
 Appendix 7.1 – Chapter 7 Power Calculation 

Sample size was determined through an a priori power analysis, based on the predicted model 

structure for the primary analysis exploring the effect of total sleep deprivation on our overall in-

game outcome measure, goal difference (GD). As no prior research currently exists exploring the 

effect of total sleep deprivation on any esports performance outcome measure, we used a 

published meta-analysis on the effects of total sleep deprivation on cognition (Lim & Dinges, 

2010) to obtain an estimated effect size. We pooled the effect sizes provided from all cognitive 

domains to obtain an estimated effect size of g = 0.435. To obtain an estimate for pooled 

standard deviation, we explored a large (21,588 matches) dataset of Rocket League matches 

played by skill-matched individuals that has been previously described (Smithies et al., 2021), 

see chapter 5. Specifically, we took the 14 most recent matches from 23 player-opponent pairs 

within the dataset and used the mean of the pair standard deviations as our estimate (SDpooled = 

2.799). Using these effect size and SD estimates, we calculated the mean effect of the extended 

wakefulness intervention as a GD change of 1.218.  

We then conducted a power analysis using a mixed-effects model (MEM) framework according 

to DeBruine and Barr (2021). We predicted that the model selected through our random effects 

selection criteria would be one with a by-pair random intercept and a by-pair random slope. To 

estimate the by-pair random intercept standard deviation, we took the standard deviation of pair 

means from the aforementioned 23 pairs as our estimate (SD = 1.944). To obtain an estimate of 

residual variance, we first calculated the standard deviation for GD in the entire previously 

mentioned dataset (SD = 3.777). We subtracted our by-pair random intercept standard deviation 

from this estimate to obtain our estimate of residual variance (SD = 1.833). We included a by-

pair random slope of 1.5 to allow a non-effect of the intervention to be approximately 1SD from 

the mean effect. Lastly, we included a correlation between random intercept and random slope of 

0.2, as per DeBruine and Barr (2021).  

The R markdown for the power analysis/ simulation is provided below: 
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Install the necessary packages: 

library(lme4) 

## Loading required package: Matrix 

## Warning: package 'Matrix' was built under R version 4.2.3 

library(lmerTest) 

## Warning: package 'lmerTest' was built under R version 4.2.2 

##  
## Attaching package: 'lmerTest' 

## The following object is masked from 'package:lme4': 
##  
##     lmer 

## The following object is masked from 'package:stats': 
##  
##     step 

library(tidyverse) 

## Warning: package 'tidyverse' was built under R version 4.2.2 

## Warning: package 'ggplot2' was built under R version 4.2.3 

## Warning: package 'tibble' was built under R version 4.2.3 

## Warning: package 'tidyr' was built under R version 4.2.2 

## Warning: package 'readr' was built under R version 4.2.2 

## Warning: package 'purrr' was built under R version 4.2.2 

## Warning: package 'dplyr' was built under R version 4.2.3 

## Warning: package 'stringr' was built under R version 4.2.2 

## Warning: package 'lubridate' was built under R version 4.2.2 

## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.
0.0 ── 
## ✔ dplyr     1.1.2     ✔ readr     2.1.4 



## ✔ forcats   1.0.0     ✔ stringr   1.5.0 
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1 
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0 
## ✔ purrr     1.0.1 

## ── Conflicts ────────────────────────────────────────── tidyverse_conflict
s() ── 
## ✖ tidyr::expand() masks Matrix::expand() 
## ✖ dplyr::filter() masks stats::filter() 
## ✖ dplyr::lag()    masks stats::lag() 
## ✖ tidyr::pack()   masks Matrix::pack() 
## ✖ tidyr::unpack() masks Matrix::unpack() 
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all 
conflicts to become errors 

library(dplyr) 

Set the seed: 

set.seed(123) 

Set up the custom data simulation function: 

my_sim_data <- function( 
    n_subj = 19, # Number of pairs 
    n_ingroup = 7, # Number of games in first session 
    n_outgroup = 7, # Number of games in second session 
    beta_0 = 0, # Mean GD at baseline (0) 
    beta_1 = -1.21776394099438, # Estimated magnitude of ~29hr TSD effect on 
GD 
    tau_0 = 1.94444283, # Estimated by-subject random intercept standard devi
ation 
    tau_1 = 1.5, # Estimated By-pair random slope standard deviation 
    rho = 0.2, # Estimated correlation between intercept and slope 
    sigma = 1.832777471) { # Estimated residual variance (standard deviation) 
  items <- data.frame( 
    item_id = seq_len(n_ingroup + n_outgroup), 
    condition = rep(c("TSD", "CONTROL"), c(n_ingroup, n_outgroup)), 
    X_i = rep(c(0, 1), c(n_ingroup, n_outgroup))) 
  # variance-covariance matrix 
  cov_mx <- matrix( 
    c(tau_0^2, rho * tau_0 * tau_1, rho * tau_0 * tau_1, tau_1^2 ), 
    nrow = 2, byrow = TRUE) 
  subjects <- data.frame(subj_id = seq_len(n_subj), 
                         MASS::mvrnorm( n = n_subj, mu = c(T_0s = 0, T_1s = 0
), Sigma = cov_mx)) 
  crossing(subjects, items) %>%  mutate(e_si = rnorm(nrow(.),  
                                                     mean = 0, sd = sigma), 
                                        GD = beta_0 + T_0s +  
                                          (beta_1 + T_1s) * X_i + e_si) %>%  



    select(subj_id, item_id, condition, X_i, GD) 
} 

Tidy table of inputs: 

#tidy table of results 
n_subj = 19 # Number of pairs 
n_ingroup = 7 # Number of games in first session 
n_outgroup = 7 # Number of games in second session 
beta_0 = 0  # Mean GD at baseline (0) 
beta_1 = -1.21776394099438 # Estimated magnitude of ~29hr TSD effect on GD 
tau_0 = 1.94444283 # Estimated by-subject random intercept standard deviation 
tau_1 = 1.5 # Estimated By-pair random slope standard deviation 
rho = 0.2 # Estimated correlation between intercept and slope 
sigma = 1.832777471 # Estimated residual variance (standard deviation) 

This code helps automate the whole process: 

single_run <- function(...){dat_sim <- my_sim_data(...) 
mod_sim <- lmer(GD ~ 1 + X_i + (1 + X_i | subj_id), data = dat_sim) 
broom.mixed::tidy(mod_sim) 
} 

Test the simulation on a single run to confirm everythings working as it should 

single_run() 

## # A tibble: 6 × 8 
##   effect   group    term             estimate std.error statistic    df  p
.value 
##   <chr>    <chr>    <chr>               <dbl>     <dbl>     <dbl> <dbl>    
<dbl> 
## 1 fixed    <NA>     (Intercept)        -0.141     0.431    -0.326  18.0  7
.48e-1 
## 2 fixed    <NA>     X_i                -1.63      0.339    -4.80   18.0  1
.43e-4 
## 3 ran_pars subj_id  sd__(Intercept)     1.75     NA        NA      NA   NA       
## 4 ran_pars subj_id  cor__(Intercept…    0.686    NA        NA      NA   NA       
## 5 ran_pars subj_id  sd__X_i             1.13     NA        NA      NA   NA       
## 6 ran_pars Residual sd__Observation     1.77     NA        NA      NA   NA 

Run the simulation and save (ignore singular and convergence warnings if only occasional) 

n_runs <- 1000 
sims <- purrr::map_df(1:n_runs, ~ single_run()) 

## boundary (singular) fit: see help('isSingular') 
## boundary (singular) fit: see help('isSingular') 
## boundary (singular) fit: see help('isSingular') 
## boundary (singular) fit: see help('isSingular') 
## boundary (singular) fit: see help('isSingular') 
## boundary (singular) fit: see help('isSingular') 



## boundary (singular) fit: see help('isSingular') 
## boundary (singular) fit: see help('isSingular') 

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkCon
v, : 
## Model failed to converge with max|grad| = 0.00293755 (tol = 0.002, compone
nt 1) 

## boundary (singular) fit: see help('isSingular') 

sims %>% filter(effect == "fixed") %>% select(term, estimate, p.value) 

## # A tibble: 2,000 × 3 
##    term        estimate p.value 
##    <chr>          <dbl>   <dbl> 
##  1 (Intercept)   -0.127 0.816   
##  2 X_i           -1.69  0.00112 
##  3 (Intercept)    0.245 0.631   
##  4 X_i           -0.635 0.122   
##  5 (Intercept)   -0.662 0.158   
##  6 X_i           -1.22  0.0132  
##  7 (Intercept)    1.12  0.0395  
##  8 X_i           -1.19  0.0196  
##  9 (Intercept)   -0.410 0.226   
## 10 X_i           -1.10  0.0115  
## # ℹ 1,990 more rows 

Calculate the mean estimates and power for specified alpha 

alpha <- 0.05 
sims %>% filter(effect == "fixed") %>% group_by(term) %>% summarize( 
  mean_estimate = mean(estimate), meas_se = mean(std.error), 
  power = mean(p.value < alpha), .groups = "drop") 

## # A tibble: 2 × 4 
##   term        mean_estimate meas_se power 
##   <chr>               <dbl>   <dbl> <dbl> 
## 1 (Intercept)       -0.0195   0.469 0.059 
## 2 X_i               -1.21     0.406 0.805 

The power to detect the proposed effect is presented as power for X_i  

Power at 19 pairs = 0.8 


