Moen et al. (2022)).

A total sleep deprivation (TSD) study, detailed in Chapter 7,  primarily addressed the aim of 

illuminating how sleep loss impacts the in-game ability of esport athletes. Within this study, I 

subjected twenty individuals to ~29hrs of experimentally controlled TSD, before playing seven 

matches of the esport Rocket League against well-rested peers of a similar in-game expertise 

level. Seven matches were also played between both players while well rested, allowing 

comparison of performance under such circumstances. Immediately prior to Rocket League 

matches taking place, participants (compared to when well-rested) reported increased 

subjective sleepiness, decreased subjective alertness and motivation, and decreased 

performance both on a low-salience vigilance taxing task (PVT) and a high-salience-stable 

single-cued component of the Category Switch Task (CST); all as a direct result of the TSD 

protocol. Despite this, I found no evidence of in-game Rocket League performance degrading 

as a function of the TSD bout which caused clear subjective and objective impairment on other 

measures.  



† When ecological validity is mentioned throughout the discussion, it is with reference to 

Orne’s definition of ecological validity; the generalisability of experimentally obtained 

findings to a real-world context, or to the context for which the results directly apply to. This 

is sometimes called representative design (Araújo and Davids, 2015), and is as opposed to 

Brunswik’s original definition of ecological validity, being very specifically the correlation 

between a proximal cue and a distal object. Discussion around the distinction between these 

two definitions is provided by Kihlstrom (2021). 
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9.1. Assessing Performance In-Situ 

A feature which presents as a major strength of the work in this thesis is the unique approach I 

used to directly measure in-game performance. In my experimental protocol, I measured 

performance during a live competition, matching the environment and context experienced in 

actual esports competition (i.e., in-situ). Such an approach is largely (but not completely; see 

Fox et al. (2021) and Staunton et al. (2017) as sleep-related examples) avoided in studies of 

human factors contributing to team-based traditional sport performance, in favour of 

performance measurement within proxies. Such performance proxies are examined in 

environments/ with procedures including affordances, in an effort to reduce extraneous 

variables inducing high amounts of uncontrollable variance (see Araújo and Davids (2015) for 

further discussion). However, such affordances can result in task environments/ stimuli with 

varied (and often unclear) correspondence to environments/ stimuli experienced within esport 

competition. In simple terms, performance changes within proxies may not reflect performance 

changes during actual esport competition (in-situ). The esports performance assessment used 

in this thesis avoided this issue altogether, as performance was explicitly measured in-

competition. Additionally, participants were unconstrained regarding preferences such as their 

in-game settings, input modalities, and even their ability to play music in the background 

during gameplay (a common practice for esport athletes). Essentially, efforts were made to 

assess performance within a testing environment and set of circumstances that bore a level of 

ecological validity† surpassing that which is generally present in traditional sport performance 

research.  

Such environmental/ circumstantial factors bare additional relevance within sleep loss 

literature. How engaging the particular task is, or how motivated participants are to perform 

optimally, are known to play a non-trivial role in whether (or to what extent) sleep loss actually 

impacts performance. By measuring performance in a live competition environment, I avoided 

the potential of finding an effect that does not translate to live competition, where high levels 

of task engagement/ motivation (and hence, propensity for compensatory mechanisms) is 

inherently present.  



† While win vs. loss can be argued to be the ultimate game objective within Rocket League, 

the sign of GD always matches with win vs. loss except when a player forfeits while ahead, 

which was not allowed within the experimental work. This, combined with specific instructions 

provided to participants to maximise effort in scoring goals and preventing opponents score 

irrespective of current score within a given game, resulted in GD being analogous to victory 

while providing additional information on the closeness of the game.  
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Not only did my esports performance analysis bare high levels of ecological validity, but by 

using an outcome variable which was practically analogous† to victory, the practical relevance 

of findings was maximised. After all, consideration of human factors within esports (from a 

performance perspective) stems from whether it influences match outcome. It can be argued 

that acute sleep loss immediately before competition is not a factor worth considering in 

practice (despite its demonstrated adverse effects on some tasks, and even if it changes the way 

esport athletes play) if ultimately, the end result does not change. 

9.2. Why didn’t sleep deprivation lead to worsened performance? 

That I was not able to statistically detect a performance difference following ~29hrs TSD was 

surprising and contrary to my hypothesis. It also runs contrary to the expectations outlined in 

much of the previous sleep and esports literature (Bonnar, Castine, et al., 2019; Bonnar, Lee, 

et al., 2019; Bonnar et al., 2022; S. Lee et al., 2021; Sanz-Milone et al., 2021), as well as the 

assumptions of some esport athletes themselves (Baumann et al., 2022; Rudolf et al., 2020). 

While the measurement of performance in live competition clearly presents with many benefits 

from an ecological validity perspective, there are valid reasons for its infrequent use in 

traditional sport research. Such concerns are outlined by Araújo and Davids, who note that the 

study of motor behaviours strictly within competitive performance environments is “clearly 

not possible, nor desirable, due to the presence of irrelevant idiosyncrasies of specific 

competitive events which might contaminate data” (Araújo & Davids, 2015, p. 269). Indeed, a 

similar sentiment was raised by a reviewer for an article I was also peer-reviewing, which, like 

I did, used in-game esports performance as their primary outcome metric. This reviewer raised 

the point that variability increases by using a design in which players play against other players, 

and raised the question to authors of whether they can be confident that effects are attributable 

to their given intervention and not random fluctuation. 

A major strength of the analytical approach taken is that this very same question could be 

directly addressed. Using the observed levels of between-pair and residual variance, the 

appropriate level of random effect complexity (or variance components) that was justified by 

the data (according to procedures outlined by Matuschek et al. (2017)), and the estimated 
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magnitude of effect from my initial power analysis (a mean difference of 1.218 goals per match 

attributable to the ~29hrs of TSD), a power of 0.96 was observed. According to this power re-

estimation, if the true effect of ~29hrs of TSD was in fact a mean decrease in GS of 1.218, it 

should be observed as a significant (p < 0.05) effect ~96% of the time. This presents as quite 

convincing evidence that the null finding of sleep deprivation on in-game esports performance 

was not simply due to too much noise, and that the true effect of ~29hr TSD on performance, 

if present at all, is much smaller than anticipated.  

If esports performance is predicated on cognitive factors which are consistently shown to be 

impacted by sleep loss, why didn’t sleep loss cause performance deficits in my study? Although 

potential answers to this question are discussed somewhat in Chapter 7, it is interesting to 

revisit this question specifically with respect to mechanisms of sleep loss performance deficits, 

outlined in the Section 1.6; starting with the effects of sleep loss on the time-on-task effect. 

The time-on-task effect refers to the increase in response time (and variability in response 

times) during a task requiring sustained attention (Dinges & Powell, 1988, 1989; Doran et al., 

2001). It is understood that sleep loss expedites and exacerbates the time-on-task effect. This 

is pleasingly visible within the PVT data of participants who completed testing both when 

rested and following ~29hrs of sleep deprivation in my research (TSD participants), when 

looking at performance across the timespan of the PVT administrations. Figure 9A shows the 

difference in mean reaction time (msec), average within-participant standard deviation of 

reaction time (a measure of response variability), and lapse likelihood, between PVT 

administrations while sleep deprived and well rested, separated into one-minute epochs across 

the 11 minutes of the PVT (this included the first minute, which was excluded for analytical 

purposes in Chapter 7). Firstly, participant responses were slower and more variable, with 

higher lapse propensity, following sleep deprivation at all time points of the PVT, showing that 

the time-on-task effect does not explain the entirety of simple attentional capacity degradation 

under sleep loss alone. However, it is also extremely clear that the difference in reaction time, 

reaction time variability, and lapse probability, between sleep deprived and well rested 

individuals, was substantially greater during the latter half of the PVT, particularly following 

5-6 minutes of test time. By isolating this comparison for a randomly chosen individual (Figure 

9B), one can easily observe the increase in lapse frequency and performance variability of the 

sleep deprived compared to the rested individual following 6 minutes of test time. It is curious 
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to note that this particular individual actually improved in GD by 1.76 following TSD, 

compared to when rested, despite clear impairment on the PVT following TSD.  

 

Figure 9-1 A Bar chart showing the difference in mean reaction time (black), mean within-

participant standard deviation or reaction time (i.e., green), and lapse probability (red), for TSD 

participants following sleep deprivation protocol and when well rested, within each one-minute 

epoch of the 10-min PVT (inclusive of the first minute of the PVT). Values above 0 resemble 
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greater mean values following sleep deprivation, compared to when rested. Black and green 

bars are measured on the left y-axis, and red bars are measured on the right y-axis. B Bar chart 

showing the difference in mean reaction time for each trial of the PVT for a randomly-selected 

TSD participant. Values above zero resemble a trial in which the reaction time was poorer 

following sleep deprivation, compared to when well rested. Red bars resemble trials which 

were a lapse within the session while sleep deprived, and blue bars resemble trials which were 

a lapse within the session when rested.  

Contrast this 10-minute PVT to the 1v1 Rocket League matches, in which my esports specific 

outcome measures were obtained. The average Rocket League match within my sample 

spanned 6 minutes 42 seconds, with ~1-2 minute breaks in between matches. Ironically, this 

was one of the characteristics that made 1v1 Rocket League highly suitable as a target esport 

for experimental research; consistently short matches allowed for multiple matches (seven in 

my case), and hence multiple data points, per testing session. Moreover, goals occurred every 

~40 seconds, with a ~10 second break afforded to each player in between each goal. These 

small breaks in task are far from trivial, considering that the effect of sleep loss on the time-

on-task effect can be mitigated by task breaks (Ralph et al., 2017). With the average Rocket 

League match length close to matching the timespan in which performance was not greatly 

affected in the 10-minute PVT, and with regular breaks even within this short timespan, I posit 

that the non-trivial influence of sleep loss on time-on-task effects, likely bore little (if any) 

relevance to in-game performance in 1v1 Rocket League.  

Although the expedition and exacerbation of the time-on-task effect due to sleep loss was a 

major contributor to simple attention deficits as seen on the PVT, it was not the entire story, as 

shown by the general increased lapse frequency across the entire timespan of the PVT 

following TSD. Hence, it is important to consider the potential outcome of an attentional lapse 

experienced during a Rocket League match. This may be best done so through the lens of 

Reasons Swiss Cheese model of accident causation (Reason, 2000). Within this model, each 

layer of the cheese resembles an error defence system, while each hole resembles a source of 

error (human or otherwise), with holes in all layers needing to line up for an incident to occur. 

Within this analogy, each layer resembles a set of circumstances, instead of a defence layer, in 

a similar manner to some adaptations of this model used to describe consequences of sleep loss 

in operational settings (i.e., Van Dongen et al. (2022)) and for motor vehicle accidents (Van 

Dongen, 2017). In the context of 1v1 Rocket League, the first layer could resemble the given 
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individual (human factors), while other layers could resemble the players vehicle (i.e., position, 

speed, orientation), opponent (human factors), opponents vehicle, the location of the ball with 

respect to the players, and the location of the ball with respect to the map. An attentional lapse 

would certainly resemble a hole in the first layer, but unless holes in the other layers align (i.e., 

critical events occur or circumstances exist at the same time as a lapse), the lapse would not 

result in a negative outcome. This model is conceptualised with respect to Rocket League in 

Figure 9-2.  

 

Figure 9-2 Reason’s Swiss Cheese Model (Reason, 2000), conceptualised to 1v1 Rocket 

League. A resembles a hypothetical scenario in which an attentional lapse does not lead to an 

adverse match outcome, while B resembles a hypothetical scenario in which an attentional 

lapse does lead to an adverse match outcome (i.e., a goal conceded). In each panel, only the 

holes demonstrating the scenario also described are shown; in reality, there may be many holes 

at different positions within a given layer at a given period of time.  
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It is important to note that different esports may possess different likelihoods of attentional 

lapses impacting in-game outcomes. Again, this can be conceptualised by the number/ nature 

of layers and holes within layers. Future work using correlates of attentional lapses (as 

measured using EEG for example (Armanfard et al., 2016) or eye-tracking (McIntire et al., 

2013)) time-synchronised with match replay files may even be able to attain the likelihood of 

lapses resulting in adverse in-game outcomes within Rocket League and other esports. Player 

expertise may also play a factor, and could be conceptualised by the widening of holes within 

the Swiss Cheese model. In summary, while lapses and broadband decreases in reaction time 

are impactful by nature on a task such as the PVT (which is maximally sensitive to them by 

design; Basner and Dinges (2011); Dorrian et al. (2004)), they may have only impacted in-

game Rocket League performance under a particular set of (infrequently) aligning 

circumstances.  

It is also worthwhile to consider the potential consequence of any in-game event affected by 

an attentional lapse. Regarding lapses in a motor vehicle context for example, they almost never 

will result in any adverse outcome when driving. However, they remain (rightly so) of the 

upmost concern with regards to motor vehicle safety, given the potentially fatal consequences 

of (infrequently occurring) fatigue-related incidents. Again contrasting this with 1v1 Rocket 

League, the absolute worst case scenario that could have occurred from a single event (i.e., 

lapse) in the Rocket League matches was a two-goal turnaround (a circumstance in which a 

certain goal for one player turned into a goal against that player). This event is rare in the 

context of Rocket League, however even then, I note that one two-goal turnaround is less than 

the average goal discrepancy observed within my sample of 279 matches (~3 goal discrepancy). 

In other words, the worst-case scenario for a single attentional lapse impacting in-game 

performance in 1v1 Rocket League is not a very large effect. Just like the earlier point regarding 

the likelihood of an adverse outcome from a lapse, I note that the potential consequence of an 

attentional lapse is almost certainly not uniform among esport genres. A useful traditional sport 

analogy for the differential potential impact of an attentional lapse between different esports 

could be the differential scope of impact for an attentional lapse at the starting line for a sprinter 

when compared to a marathon runner.

In summary regarding attentional lapses, I argue that they were extremely unlikely to play any 

role in the in-game performance of the esport players under sleep deprivation. I firstly note that 

the time-on-task effect, a major proponent of lapses, is extremely unlikely to be a factor within 



 

190 

1v1 Rocket League due to the short match length with frequent rest breaks. Secondly, I note 

that even if an attentional lapse were to occur, it would require many other factors to align to 

result in a negative in-game outcome. Lastly, I note that the absolute worst-case scenario of 

such an event is a notable, but not calamitous, two-goal swing in the outcome measure GD. 

The above discussion regarding why the effects of sleep loss which are observable on the PVT, 

were unlikely to impact in-game Rocket League performance, are undertaken under the 

pretence that such effects would have translated from the dull and monotonous PVT assessment 

to the stimulating and motivating context of esports competition. However, participants were 

asked to play an esport (which are cognitively arousing/ engaging by design) in a competitive 

context (playing against an opponent in a series of seven matches). Such a context and its 

potential performance preserving properties are not seen as a limitation but instead a major 

strength of my performance assessment, as it matched the normal circumstance in which 

esports are played within over and above the conditions present within standard cognitive 

testing (and hence attained a greater level of ecological validity). 

The impact of sleep loss on cognitive performance spans beyond simple attentional capacity, 

as outlined in Chapter 2 and by a plethora of prior literature. However, compensatory 

mechanisms (of which task engagement and motivation are understood to encourage) function 

to largely preserve performance in much of the more complex cognitive tasks under what would 

be considered mild bouts (<36hrs TSD) of sleep loss (i.e., Horne & Pettitt, 1985). However, it 

is theorised that these compensatory mechanisms function to maintain cognitive stability at the 

expense of cognitive flexibility (Whitney et al., 2019). This appears highly relevant to an esport 

context, as aspects of cognitive flexibility have been outlined as particularly important within 

esports generally (Valls-Serrano et al., 2022). The specific impact of sleep loss on task-

switching performance outlined by some prior research (Couyoumdjian et al., 2010; Slama et 

al., 2018), as well as the improved task-switching ability of action video game players (Nuyens 

et al., 2019; Toth et al., 2020), has led some researchers to suggest that sleep may affect esports 

performance through reducing task-switching ability (Toth et al., 2020).  

However somewhat surprisingly, on my formal test of task-switching (the Category Switch 

Task), I found no evidence of ~29hrs TSD impacting task-switching performance. This is in 

contrast to Couyoumdjian et al. (2010), who found switch cost reaction time but not accuracy 

following one night of TSD, somewhat in agreement with Slama et al. (2018) who found switch 

cost (SC) accuracy but not SC RT to worsen following one night of TSD, and in agreement 
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with Nakashima et al. (2018), who found SC RT to be unaffected by 24hrs of TSD. Could the 

inability to find an effect of ~29hr TSD on task-switching ability be a feature of the esports 

player population, who may be better able to preserve their task-switching ability under bouts 

of sleep loss? Potential explanations for such a hypothesis could be that esport players 

frequently play while sleep restricted, and as such, may have trained their ability to maintain 

task-switching performance (seemingly an integral part of their gameplay) under such fatigue. 

However, this is unlikely given that previous work has shown stable trait-like performance 

impairment (i.e., level of performance impairment remains consistent over multiple bouts of 

sleep loss) in many previous cognitive tests (see Tkachenko & Dinges, 2018, for elaboration). 

Alternatively, as esports lends itself to sleep disturbances resulting in play under sleep-deprived 

fatigue, naturally tolerant individuals may self-select into esports, or alternatively, naturally 

vulnerable individuals may self-select out of esports; this follows a previous line of discussion 

regarding military/ aviation (Caldwell et al., 2005; Caldwell et al., 2012; Van Dongen & 

Belenky, 2009; Van Dongen, Caldwell, et al., 2011) and medical resident (Schlosser et al., 

2012; Veasey et al., 2002) contexts. However, this is an unlikely explanation within the context 

of the presented work, as the population explored was not homogenously professional/ 

frequently competing esport athletes.  

Instead, given the relative dearth of research exploring sleep loss and effects on task-switching, 

along with the diversity of test procedures (i.e., stimulus response mappings, cue-target 

intervals, nature of stimuli etc.), outcome measures, and findings, it is much more likely that 

these factors may explain some of the nuances and diversity of results within this area. All of 

the previously mentioned studies (Couyoumdjian et al., 2010; Nakashima et al., 2018; Slama 

et al., 2018), like ours, utilised a paradigm which taxes one’s ability to switch between two or 

more categorisation rules in an unpredictable manner, while simultaneously using the same 

stimulus-response mappings (SRMs) between each cue, and responding to the same type of 

stimuli regardless of cue. Slama et al. (2018) (18 participants undertaking TSD) used a cued 

match-to-sample task with cues being colour, shape, number, or outline, Couyoumdjian et al. 

(2010) (54 participants undertaking TSD) used a number-letter paradigm, Nakashima et al. 

(2018) (12 participants undertaking TSD) used a value-numerosity paradigm, and I (20 

participants undertaking TSD) used a living-size Category Switch Task. It is important to note 

that both Slama et al. (2018) and Couyoumdjian et al. (2010) demonstrated their effects to be 

distinguishable from downstream effects of arousal/ basic attentional processing. It appears 

plausible that sleep loss does lead to task-switching deficits, however it is apparent that there 
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are task/ procedural/ outcome measure factors which are not yet fully understood and which 

may play a large role in the aforementioned mixed findings. Ideally, staunch consistency in 

procedure would be extremely useful in providing a clearer picture as to the effects of TSD on 

task-switching ability, and as such, replication studies (particularly for the procedure and 

analyses of Slama et al. (2018) and Couyoumdjian et al. (2010) as they found significant 

effects) would be incredibly useful and encouraged. However, it is simultaneously recognised 

that the differences in procedures is, in part, attributed to the fact that task-switching ability 

measured on the task-switching paradigm used was not the sole outcome measure of interest 

in any of the four studies explored. Hence, a systematic collation of literature exploring sleep 

loss and task-switching (and cognitive flexibility), which has not been performed to date, may 

provide insight onto important task-specific factors, with implications both in the lab and 

beyond. This review is currently being undertaken by a Masters student at the University of 

Limerick, alongside supervision from Prof. Mark Campbell and I.   

Irrespective of the potential reasons behind the null finding of TSD on task-switching 

performance, it stands to reason that if the cognitive task specifically designed to measure this 

component did not find effects, it is unlikely that task-switching ability deficits were to impact 

in-game performance to any measurable degree.  

9.3. Strengths of the overall approach 

The work comprising this thesis was highly multidisciplinary, owing to the novel nature of the 

aims and infancy of esports science research more generally. As such, a wide range of topics 

and methodologies were used. There were strengths and practical implications which spawned 

from each individual piece of work but which are not directly related to the thesis as an overall 

body of work. These strengths and implications are discussed within each individual chapter, 

and as such, will not be rehashed here. Instead, this section will discuss the strength of the 

overall approach outlined in the thesis, and its potential utility for future work aiming to assess 

human factors that are relevant to esports performance. A flowchart of the overall approach is 

conceptualised in Figure 9-3, and this will be referred to in the subsequent paragraphs. This 

flowchart can be utilised and expanded on within future work. 
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Figure 9-3 A flowchart describing the individual components of the thesis and their linkage to the overall research objective.  

 



194 

Delving into the left side of the flowchart first, the starting point for the body of work was 

the question of what human factors theoretically contribute most greatly to esports 

performance. This question was relevant, as it provided the specific element of 

performance which was most pertinent to explore, in addition to ecologically valid in-

game measures. The consensus answer to this question within the scientific literature is 

cognitive factors (Campbell et al., 2018; Pedraza-Ramirez et al., 2020). As such, it was 

relevant to consider the influence of sleep loss on cognitive performance, with respect to 

how this could ultimately impact in-game performance. An abundance of original 

research had already been conducted regarding sleep loss and its effects on cognitive 

performance, however prominent previous systematic collations (Lim & Dinges, 2010; 

Lowe et al., 2017; Pilcher & Huffcutt, 1996; Wickens et al., 2015) had not been performed 

with specific regards to populations who engage in cognitively demanding tasks with 

critical outcomes in their occupation or area of expertise (ECPs). Furthermore, such 

systematic collations (with the exception of Wickens et al. (2015)) had tended to avoid 

examining ecologically relevant occupation specific (/ expertise relevant) task 

performance, instead focussing on standardised cognitive tests (Lim & Dinges, 2010; 

Lowe et al., 2017; Pilcher & Huffcutt, 1996). This is despite previous accounts of effects 

of sleep loss on standardised cognitive tests not necessarily translating to performance 

loss in task specific circumstances (a pattern supported by the review). Regarding this, I 

point toward a quote from a seminal narrative review by Harrison and Horne (2000) (p. 

236); “Much of the SD research, as of this writing, has focused on cognitive processes 

that have little to do with the true nature of the job or normal working duties (e.g., serial 

reaction time, vigilance). Sometimes, the overall picture can be confusing, with findings 

showing no impairments for certain clinical skills and concurrent deterioration in 

psychological performance tasks of unknown relevance to these and other medical skills.” 

Overall, my review was particularly pertinent as it provided a summary of literature that 

was most relevant to the specific context of esports, both in terms of population and 

outcome measures.  

The thorough and systematic nature of the review presents as an obvious strength of this 

piece of work. In particular, the use of a database combination with a demonstrated 

optimal sensitivity/ specificity trade-off (Bramer et al., 2017), along with a rigorous grey 

literature and backward snowballing procedure, ensured that no relevant body of work 

was missed. The usage of a field-relevant grey literature source (Defence Technical 

Information Centre/ DTIC) resulted in an otherwise missed article (Hartzler et al., 2015) 
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being included; as such, this review showcases the benefits of grey literature searching, 

particularly using grey literature sources with specific field-relevance. This review 

provided crucial insight into the nature of cognitive deficits we may expect to see within 

sleep deprived esport athletes. The first was of rudimentary attentional capacity while 

performing simple and monotonous (low-salience) tasks. Such tasks are not reflective of 

the complex, engaging, and stimulating environment that esports provide, but were 

included in the later experimental work nonetheless via. the PVT. The review suggested 

that more complex tasks appeared to be more likely to be impacted by SR if they involved 

high levels of cognitive flexibility (formally tested using task-switching, reversal 

learning, or multitask tests), somewhat corroborating contemporary theories/ frameworks 

(Whitney et al., 2019). This presented as high relevance for an esports context, as both 

quasi-experimental and intervention studies have shown that exposure to video games 

commonly played as esports results in improved cognitive flexibility, and in particular, 

task-switching ability (Nuyens et al., 2019; Toth et al., 2020). Thus, my findings 

somewhat aligned with suggestions by Toth et al. (2020), that sleep loss may impact 

esports performance specifically through decreasing esport athlete’s task-switching 

ability.  

A pervasive issue in the realm of sleep literature is the usage of tests with untested 

properties or properties which are unsuitable for sleep deprivation designs. Two such 

properties are the test-retest reliability of the task, along with its propensity to result in 

practice effects within the test-retest timeframe of consideration (Dorrian et al., 2004). A 

major strength of the approach taken in this thesis is that these elements were explicitly 

tested through a pilot study (outlined in Chapter 3, and the next box on the left path of 

Figure 9-3). In doing so, I was able to identify outcome measures that were not suitable 

for use. This work also confirmed my suspicion regarding the potential issue practice 

effects would present that warranted addressing through experimental design 

(counterbalancing). Running a pilot study to attain test-retest reliability and the propensity 

of practice effects to bias results is essential where cognitive assays are considered for 

repeated measures assessment.  

Switching over to the right side of Figure 9-3, the important first step was to uncover an 

esport competition that would be suitable for experimental testing. I believe that my thesis 

makes a strong case for 1v1 Rocket League being the default esport of choice for future 

research examining human factors in esports. This is for many reasons, which have been 

discussed many times already. However, one important consideration not yet thoroughly 



196 

discussed is game popularity. It is important that a sufficient number of players of a given 

esport are available, such that sufficiently powered experiments can take place. This is 

one of the major successes of the outlined work; forty Rocket League players were 

recruited specifically for an in-person total sleep deprivation study, within a relatively 

small city in a relatively small country. This, alongside the already mentioned short and 

predictable match lengths, data (and now, outcome measures and performance indicator) 

availability, and play as individuals, positions Rocket League as arguably the best starting 

point (without consideration of genre specific demands as discussed in the previous 

section) with regards to human factors research in esports.

A unique element of esports (when compared to most traditional sports) is computerised 

gameplay, resulting in in-game statistics/ metrics actually being recorded digitally by the 

game itself. This data can then subsequently be accessed using application processing 

interfaces (APIs), should they be available for the particular game. Unfortunately, data 

availability is highly variable between different esport titles. Rocket League is relatively 

unique in that in-game data are freely available and are readily updated to a replay 

database (ballchasing.com), which provides in-game statistics for over 90 million games 

(as per 30/05/2023). This large amount of data availability facilitated my use of a machine 

learning and feature selection approach (taking inspiration from similar previous work in 

traditional sports, (i.e., Bennett et al. (2020); Bennett et al. (2019); Bishop and Barnes 

(2013); García et al. (2013); Hughes et al. (2017); Leicht et al. (2017); Mosey and 

Mitchell (2020); Robertson et al. (2016); Vaz et al. (2010); Whitehead et al. (2020); 

Woods et al. (2017)) to extract information about certain gameplay styles or strategies 

that influences one’s performance; information that can subsequently be used for 

analytical depth in esports performance research. Chapter 5 provides such groundwork 

for Rocket League, while similar work in other esports provide performance indicator 

metrics as well (Bahrololloomi et al., 2023; Białecki et al., 2023; Hitar-García et al., 2023; 

Hojaji et al., 2023; D. Lee et al., 2021; Novak et al., 2020; Xia et al., 2017). However, 

one issue that is pervasive within most esports is meta-shifts (changes in the dominant 

strategy/ set of strategies, or perceived optimal playstyle, within an esport; Kemp et al. 

(2020); Kokkinakis et al. (2021)) resulting from game patches (changes of game 

parameters introduced by game developers Chitayat et al. (2023)). These can be 

analogised to traditional sport are game-changing rule changes, such as the introduction 

of the three-point field goal in basketball (Jaguszewski, 2020), or castling in modern chess 

(Pratesi, 2008). However, while these occur on a highly frequent basis in most major 



†While some Rocket League patches have changed gameplay, very few have resulted in 

meta-shifts. Examples of such could be the addition of directional air roll in patch v1.17 

(25/04/2016), addition of deadzone/ sensitivity customisation in patch v1.25 

(07/12/2016), standardisation of car hitbox/ turning radii in patch v1.35 (05/07/2017), and 

the standardisation of maps in Competitive Season 6 (Legacy; 29/08/2017). 
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esports (i.e., approximately every two weeks in League of Legends; Sabtan et al., 2022), 

they have barely been a factor in Rocket League†, due to its stable and standardised game 

mechanics. Hence, the understanding of in-game factors leading to success in Rocket 

League remains far robust than most other esports over time; yet another strength of using 

Rocket League as a target esport for human factors research. 

9.4. Limitations and Future Research 

Again, it is extremely important to outline the novelty of the work outlined in the current 

thesis. This was the first experimental foray into a large, complicated, and highly nuanced 

area. As such, there are naturally many more questions raised than answers gained at the 

conclusion of the work. To avoid the risk of taking of too much space within the 

discussion, I have omitted most of these future avenues of inquiry here, but have instead 

provided a paragraph(/s) description of four of them within Appendix 9.1. Also, like the 

previous section, I have omitted the limitations and future research avenues which are 

highly specific to each chapter and, as they are discussed within the given chapter. Instead 

I will focus on three broader concepts here; generalisability, expertise, and forms of sleep 

loss.  

9.4.1. Generalisability 

Throughout this discussion, I have suggested that the effects of sleep loss on in-game 

performance may not be completely uniform between esports of different genres. Despite 

great diversity in game dynamics, esports are often discussed as one activity (to a much 

greater degree than traditional sports are). This is likely due to a combination of reasons, 

the first being the sheer infancy of esports research (Cranmer et al., 2021). The second 

reason is a relative ambiguity or line-blurring between esports of different genres 

(Apperley, 2006). Lastly, almost all esports use similar (if not identical) input (keyboard 

and mouse or controller) and output (computer monitor) devices, within a seated posture. 

A traditional sport analogy would be to consider all sports which involve running as the 

primary movement modality as identical; including sprinting, marathon running, rugby, 

netball, baseball, and squash. Following this analogy, we would certainly not consider all 

human factors (including relative demands of strength, aerobic/ anaerobic capacity, 
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agility etc.) leading to optimal performance to be identical between these sports, however 

we can certainly find insight and applicability from research within one of these sports, 

for another one of these sports. In the same vein, we should not consider the effects of 

sleep loss to be exactly identical between esports of different genres. As discussed in 

Chapter 7, multiplayer online battle arena (MOBA) games such as League of Legends 

(LoL), which have match lengths spanning from 20-90 minutes and often without 

gameplay breaks, present as an esport in which the time-on-task effect is far more likely 

to play a role than other esports. Likewise, a first person shooter (FPS) game like Counter 

Strike: Global Offensive (CS:GO) is far more likely to have events in which fast 

responses are the primary determinant of success, compared to other esports. 

This issue of generalisability remains relevant even within the discussion of Rocket 

League as an esport. I specifically explored 1v1 Rocket League, due to the potential 

procedural and analytical complexities that the inclusion of participants and team-based 

gameplay would introduce. However, the game mode which receives the greatest amount 

of attention as a competitive game mode is 3v3 Rocket League. The differences between 

1v1 and 3v3 Rocket League, with respect to how sleep loss may impact performance, 

warrant consideration. Game specific differences (i.e., relative importance of positioning, 

certain in-game mechanics etc.) between 1v1 and 3v3 are frequently theorised however 

not formally explored within peer-review literature. Beyond gameplay specific 

differences, the adverse impact that sleep loss may have on leader-follower interactions 

(Barnes et al., 2016; Guarana & Barnes, 2017; Olsen et al., 2016) and specialised 

communication abilities (Banks et al., 2019; Harrison & Horne, 2000; Holding et al., 

2019; Whitmore & Fisher, 1996) warrant consideration. 

It is important to stress that the results outlined within this thesis with regards to sleep 

loss present as the most generalisable and applicable, probably to all esport contexts, to 

date. However, it is noted that the generalisability of my results to all esport contexts is 

not perfect, and many factors which are relevant to specific esports contexts could not be 

considered.  

9.4.2. Expertise 

Within the discussions of Chapter 2 and Chapter 5, I discussed how esports (and 

specifically Rocket League) may be a useful window to explore how expertise moderates 

the effect of sleep loss on cognitively demanding task performance. This is due to the use 

of the Elo system (called MMR in Rocket League), which is a continuous and accurate 
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measure of in-game expertise, along with measures of match outcome and performance 

indicators outlined in Chapter 5. However, this was not a primary aim within the scope 

of the thesis, and as such, analysis with consideration to player expertise was not provided 

in Chapter 7. By including the MMR of the TSD player within each pair as a fixed effect 

and allowing for a session by MMR interaction within the models exploring GD and PIs, 

this idea could be explored using our data. I performed this analysis for curiosities sake, 

and included the model creation process and results tables (as per Chapter 7) as 

Appendix 9.2. In short, player MMR did not appear to influence the (lack of) relationship 

between the TSD protocol and GD, nor the relationship between the TSD protocol and 

any PI with the exception of time spent goalside of the ball difference, where a negative 

session by MMR interaction trended toward significance (b = -0.0064±0.0035, t(1, 

257.06) = -1.83, p = 0.058). This interaction would suggest that the extent to which time 

spent goalside of the ball difference increased following TSD (a trend towards 

significance, p = 0.059, that was replicated in this analysis, p = 0.058) decreased as player 

MMR increased. In other words, there was a trend towards TSD impacting this PI more 

in less skilled players, compared to more skilled players.  

I would encourage future use of esports as a tool to explore the moderating role of task 

expertise on sleep loss and its effects on performance. However, this question may be 

better approached by comparing two clearly defined and distinct expertise groups (i.e., 

novice vs. highly skilled). I note that such an approach has been previously undertaken to 

examine differential effects of neurostimulation during esports specific skill learning 

(Toth, Ramsbottom, et al., 2021).  

9.4.3. Forms of Sleep Loss 

The systematic review disseminated in Chapter 2 specifically explored performance 

within the context of sleep restriction (SR). This was because SR is the most ecologically 

relevant form of sleep loss for esport athletes. At the time the review was undertaken, the 

specific design of the sleep loss experimental research was not fleshed out, and the 

direction was leaning towards the undertaking of a SR protocol. However, as protocol 

drafting ensued (coinciding with the easing of COVID-19-related restrictions), it became 

increasingly clear that a SR protocol was not feasible. This was primarily due to 

participant burden and safety concerns. Practically all SR protocols which go beyond one 

night of mild SR (~5hr SO for example, which was highly unlikely to result in any effect) 

necessitate in-person monitoring of sleep, and restriction of participant movement (i.e., 
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the avoidance of driving; this is typically realised by restricting participants completely 

to the laboratory) throughout the protocol. This was highly impractical considering (a) 

most of the included participants were university students and/ or travelling from outside 

of Limerick to complete the protocol, and (b) the absence of a purpose-built laboratory. 

Conversely, a performance impairment (as measured by PVT) equivalent to multiple days 

of SR (~7 days of 4hr SO and ~10 days of 6hr SO; see Figure 1-1, lining up where ~29hrs 

on the 0hr SO line corresponds to relative to the 4hr SO and 6hr SO lines with regards to 

PVT lapses) could be achieved through one night of TSD, and as such, TSD was chosen 

as the sleep loss modality.  

It is important to note that while TSD and SR have some differential effects, these seem 

limited mostly to (a) a slower decrease in a subjective alertness relative to objective 

performance in SR compared to TSD (Banks et al., 2010; Belenky et al., 2003; Van 

Dongen et al., 2003), and (b) a longer recovery period (to return to baseline cognitive 

performance) in SR, compared to the equivalent performance impairment realised 

through TSD (Banks et al., 2010; Belenky et al., 2003). There is no evidence (to my 

knowledge) that outside of the dosage required, TSD and SR result in differential effects 

on an aspect of cognitive performance (i.e., no evidence that SR impacts performance 

within a cognitive domain that isn’t impacted by TSD). This is exemplified by the 

similarity of results between a meta-analysis on the cognitive performance effects of TSD 

(Lim & Dinges, 2010) and SR (Lowe et al., 2017). Hence, I argue that the results from 

the review in Chapter 2 and Chapter 7 can be discussed together, despite focussing on 

different types of sleep loss.  

9.5. Practical implications 

The results presented within this thesis primarily suggest that an acute sleep loss bout is 

unlikely to impact overall in-game esport performance to a measurable degree. This 

presents as somewhat of a positive message for esport coaches and players alike, who 

may be concerned about sleep loss experienced immediately before competition spelling 

the difference between victory and defeat in upcoming competitions (which can have 

significant potential financial ramifications). This is highly relevant considering that 

esport athletes face significant risk of experiencing disturbed sleep (Bonnar, Lee, et al., 

2019; Lee et al., 2020; S. Lee et al., 2021), including the same disturbances frequently 

observed the night prior to competition for traditional sport athletes (Bonnar, Castine, et 

al., 2019; Juliff et al., 2015). 
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However, this implication is caveated by the fact that only one esport was explored, and 

the generalisability of the results presented here (while almost certainly being greater than 

any other work disseminated to date) to other esports remains unknown. Athletes, 

coaches, and individuals with a vested interest in optimising in-game esports performance 

outside of Rocket League, should interpret the relevance of the current findings at the 

same level that individuals outside of a basketball context should interpret findings 

relating sleep to basketball-related performance measures, such as those from Mah et al. 

(2011), Staunton et al. (2017), and Fox et al. (2021), for example.   

Also, these results presented within this thesis do not absolve sleep as an important human 

factor within the world of esports. Sleep plays an instrumental role in learning (including 

the refinement of fine-motor skills, i.e., Walker et al. (2002)) and hence is important for 

the learning/ refinement of in-game skills and strategies. These skills/ strategies are the 

primary determinant of success in esports, and as such, are the ultimate currency for the 

esport athlete, who compete in a profession with remarkably low job security (Smithies 

et al., 2020). Given this importance of habitual sleep for esport athletes, combined with 

worrying poor sleep quality and behaviours previously outlined for esport athletes 

(Bonnar et al., 2022; Lee et al., 2020; S. Lee et al., 2021) and a relative reluctance/ dislike 

of sleep monitoring/ hygiene practices aiming to address such issues (Bonnar et al., 2023), 

I caution that my results do not downplay the importance of sleep for esports. As such, I 

encourage future research towards and employment of interventions aiming to improve 

habitual sleep outcomes for esports athletes, such as that outlined by Bonnar et al. (2022).  

9.6. Conclusions  

Esports are by far the fastest growing competitive activity worldwide. Successful esport 

athletes can receive significant earnings (135 players have earnt over €1million as of June 

20, 2023; Esports Earnings (2023a)) by playing the video game they love, making esports 

an attractive career path for many. However, esports as a career is characterised by 

extremely short career spans (Ward & Harmon, 2019) and minimal job security (Smithies 

et al., 2020). These factors, alongside demands from sponsors and stakeholders, result in 

an extreme drive for in-game performance maximisation. Esports is characterised by a 

high relative importance of cognitive factors, leading some researchers to refer to esport 

athletes as cognitive athletes (Campbell et al., 2018). This, combined with the wealth of 

literature linking sleep loss to worsened cognitive performance, has led many researchers 
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and esport athletes alike to hypothesise that sleep loss leads to worsened in-game 

performance.   

In this thesis, I tested this for the first time in an experimental design, using 1v1 Rocket 

League. I show that ~29hr TSD (equivalent to ~7 days of 4hr TIB or ~10 days of 6hr TIB, 

considering lapse propensity on the PVT (Van Dongen et al., 2003)) does not impact in-

game performance in 1v1 Rocket League, despite potentially causing strategy changes 

observed using in-game performance indicators (which were identified using a machine 

learning notational analysis approach). I conclude that acute sleep loss immediately prior 

to competition may not be of primary concern for esport athletes, though caution this 

interpretation with the observation that different esports can vary in factors (for example, 

length of gametime without a break) which may influence the relative impact of sleep 

loss on performance.   
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