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AN EMPIRICAL INVESTIGATION INTO THE EFFECTS
OF SLEEP LOSS ON ESPORTS PERFORMANCE

I. Abstract

Esports (competitive, organised video game play) has risen from obscurity to rival and/
or surpass many traditional sports in terms of popularity, viewership, and earnings. As a
result, human factors are beginning to be explored in the context of esports, ultimately
with the same goals that are pertinent in much traditional sport research; to augment
performance, or minimise performance loss. One human factor which has drawn attention
within esports literature and practice is sleep. This is largely due to the substantial
cognitive demands of esports, combined with the wealth of research linking sleep loss to
impeded cognitive performance. Nonetheless, the relationship between sleep loss and
esports performance has not been formally investigated to date; this current thesis aims
to address this gap in scientific knowledge. Chapter two systematically explores the
current scientific literature on how acute sleep restriction impacts the cognitive
performance specifically for individuals who engage in cognitively demanding tasks with
critical or safety-critical outcomes in their occupation or area of expertise (Elite Cognitive
Performers). This chapter finds simple cognitive tasks to be most susceptible to sleep loss
induced performance hindrance, however performance on complex tasks demanding
cognitive flexibility (e.g. task-switching, a cognitive ability deemed highly relevant to
esports) also appears potentially sensitive to sleep loss. Chapter three examines the test-
retest reliability and presence of practice effects for a shortened version of the Category
Switch Task, a task-switching paradigm with unpredictable switches, which allows for
the assessment of cognitive performance on a complex task with and without cognitive
flexibility demands. Chapter four provides an introduction to the esport Rocket League,
which is the target esport within the current thesis. Chapter five outlines the identification
of performance and rank indicators in the esport Rocket League through use of machine
learning methods on a large dataset of in-game data. Performance indicators outlined are
metrics targeted within later exploratory analysis on sleep loss and its impact on in-game
Rocket League performance. Chapter six outlines key methodological details about the
sleep measurement methods and analytical approach used in the subsequent chapter. It
includes a bespoke simple imputation approach to deal with missing actigraphy-derived
sleep data, which | show to outperform other simple imputation approaches. Chapter
seven outlines a study exploring how experimentally induced total sleep deprivation
impacts the cognitive and in-game performance of esport players. Cognitive tasks include
the Psychomotor Vigilance Task and Category Switch Task, and the esport targeted was
Rocket League; chosen due to various properties lending itself strongly to experimental
research, as well as access to performance indicators (from chapter five) allowing for
analytical depth. I find the overall in-game performance of Rocket League players to not
change following ~29 hours of total sleep deprivation, despite increases in sleepiness, and
decreases in alertness, motivation, and cognitive performance, immediately prior to
esport play. Further exploratory analysis suggests that sleep deprived players may have
adopted a simpler or safer (or both) playstyle. Chapter eight combines the findings of
chapter seven with expert opinion from professional players, coaches, and analysts, to
explore this playstyle change. In this chapter, | find that simpler and safer playstyles are
very much analogous within Rocket League, helping to contextualise my findings with
previous sleep loss and decision making literature. Collectively, the chapters within the
current thesis provide novel insights into how sleep loss impacts in-game performance
within esports, providing further evidence and discourse toward the topic of performance
optimisation in esports.
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Chapter 1. Introduction



1.1. Thesis scope

The main objective of the work outlined within this thesis is to explore if and how acute
sleep loss may impact performance in the world of esports. Throughout the thesis, the
definition of esports provided by Campbell et al. (2018), “video/computer games played
within the medium of cyberspace competitively” (p. 161), is used as the working

definition for esports.

The thesis objective is addressed in a multidisciplinary fashion and with use of a variety
of approaches. Firstly, | attempt to gain insight into how sleep loss may impact esports
performance by first exploring how sleep loss affects both the cognitive and occupation
specific performance of individuals with work demands comparable to those within
esports. This is undertaken by way of a systematic review. From this review, | outline
task switching as a cognitive function of interest, and subsequently assess the presence of
practice effects and reliability of a task switching test, the Category Switch Task (CST),
in a test-retest design administration. These pieces of work were performed within the
context of a perceived importance of cognitive factors for in-game esports performance
(Campbell et al., 2018), an idea supported by large bodies of work demonstrating
experienced action video gamers to have improved performance in many cognitive
domains relative to their peers, and practice in action video game play leading to
improved cognitive performance (Bediou et al., 2018; Bediou et al., 2023; Toth et al.,
2020).

Beyond looking at cognitive performance, a direct measure of in-game esport
performance was sought. Firstly, Rocket League was identified as a suitable esport to
assess performance in, within an experimental design. A machine learning notational
analysis was performed within this esport to uncover in-game metrics directly relevant to
performance. Lastly, an experimental protocol was undertaken, in which the impact of a
total sleep deprivation protocol on cognitive and in-game Rocket League performance

(using measures explored in the abovementioned work) was assessed.
1.2. Introduction outline

The following sections within this chapter will describe many of the themes directly
relevant to the overarching topic of acute sleep loss and its influence on esports
performance. Firstly, the world of esports will be briefly introduced. Following this, the

introduction will hone in on the topic of sleep; it will discuss the perceived adverse impact
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of sleep loss on esports performance, theories that have been developed to explain how
sleep loss impacts cognitive performance, different types of sleep loss, and briefly discuss
the role of circadian rhythms. Three key considerations when defining the relationship
between sleep loss and esports performance will be introduced and outlined in preparation
for later chapters. The chapter will conclude by listing the thesis purpose, research

questions, aims and hypotheses explored.
1.3. Esports and human factors

Esports, already massively popular, are comfortably the fastest growing competitive
activity worldwide. Here and throughout this thesis, | adopt Campbell et al. (2018)’s
definition of esports, being “video/computer games played within the medium of
cyberspace competitively” (p. 161), though | note the existence of countless definitions
for esports, each with their similarities and nuances (see Cranmer et al., 2021 for a
collation of definitions). There is considerable and ongoing debate as to esports’ status as
a sport, ignited by inclusions/ exclusions of esports within sport specific arenas such as
the Olympics (Olympics.com, 2023; Ribeiro et al., 2023; Todt et al., 2020), and
Commonwealth Games (Olympics.com, 2022; Tidy, 2022); | will avoid this debate within
this thesis, but will point to numerous published articles (Cranmer et al., 2021; Franks &
King, 2023; Garcia & Murillo, 2020; Hallmann & Giel, 2018; Hamari & Sjéblom, 2017;
Holden et al., 2017; Jenny et al., 2017; Reitman et al., 2019) for nuanced discussion of
this topic. Importantly, the term esports is analogous to sport in that it encompasses a
multitude of games, with different dynamics, strategies, cognitive and physical demands.
Continuing this analogy, esports can be categorised into genres according to these
characteristics; and again like traditional sport, differences and debates over classification
methods exist (Apperley, 2006; Jang & Byon, 2020; Jonasson & Thiborg, 2010; Toth,
Conroy, et al., 2021).

Esports are an integral part of the juggernaut gaming industry, which has a projected
market value of €375billion in 2023 (Statista, 2023). The staggering value of esports is
attributable primarily to the large and dedicated fanbases they foster, with viewership
estimates exceeding one billion individuals in 2020 (Ahn et al., 2020) (and growing
yearly). Hence, esports present as an enticing medium for publicity, attracting large
investment from major companies such as Microsoft, Coca-Cola, Amazon, and Tencent
(Marques, 2019). For successful esports organisations, these financial outlays are not

trivial, with the ten most valuable esports organisations combined being valued at



approximately ~€3.21billion in 2022 (Knight, 2022). For top players within popular
esports, financial rewards can be lucrative, with over 135 players (as of June 20, 2023)
earning more than €1million in competition earnings alone (Esports Earnings, 2023a),
and with average yearly contracts exceeding $400,000USD within the top-tier of League
of Legends (Studholme, 2023). However, it should be noted that there is an extreme
skewing in esports prize money distribution, where winners receive a disproportionate
amount of earnings compared to other competitors (Coates & Parshakov, 2016),
alongside extremely poor job security and career lifespan (discussed by Smithies et al.,
2020), altogether placing an extreme emphasis on performance maximisation for esport

players and organisations alike.

In light of this, there is ever increasing interest towards understanding the human factors
that influence esports performance in order to maximise chances for success; both in field-
based and laboratory settings. To demonstrate the latter, | turn to a database of 566 journal
articles, all of which include the word esport* (with the asterix meaning truncation here
and throughout; so this search would include perform, performs, performance etc.) in
their title or abstract and are indexed by the large multidisciplinary databases Embase,
Ovid Medline, and Web of Science as of April 23, 2023 (this database was created for a
book chapter on research methods in esports; see x. List of Publications). This database
includes articles published between 2013 and 2023, and covers all topics, including arts,
economics, engineering, law, philosophy, psychology, social sciences, and sport sciences.
Of the 566 articles, 134 mention performance (perform*) in their title and abstract,
emphasising that (unsurprisingly) performance is a key theme within much of esports
research. One human factor which has received interest within the short lifespan of
esports research is sleep. As many as 25 peer-reviewed scientific articles (from the
abovementioned database) discuss sleep (sleep*) in the title or abstract as of June 20,
2023.

1.4. An introduction to sleep

For most purposes, sleep can be simply defined as “a reversible behavioural state of
perceptual disengagement from an unresponsiveness to the environment” (Sullivan et al.,

2021, p. 16)7. In humans, sleep is mostly and normally (but not exclusively) experienced

4
1A universally agreed upon definition of sleep does not exist, which is a persistent issue
in sleep research and medicine, particularly when expressing or lobbying for more
emphasis of sleep in population health conversations and within major health
organisations. For a brief introduction to the difficulty of defining sleep, see Siegel
(2021).



nocturnally and monophasically (i.e. one ‘block’ of sleep per 24-hour cycle, as opposed
to multiple dispersed blocks or ‘polyphasic’ sleep) in a recumbent posture, with closed

eyes and a marked reduction of behavioural activity.

While initial forays into human sleep research largely concluded that sleep was a passive
and idling state (see Pelayo & Dement, 2021 for a detailed history of sleep research), a
paper published in 1953 (Aserinsky & Kleitman, 1953) and a cascade of subsequent
research has ultimately led to the key understanding that sleep has two distinct sleep
states; REM and non-Rapid Eye Movement (NREM) Sleep. NREM sleep can be further
broken down into stage N1 (colloquially referred to as ‘light sleep’, and normally
accounting for 2-5% of sleep in healthy young adults), N2 (normally 45-55% of sleep),
and N3 (often call slow wave sleep or SWS in human sleep literature, and colloquially
referred to as ‘deep sleep’; normally 10-20% of sleep)t. Together with REM (normally
20-25% of sleep), these are the four sleep ‘stages’. Broadly speaking, in humans, stage
N2 and N3 sleep are most commonly associated with memory and neuroplasticity, with
stage N3 additionally being associated with physical repair, growth, and immune system
functioning, while REM sleep is associated with emotional memory consolidation and
emotional regulation. A high proportion of stage N1 sleep is often associated with
disordered sleep (i.e. obstructive sleep apnoea or periodic leg movement disorder;
(Sullivan et al., 2021)).

In normal human sleep, these sleep stages are progressed through in a somewhat
predictable pattern, which last for ~90 minute sleep ‘cycles’ (Dement & Kleitman, 1957).
However, the proportion of certain sleep stages within each sleep cycle changes
(predictably) across a night of sleep, such that most stage N3 sleep (linked to Process S,
see section 1.8) is experienced within the first third of a nighttime sleep bout, and REM
sleep (linked to Process C, see section 1.8) bouts are generally longest within the last
third of a nighttime sleep bout (Sullivan et al., 2021). The pattern of one’s transition

through sleep stages is referred to as sleep architecture.

The amount of nighttime sleep needed for optimal functioning contains considerable
individual variability due to genetic factors (Franken et al., 2001), and is heavily

influenced by extraneous factors such as prior daytime activity (Horne & Minard, 1985)

5
+The American Academy of Sleep Medicine (AASM) guidelines for defining and scoring
NREM sleep stages changed in 2007; previously, NREM sleep was separated into four
stages, with ‘slow wave sleep’ having two distinct stages (Stage 3 and Stage 4) instead of
just one (N3). Thus, the sleep stages provided within the description about are not
necessarily reflective of those used in past or contemporary literature.



or prior sleep history. However, the National Sleep Foundation provide a general
recommendation (derived through a systematic review and Delphi type consensus voting)
for young adults of seven to nine hours of nighttime sleep (Hirshkowitz et al., 2015). The
National Health Foundation have also provided recommendations for various sleep
quality related measures, including sleep onset latency (SOL), number of nighttime
awakenings, wake after sleep onset (WASO), sleep efficiency (SE%), and proportions of
nighttime sleep spent in different sleep stages (Ohayon et al., 2017). It is noted that the
recommendations are provided across a spectrum of ages, owing to the well understood

changes to normal human sleep across the lifespan (Miner & Lucey, 2021).

While for the majority of the thesis sleep will be discussed with respect to its relationship
to task performance (i.e. esports performance), sleep (and the myriad of relevant themes
around it; sleep disorders, sleep quantity and quality, sleep timing and variability,
circadian factors etc.) is a component of the human experience which’s importance spans
well beyond its influence on performance. Indeed, reduced sleep quality/ quantity,
disturbed and/ or disordered sleep have been linked to reduced academic performance
(Dewald et al., 2010) and quality of life (Baldassari et al., 2008), and an increased risk of
obesity and diabetes (Anothaisintawee et al., 2016; Cappuccio et al., 2008; Fatima et al.,
2016; Itani et al., 2017), hypertension (Itani et al., 2017; Wang et al., 2015), stroke
(Johnson & Johnson, 2010), markers of systemic inflammation (Irwin et al., 2016;
Nadeem et al., 2013), memory impairment (Wallace & Bucks, 2013), dementia (Shi et
al., 2018), work injuries (Uehli et al., 2014), motor vehicle crash (Tregear et al., 2009),
risky behaviours (Short & Weber, 2018), suicidal ideation and behaviours (Chiu et al.,
2018; Harris et al., 2020; Liu et al., 2020; Pigeon et al., 2012), and all-cause mortality
(i.e. mortality, irrespective of reason) (Cappuccio et al., 2010; da Silva et al., 2016;
Gallicchio & Kalesan, 2009; Itani et al., 2017). Lastly, there is an increasing
understanding of the importance of sleep regularity, with a recent analysis of ~61,000
individuals finding it to be a better predictor of all-cause mortality than sleep duration
(Windred et al., 2023).

1.5. Sleep in the esports context

Despite the well understood importance of sleep for human health, dialogue around sleep
within an esports context remains primarily focused on esport performance. Indeed, an
aptly titled seminal article regarding sleep and esports “Sleep and performance in

Eathletes: for the win!” explored potential risk factors of sleep disturbances in esports,



however did so from a perspective that such disturbances may lead to esport performance
deficits (Bonnar, Castine, et al., 2019). The authors argued that while sleep is being
increasingly recognised as a factor which impacts traditional sport performance, esports
performance is more greatly founded in cognitive abilities than almost all traditional
sports (which rely on a higher degree of physical performance). As cognitive performance
has been demonstrated to degrade more greatly than physical performance with sleep loss
(i.e., Fullagar et al., 2015; How et al., 1994; Pilcher & Huffcutt, 1996), it is logical to
hypothesize that sleep loss may have a greater detrimental impact on esports performance
relative to performance in traditional sports. This logic is extended within many reviews
and original research articles around sleep and esports (Bonnar, Lee, et al., 2019; Bonnar
et al., 2022; Goulart et al., 2023; S. Lee et al., 2021; Moen et al., 2022; Sanz-Milone et
al., 2021). Clearly, researchers, practitioners, and professionals have an interest in
optimising esport athletes sleep that is motivated (at least to a large degree) by

performance optimisation reasons.

Additional reasons for sleep being highlighted as a performance are (a) a series of studies
reporting concerning sleep behaviours at a group level within esport populations, and (b)
the existence of risk factors for reduced/ disturbed sleep which includes those already
highlighted for traditional sport athletes (Walsh et al., 2021) but also which spans beyond
this. I will briefly summarise the patterns in esport athlete sleep behaviours below, but |
implore interested readers to read the original articles cited for further context and

information.

Generally, esport athletes experience habitual nighttime total sleep times (TSTs; 6.5-8
hours) comparable to those described for other young adult populations (Bonnar et al.,
2022; Gomes et al., 2021; S. Lee et al., 2021; Moen et al., 2022; Thomas et al., 2019).
However, most notable is severely delayed sleep onset and wake times; while some
studies have reported already delayed group means/ medians of ~2am and ~10am
respectively (Gomes et al., 2021; Moen et al., 2022; Sanz-Milone et al., 2021), others
have reported even later mean habitual sleep onset ~5am and wake ~12pm times, with
evidence of regional differences regarding these values (Bonnar et al., 2022; S. Lee et al.,
2021). Unsurprisingly, a high proportion (~60%) of esport athletes present as evening
chronotype (Gomes et al., 2021; Sanz-Milone et al., 2021). | note that while TST appears
largely normal, values on sleep quality measures such as SOL, WASO (both >30min;
Bonnar et al. (2022); S. Lee et al. (2021)) and SE% (as low as 68%; Moen et al. (2022))



are below those recommended by the National Sleep Foundation for young adults
(Ohayon et al., 2017).

Regarding risk factors for reduced/ disturbed sleep, | firstly note that with the exception
of early morning training, all traditional sport athlete specific risk factors outlined in a
2021 British Journal of Sports Medicine sleep and athlete consensus statement (pre-
competition cognitive arousal, long-haul travel and unfamiliar sleeping environment
following such travel, night competition, and high training loads; Walsh et al. (2021; see
Figure 1), as well as caffeine use during competition, appear to be relevant to some degree
in elite esports. However, the esports environment seems to result in further unique risk
factors. These are discussed in depth by Bonnar, Castine, et al. (2019) and Bonnar, Lee,
et al. (2019), however to highlight some highly pertinent factors; esports are (a)
experienced through blue-light emitting computer monitors which, when used during the
evening/ nighttime, may suppress endogenous melatonin secretion, potentially delaying
circadian phase and reducing sleep quality/ quantity (Green et al., 2017; Schollhorn et al.,
2023), and (b) cognitively/ physiologically arousing by design. The combination of these
two factors have been previously highlighted as a mechanism potentially explaining
gaming frequency/ duration and poor sleep outcomes (Kemp et al., 2021). Behavioural
factors likely further compound this risk; there appears to be a ‘culture’ within elite
esports which promotes (and may necessitate at timest) play into the late night/ early
morning (Bonnar, Lee, et al., 2019; Lee et al., 2020), and simultaneously, esport athletes
are seemingly quite unwilling to participate in sleep monitoring/ hygiene practices
(Bonnar et al., 2023).

1.6. Sleep loss and cognitive performance — a speedrun

While the notion that sleep loss impacts cognitive performance to a greater degree than
physical performance is true (or, at the least, there is far more robust evidence for effects
on cognitive vs. physical performance), this statement is a large generalisation made
towards a very rich and diverse scientific field. Cognitive performance refers not to one
domain but a plethora of abilities, tested using a plethora of means. Despite the fact that

with every year of scientific enquiry we develop a stronger understanding of the
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+Much of esport practice is undertaken through scrimmaging (scrims) against other
teams. The timing of this practice is limited by the availability of other teams. Hence,
avoiding late night scrims (which are often the norm; Bonnar, Lee, et al. (2019)) may
limit quality training opportunities. | conclude this point by noting that ~50% of coaches/
support staff consider night training schedules to be a condition that impacts the sleep of
their esport athletes (Bonnar et al., 2023).



mechanisms underlying the effect of sleep loss on performance for various cognitive
domains, there is still a great deal which is not yet understood. As a result, many
(competing and complementary) theories persist, which attempt to shed light on such
mechanisms. The purpose of this section is to provide a brief overview of current
understanding of sleep loss and cognitive performance, some discussion of which is

expanded upon in future chapters.

Regarding cognitive domains which are more/ less sensitive to sleep loss, multiple meta-
analyses (alongside earlier seminal work) have shown a general trend that as task
complexity increases, the adverse effect of sleep loss decreases (Glenville et al., 1978;
Harrison & Horne, 2000; Lim & Dinges, 2010; Lowe et al., 2017; Pilcher & Huffcutt,
1996; Wickens et al., 2015). This is exemplified by the fact that the test most universally
used to assess cognitive performance changes in sleep research (owing largely to its
sensitivity to sleep loss) is the psychomotor vigilance task (PVT); a task which only has
one possible stimulus, and one possible response mechanism. This is not to state that
performance on highly complex tasks is immune to sleep loss induced performance
deficits; rather, effects tend to be smaller, can be more easily compensated for, and appear
meaningful following only more severe bouts of sleep loss. As stated by Lim and Dinges
(2010) (following a meta-analysis on sleep deprivation and cognitive performance),
“although total SD [total sleep deprivation; discussed in Section 1.7] does produce
statistically significant differences in most cognitive domains, the largest effects are seen
in tests of simple, sustained attention” (p. 13). Among more complex tasks, one aspect of
cognition which has received increased attention in the past decade for it’s supposed
sensitivity to sleep loss is cognitive flexibility (i.e., Harrison and Horne (2000); (Honn et
al., 2019); Lawrence-Sidebottom et al. (2020); Stenson et al. (2023); Whitney et al.
(2015); Whitney et al. (2019); Whitney et al. (2017)). Cognitive domains and task
characteristics which are sensitive/ robust to sleep loss (in particular, acute sleep

restriction) will be discussed in greater detail in Chapter 2.

As previously mentioned, the mechanisms for how sleep loss impact aspects of cognition
are not completely understood, and hence are constantly a subject of research. Regarding
simple attention task performance, three predominant (non-exhaustive and non-
exclusive) theories have been proposed and expanded upon throughout the history of
sleep research. All three of these theories provide explanation as to why sleep loss leads
to worsened performance on simple attention taxing tasks. The first of these theories is
the lapse hypothesis (Williams et al., 1959). This hypothesis expands upon work as far

9



back as 100 years ago (Bills, 1931; Bjerner, 1949; Kleitman, 1923; Lee & Kleitman,
1923; Warren & Clark, 1937; Williams et al., 1959) and suggests that sleep loss results
in brief blips in physiological arousal (called blocks in seminal research), and hence
periods of reduced responsiveness to stimuli. The second theory, called the state
instability hypothesis, extends this logic by positing that global (i.e., entire brain) sleep
and wake states (governed by interactions between sleep history and circadian processes,
which are elaborated on in Section 1.8) and top-down compensatory effort to maintain
wakefulness, are highly unstable and can rapidly fluctuate when sleep drive is high,
resulting in variable performance (and increased frequency of these blips or lapses)
(Doran et al., 2001). This theory helps to explain the effects of sleep loss on task
performance at a global (i.e., whole brain) level. More recently, a third theory has been
presented, the local sleep hypothesis, which suggests that network circuitry which is
constantly used due to repetitive task demands (i.e., use-dependent) may be faster to enter
a local sleep state (a state akin to slow-wave sleep but localised to specific neural
assemblies; see Krueger et al. (2008) and Vyazovskiy et al. (2011)) when prior sleep loss
is experienced (Hudson et al., 2020; Van Dongen, Belenky, et al., 2011). The latter two
theories help explain how sleep loss expedites (makes occur earlier) and exacerbates
(makes the effect stronger) the vigilance decrement (or time-on-task effect; stating that
task performance becomes poorer and more variable over prolonged/ sustained bouts).
The theories also help explain an increase in errors on time-sensitive tasks and the
dramatic increase in responses >2 times slower than average on the PVT for example, but
do not explain the observed general slowing of responses across the entire administration
of the test, as demonstrated by the sensitivity of the fastest 10% response time measure
of the PVT to sleep loss (Basner & Dinges, 2011; Belenky et al., 2003; Dinges & Kribbs,
1991; Dinges & Powell, 1988, 1989; Loh et al., 2004).

These theories also do not explain the observed decreases in cognitive performance from
sleep loss which are dissociable from decreases in vigilance/ general alertness. For
explanations of these performance decrements, neuroimaging techniques have been
utilised. From such research, some notable findings have included reductions in brain
activation within the central executive (dorsolateral prefrontal (PFC) cortex, intraparietal
sulcus, posterior parietal areas) and salience (insula, medial frontal cortex) networks
(Krause et al., 2017; Ma et al., 2015).

Additionally, the functional connectivity of various brain areas (especially those with

connections to the hippocampus) have been reported to be altered under sleep loss, as has
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the functional segregation of networks; referring to the ability to simultaneously engage
some networks and disengage others when desirable for a specific function. In the case
of sleep loss, diminished ability to disengage the default mode network is observed during
attention-based tasks. Changes in activation levels to reward and losses have also been
noted following sleep loss. Given the breadth and complexity of this topic, I will not
expand further but instead guide readers to two key reviews within this area (Krause et
al., 2017; Ma et al., 2015). Such changes in the activation of brain areas and networks
could be expected to result in worsened performance within cognitive domains actively
requiring them, such as attentional capacities, working memory, and executive
functioning. However, research has demonstrated that performance on many complex

cognitive tasks appears robust to mild bouts of sleep loss¥.

By again turning to neuroimaging, results from studies have suggested that increased
activation of certain brain areas (in particular, parietal areas, thalamus and frontostriatal
circuitry) during cognitive performance tasks following sleep loss may contribute to the
observed performance preservation on more complex tasks under mild bouts of sleep loss
(i.e., Chuah et al., 2006; Drummond et al., 2000; Drummond et al., 2004; Drummond et
al., 2005; Nakashima et al., 2018). Overall, it is hypothesised that additional resources,
both within and outside of the task-specific areas/ networks, are recruited to overcome
the diminished efficiency of those normally used for task performance. This
understanding is consistent with explanations of task-specificity and individual
differences within the aforementioned local sleep hypothesis. Networks required for the
performance of different tasks may have varying levels of redundancy/ spare capacity that
can be called upon within a bout of sleep loss, and individuals may have varying amounts

of redundancy available within the same given network (Hudson et al., 2020).

However, some researchers argue that compensatory mechanisms may function to
preserve some cognitive functions at the expense of others. Within their dynamic
attentional control framework, Whitney et al. (2019) propose that the compensatory
mechanisms specific to frontostriatal circuitry prioritise the maintenance of task-relevant
information over the changing or updating of such information, such that performance on
tasks not demanding attentional shifts or adaptation to changing task requirements (i.e.,
stable tasks) will be maintained, while performance on tasks with these requirements (i.e.,

flexible tasks) will be degraded. This is purportedly through an increase in tonic striatal

11
1 use <36hrs as the cutoff for mild bouts of total sleep deprivation here and throughout,
due its frequent use (i.e., Harrison & Horne, 1999; Horne & Pettitt, 1985; Whitmore &
Fisher, 1996) and due to bouts beyond this being considered only in highly specialised
circumstances (i.e., military operations).



dopamine levels leading to poorer phasic dopamine signalling, which is considered
critical for cognitive flexibility (Grace, 2000; Whitney et al., 2019).

It is critical to outline some factors which may influence the extent to which performance
compensation occurs under conditions of sleep loss. As performance maintenance
following sleep loss is associated with compensatory recruitment of cognitive resources,
it can be thought of as an increase in effort, and therefore cost, within a cost-benefit
neuroeconomic framework (this idea is described in detail by Massar, Lim and Huettel
(2019)). Simply, a cost-benefit neuroeconomic framework posits that actions taken are
proportional to a subjective value, which is determined by an individual’s perception of
perceived benefit (task completion, victory, monetary rewards) and perceived cost (time,
risk, effort). This increase in cost associated with sleep loss is neatly demonstrated by
studies reporting larger monetary rewards to be required to convince participants to
engage in effortful cognitive tests following sleep loss, when compared when participants
are well rested (Libedinsky et al., 2013; Massar, Lim, Sasmita, et al., 2019). Through this
lens, factors that increase ones intrinsic or extrinsic motivation may help to promote the
maintenance of performance under sleep loss by increasing the perceived benefit. | note
that these factors can be task-specific (i.e., how boring/ monotonous the task is, or
whether feedback is provided) or context specific (whether a competition aspect is
introduced, whether a monetary reward is available, or whether outcomes are critical for
the safety of self or others). Regarding task specific drivers of motivation, I highlight the
following quote from Harrison and Horne (2000) (p. 236); “the prevailing view in SD
[sleep deprivation] research is that high-level complex skills are relatively unaffected by
SD because of the interest they generate and the implicit encouragement for participants

to apply compensatory effort to overcome their sleepiness”.

However, sleep loss can in turn reduce task-specific motivation (Mathew et al., 2021;
Mikulincer et al., 1989; Odle-Dusseau et al., 2010), perhaps as a shift of prioritisation
from task completion toward sleep-preparatory behaviours (Axelsson et al., 2020).
Furthermore, while compensatory effort can maintain performance under sleep loss, there
is an overall tendency to engage in less effortful tasks, actions, or strategies, when the
choice is provided (Engle-Friedman et al., 2010; Engle-Friedman et al., 2003; Sullan et
al., 2021). Lastly, it is important to stress that once a certain amount of sleep loss is
achieved, performance will diminish in spite of any compensatory mechanisms (though
most experimentally manipulated sleep loss studies do not reach this threshold; Dinges

and Kribbs (1991); Horne and Pettitt (1985)).
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1.7. Forms of sleep loss

Until now, | have intentionally used the vague term sleep loss throughout. However in
reality, just like cognitive performance, sleep loss is not a uniform concept but can be
experienced in a multitude of forms. These forms are neatly divided into three categories
by Reynolds and Banks (2010); total sleep deprivation (TSD; also sometimes called
extended wakefulness, or simply sleep deprivation), sleep restriction (SR; sometimes
called partial sleep deprivation), and sleep disruption (or sleep fragmentation). TSD refers
to the total elimination of sleep, normally for 24 hours or more. It is by far the most
commonly studied form of sleep loss in experimental research. SR refers to the reduction
of sleep quantity below that normally experienced for one or more nights. SR is much
more commonly experienced than TSD for both the general population (Banks & Dinges,
2007) and for individuals in many specialised occupations and environments (Caldwell
et al., 2012; Capaldi et al., 2019), however is far less commonly studied than TSD,
predominately due to the extreme logistical boundaries of studies imploring multiple days
of SR (Banks & Dinges, 2007). To avoid confusion, throughout the manuscript I will
refer to one day to two weeks of SR as acute SR, and SR spanning beyond two weeks as
chronic SR. Sleep disruption specifically refers to frequent arousals and wake periods
during nighttime periods, which may reduce sleep quantity but also reduce sleep quality.
While sleep disruption can certainly hinder performance (Bonnet & Arand, 2003; Kahn
et al., 2014), it is generally associated with disordered sleep (Reynolds & Banks, 2010),

and hence is largely outside the scope of the current thesis.

Though both TSD and acute SR are forms of sleep loss, there are two key differences in
the effects they tend to produce. Firstly, while subjectively reported alertness and
sleepiness tend to closely follow objectively measured vigilance under conditions of TSD,
these subjective outcomes underestimate performance degradation under SR (Banks et
al., 2010; Belenky et al., 2003; Van Dongen et al., 2003; also see Figure 1-1). Secondly,
performance recovery following SR takes much longer than a bout of TSD inducing an
identical performance deficit (Banks et al., 2010; Belenky et al., 2003); a finding with
fundamental implications for (bio)mathematical modelling of performance under
conditions of sleep loss (McCauley et al., 2009). These two findings combined have led
to extreme concern regarding the performance, safety and wellbeing of individuals
operating in critical or safety-critical environments; essentially, SR can result in a

situation where people aren’t fully aware of their impairment, and take many days to
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recover to baseline. Despite these differences between TSD and SR and nuances in the
biological mechanisms underpinning impairment from each, the effects of TSD and SR
on task performance during the actual bout of sleep loss appear to be similar and equatable
(Banks & Dinges, 2007; Van Dongen et al., 2003; Figure 1-1). An example of such can
be found as Figure 1-1, which shows data equating performance within PVT and
subjective sleepiness as measured by the Stanford Sleepiness Scale (SSS) following TSD
and bouts of SR of various severities.
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Figure 1-1 A Instances of Lapses on a 10 minute psychomotor vigilance task (PVT), and
B subjective sleepiness scores on the Stanford Sleepiness Scale (SSS), across multiple
days and for participant groups with varying amounts of sleep opportunity (SO) afforded.
In both graphs, higher values denote greater impairment. The grey horizontal line depicts
the expected value for each graph following ~36hrs of total sleep deprivation (TSD),
denoted by the leftmost vertical dashed line in each graph. In A, the rightmost vertical
dashed line denotes the equivalent amount of days (~9) with 4hrs SO required for
predicted PVT lapses to be equivalent to that at ~36hrs TSD. This figure is adapted from
Van Dongen et al. (2003).

1.8. A word on circadian rhythms of performance

While the current thesis concerns itself primarily with sleep loss (in relation to effects on
cognitive and in-game performance among esports players), it would be remiss to not
briefly introduce and discuss the role of circadian rhythms on cognitive performance.

Circadian (a word derived from the Latin phrase “Cirda diem”, meaning “around a day)
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rhythm refers to biological processes occurring with a period of approximately 24-hours.
Within the human body, circadian rhythm’s can be thought of as an orchestra — where
individual cells throughout the body are the musicians, each with nuanced differences in
natural rhythms if left without a conductor, who is present to synchronise the pace and
tempo of the players (Merrow & Harrington, 2020). Within this analogy, the conductor
Is the suprachiasmatic nucleus (SCN) located within the anterior hypothalamus, with
eventual influence over almost all cells within the human body (Foster & Kreitzman,
2014). The primary role of the circadian rhythm is to augment the timing of biological
processes, such that they occur at the most ideal time of day. Circadian rhythms are
entrained by zeitgebers (German for time giver, and referring to external influences),
however are ultimately endogenous and are still present with a ~24hr period without
zeitgeber influence. By far the most influential zeitgeber is light (received through the
eyes), with the intensity and spectral properties of light further influencing its impact on

human biology (Roenneberg et al., 2013).

Sleep and circadian rhythms affect human neurobiology, subjective experience, and
objective performance, both independently and synergistically. This relationship is
described by the two-process model, which was proposed by Borbély (1982) and is still
widely used today in describing sleep-wake regulation, sleep architecture, and alertness/
human performance. The two-process model describes an interaction between the
homeostatic process (Process S), a process which builds (normally modelled linearly)
with every moment awake and diminishes with sleep, and the circadian process (Process
C), referring to circadian rhythm (Figure 1-2). Subjective alertness and performance on
cognitive tasks tends to be greatest when Process S is low, and poorest when Process S is
high, and peaks (acrophases) and valleys (bathyphases) over the period of Process C
(Dijk et al., 1992; Van Dongen & Dinges, 2003). The distribution of task-performance
acrophases and bathyphases across a day is related to one’s chronotype (i.e., Rae et al.,
2015), or highly individualised preferences in rest/ activity timing that are influenced by
both biological and environmental factors (Kunorozva et al., 2017; Montaruli et al., 2021;
Roenneberg et al., 2003; Shawa et al., 2018). While both Process S and Process C affect
humans independently, they also interact, such that when sleep pressure is high, the
influence of Process C on subjective and objective markers of performance appears to be
greatly amplified (Dijk et al., 1992; Van Dongen & Dinges, 2003). Task specificity of
performance arcophases and bathyphases can also be explained within the framework of

the two-process model. The current best evidence regarding task-specificity of peak
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performance acrophases and bathyphases (for cognitive predominant tasks) indicates
task-independence across one’s circadian rhythm, with temporal changes between task
acrophases/ bathyphases resulting from differential influences of Process S (Johnson et
al., 1992; Monk et al., 1997; Muck et al., 2022).

Process S

Wake Sleep

Sleep Wake

07:00 23:00 07:00 23:00 07:00
Time of day (hh:min)

Figure 1-2 The two-process model, originally described by (Borbély, 1982). This model
is used today to describe how sleep history and circadian rhythm interact to influence
ones sleep drive, alertness, and performance. Regarding sleep drive, the larger the
distance between Process S and Process C, the greater the sleep drive, with this distance

being reduced through nighttime sleep.

1.9. Is acute sleep loss a performance concern in esports?

Circling back to the presumptions of researchers and esport athletes outlined alike in
Section 1.5, that sleep loss negatively impacts esports performance; it is clear that
relationships between sleep loss and performance (in any element) are highly nuanced
and multifactorial. The literature does not suggest that any amount of sleep loss will
certainly negatively impact esports performance. Such complexities warrant further
investigation into pertinent themes around sleep loss and esports performance, as well as
an empirical investigation into the relationship itself. As such, the overall purpose of this
thesis is to shed light on if and how sleep loss impacts the ability of esport athletes to play
at their best. To address this purpose, three key investigations are outlined in the current

thesis:

The first key investigation was spawned from a desire to understand how the current
literature would suggest sleep loss to impact esports performance, with prior knowledge

that such research had not yet taken place to date. To execute this investigation, |
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performed a systematic search and review of the scientific literature (alongside grey
literature sources, as per systematic search protocol) of studies exploring the impact of
sleep restriction on cognitive performance; however, key criteria were placed on
population and outcomes explored, in attempt to maximise relevancy to esports.
Specifically, I included studies only using Elite Cognitive Performer populations; that is,
populations within occupations or positions in which they are required to perform
cognitively demanding tasks with critical or safety-critical outcomes. Furthermore, |
included performance on occupation-specific cognitively demanding tasks as outcomes
of consideration. SR was chosen as the sleep loss mode of choice (compared to TSD) due
to its increased likelihood of being experienced by esport athletes. This review is provided
as Chapter 2, and published in the peer-review journal Sleep.

The second key investigation spawned from the understanding that in order to explore
how sleep loss impacts esports performance, an ability to rigorously measure esports
performance is first required. The ability to obtain relevant measures of overall game
outcome were important, but obtaining an understanding of in-game measures which
actually influence performance may help shed light on any whether in-game strategy
changes occur under conditions of sleep loss. While game outcome and performance
indicator metrics were already present for major multiplayer online battle arena (MOBA)
esports (Novak et al., 2020; Xia et al., 2017), these esports are not particularly conducive
for use in experimental research, due to long and unpredictable match lengths and team-
based competition. Rocket League, however, is an esport particularly suitable for
experimental research, owing to the fact that match lengths are short and predictable, it
can involve solo competitive game play (i.e.,, 1vl), and boasts exceptional data
availability. Since Rocket League game outcome and performance metrics have not been
previously examined, Chapter 5 will outline my use of a contemporary machine learning
approach to identify these metrics; this work is also published in the peer-review journal
Scientific Reports.

The third key investigation is into how experimentally induced sleep loss (in the form of
TSD) impacts both the cognitive and in-game performance of Rocket League players.
This study makes direct use of the investigations preceding it (through its choice of
cognitive tasks & in-game performance measures used). It also directly addresses the
assertions made within previous sleep and esports literature (Bonnar, Castine, et al., 2019;
Bonnar, Lee, et al., 2019; Bonnar et al., 2022; Goulart et al., 2023; Kemp et al., 2021; S.

Lee et al., 2021; Moen et al., 2022; Sanz-Milone et al., 2021), and answers the call for
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research into sleep loss and its direct effects on in-game performance (S. Lee et al., 2021).
It is, to date, the only formal investigation into experimentally induced sleep loss and
esports performance, and is described in Chapter 7.

1.10.Purpose, research questions, hypotheses

The overarching aim of the thesis is to understand how acute sleep loss may impact
esports performance. Specific research questions covered, and the hypotheses associated,

are listed below:
Chapter 2:

Research Question: How does the current scientific literature suggest that acute
sleep restriction impacts both the cognitive and occupation specific cognitively
demanding tasks, for individuals in populations who must perform such tasks with critical
outcomes as part of their occupation (i.e. Elite Cognitive Performers)?

Hypothesis: No formal hypothesis is provided.
Chapter 3:

Research Question/s: What is the test-retest reliability of the Category Switch
Task (CST) on various reaction time and error-based outcome measures? Which outcome
measures on the Category Switch Task (CST) experience test-retest practice effects? Do
such practice effects vary as a function of test-retest interval (same day, next day, next

week)?

Hypotheses: Performance in all outcome measures would improve from test to
retest, and shorter test-retest intervals would be conducive to larger practice effects than

longer test-retest intervals.
Chapter 5:

Research Question/s: What is a suitable match outcome measure in 1vl Rocket
League? Which in-game metrics best predict this match outcome measure, and how do
these vary as a function of player ability level? Which in-game metrics best predict player

ability level?
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Hypotheses: No formal hypotheses are provided.
Chapter 6:

Research Question/s: What is the optimal simple imputation strategy for missing

actigraphy-derived sleep data?
Hypotheses: No formal hypotheses are provided.
Chapter 7:

Research Question/s: Does a ~29 hours of total sleep deprivation (TSD) reduce
worsen the cognitive performance (vigilance and task-switching performance) of Rocket
League players? Does such a bout of TSD reduce in-game Rocket League performance?

Are Rocket League performance indicators impacted by this bout of TSD?

Hypotheses: Cognitive and in-game Rocket League performance will be
negatively impacted by ~29 hours TSD.

Chapter 8:

Research Question/s: Which Rocket League in-game metrics are perceived to
best differentiate both safe vs. risky and simple vs. complex playstyles? Do a safer or
simpler (or both) strategy changes best explain variance between Rocket League matches

played with both participants rested vs. one participant sleep deprived?

Hypotheses: There will be substantial overlap between in-game metrics that
distinguish playstyle risk and playstyle complexity, and both perceived simpler and safer
strategy derived metrics will explain changes in Rocket League matches played with both

participants rested vs. one participant sleep deprived.
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Chapter 2. The Effect of Sleep Restriction on Cognitive
Performance in Elite Cognitive Performers: A Systematic

Review

This chapter has been published in a modified format in Sleep:

Smithies, T. D., Toth, A. J., Dunican, I. C., Caldwell, J. A., Kowal, M., & Campbell, M.
J. (2021). The effect of sleep restriction on cognitive performance in elite cognitive
performers: a  systematic review. Sleep, 44(7), zsab008. DOIl:
https://doi.org/10.1093/sleep/zsab008

Changes to the abovementioned publication for the purposes of this thesis are outlined

below:

e Change in referencing style (article version is in numbered format).

e References to supplementary files are changed to the appropriate location within
the appendix.

e Words emphasised using quotation marks were changed to be emphasised using
italics, in line with the thesis format.

e The words Figure and Table in in-text references to figures was capitalised.
Furthermore, figure/ table numbering convention was changed in line with the
thesis format.

e Abbreviations representing authors were changed where needed to avoid conflict
with other abbreviations used throughout the thesis.

e Addition of a linking section for the purpose of thesis flow.

e Minor amendments have been made based on examiner correction suggestions.
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2.1. Abstract

Study Obijectives: To synthesise original articles exploring the effects of sleep restriction
on cognitive performance specifically for Elite Cognitive Performers; i.e. those who
engage in cognitively demanding tasks with critical or safety-critical outcomes in their

occupation or area of expertise.

Methods: Backward snowballing techniques, grey literature searches, and traditional
database searches (Embase, MEDLINE, Web of Science, Google Scholar, PSY Cinfo, and
SportDiscus) were used to obtain relevant articles. A quality assessment was performed,
and risk of training effects was considered. Results were narratively synthesised. Fourteen
articles fit the criteria. Cognitive outcomes were divided into three categories defined by
whether cognitive demands were ‘low-salience’, ‘high-salience stable’, or ‘high-salience

flexible’.

Results: Low-salience tests (i.e., psychomotor vigilance tasks & serial reaction tests),
mainly requiring vigilance and rudimentary attentional capacities, were sensitive to sleep
restriction, however this did not necessarily translate to significant performance deficits
on low-salience occupation-specific task performance. High-salience cognitive outcomes

were typically unaffected unless when cognitive flexibility was required.

Conclusions: Sleep Restriction is of particular concern to occupations whereby
individuals perform (a) simple, low-salience tasks or (b) high-salience tasks with
demands on flexible allocation of attention and working memory, with critical or safety-

critical outcomes.

Keywords: vigilance, cognitive flexibility, occupation, safety-critical, attention, sleep

restriction.

Statement of Significance: Sleep restriction is considered a significant concern to
performance on cognitively demanding tasks within occupations that involve such tasks
(i.e. pilots, air traffic controllers, surgeons, medical residents, emergency responders,
process operators, athletes). However, no review to date has focused specifically on these
populations, outlining the results of research exploring how the performance of these
individuals is impacted by sleep restriction. Our review systematically searches for and
narratively synthesizes the current literature to date within these populations, and outlines

how cognitive tests and occupational tasks of different demands are differentially
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impacted by sleep restriction. Lastly, the review shows that more work is needed that

examines the impact of sleep restriction on cognitive flexibility within these populations.
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2.2. Introduction

Optimal cognitive functioning is fundamental for performance within many work
environments. In select safety-critical occupations, the ability to perform complex,
cognitively demanding tasks within unpredictable circumstances is integral to operational
success. Active military personnel (Serfaty et al., 1997), aviation pilots (Adams &
Ericsson, 2000), air traffic controllers (Hilburn, 2004), emergency responders (Paton &
Flin, 1999), surgeons and medical practitioners (Patel et al., 1996; Schmidt et al., 1990),
and process operators in potentially dangerous environments (i.e., mines, power plants,
oil refineries) (Mumaw et al., 1994) are all examples of individuals involved in such
safety-critical professions. Additionally, while elite athletes do not engage in safety-
critical work, optimal cognitive functioning (i.e. attention, executive functioning,
decision making) within time-constrained and unpredictable environments is often
integral for elite performance (Janelle & Hillman, 2003; Williams et al., 2011).
Individuals within these professions must exhibit cognitive expertise not normally present
within the general population for operational success, given the complexities and
cognitive demands embedded within the tasks involved. Individuals in some of the
professions mentioned (i.e., athletes, pilots, air traffic controllers) have been shown to
demonstrate enhanced cognitive performance compared to the general population not
only within the context of their area of expertise, but also through laboratory testing
(Arbula et al., 2016; O'Hare, 1997; Voss et al., 2010; Yildiz et al., 2014), though see an
article by Taylor and colleagues (Taylor et al., 2005) for a contrary finding), particularly
during task-switching, multitasking and attentionally demanding task paradigms. As a
result of the aforementioned cognitive demands and the observed performance benefits
these individuals may possess, we refer to them here collectively as Elite Cognitive
Performers (ECPs).

Sleep quantity has been identified as a key moderator of cognitive performance (Durmer
& Dinges, 2005; Lim & Dinges, 2008, 2010; Lowe et al., 2017). To date, most sleep
quantity research has concerned itself with total sleep deprivation (TSD; a total
elimination of sleep obtained during a specified time period), primarily due to the time
and cost efficiency of their designs (Banks & Dinges, 2007). However, TSD is uncommon
ecologically, whereas sleep restriction (SR), referring to a moderate reduction in the
amount of sleep across one or more nights (~2-6hr sleep obtained per night), is far more

commonly experienced both by the general population (Banks & Dinges, 2007) and by
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ECPs (Caldwell et al., 2012; Capaldi et al., 2019). The fact that SR is more frequently
experienced than TSD, and that each affects human neurobiology differently (Banks &
Dinges, 2007), has led more recent work to specifically focus on understanding the effects
of SR on cognitive performance. In addition to the reviews assessing the effects of SR on
cognitive performance among youth (Lundahl et al., 2015) and adolescent (de Bruin et
al., 2017) populations, experimental sleep dose-response studies, such as those conducted
by Belenky and colleagues (Belenky et al., 2003), Jewett, Dijk, Kronauer and Dinges
(Jewett et al., 1999), Van Dongen, Maislin, Mullington and Dinges (Van Dongen et al.,
2003), and Banks, Van Dongen, Maislin and Dinges (Banks et al., 2010), have provided
comprehensive insight into the effects of SR on cognition. The results of studies such as
by Belenky and colleagues (Belenky et al., 2003) and by Van Dongen and colleagues
(Van Dongen et al., 2003), as well as other experimental research, have informed the
creation of biomathematical fatigue models, used in safety-critical environments to
identify periods of risk and, guide mitigation, and maximise performance (Hursh et al.,
2004). Recently, Lowe, Safati, and Hall (Lowe et al., 2017), in a meta-analysis
investigating the effects of SR on cognitive performance, found SR to impact sustained
attention tasks more than increasingly complex tasks assessing performance in other
cognitive domains across numerous populations and age groups. This finding
corroborates those of Wickens, Hutchins, Laux and Sebok (Wickens et al., 2015), who
noted that simple cognitive task performance is more greatly impacted by sleep loss, as
well as earlier seminal research outlining the comparatively greater effects of sleep loss

on simple tasks (Glenville et al., 1978).

That performance on simple tasks appears selectively hindered by SR initially seems
counter-intuitive, as prefrontal cortex (PFC; integral to executive functioning) activation
is decreased by sleep loss (Krause et al., 2017; Ma et al., 2015). However, imaging studies
(using functional magnetic resonance imaging) have found strong evidence for increased
recruitment of frontostriatal circuits and additional brain areas coinciding with the
maintenance of performance during increasingly complex and engaging cognitive tests
despite decreased PFC activation (Beebe et al., 2009; Chuah et al., 2006; Drummond et
al., 2004; Drummond et al., 2005; Krause et al., 2017). Through this lens, simple
attentional test performance tends not to receive similar compensation due to a lack of
arousal, stemming from the low stimulus/salience nature of such tests (Harrison & Horne,
2000; Whitney et al., 2019). Recent work has suggested that these compensatory

mechanisms function in a way so as to give preference to task information already present
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within working memory, helping to maintain focus and attentional strategy throughout
the task (i.e., cognitive stability). However, the trade-off appears to be that the ability to
alter this information within working memory (i.e., cognitive flexibility), necessary for
when attention needs to be shifted when a task dynamic changes (as is common within
real-world tasks), is impeded (Whitney et al., 2019).

Despite the abovementioned literature outlining the effects of SR among general
populations, it is less clear how SR affects the cognitive performance of ECPs or whether
this group is differentially affected by SR. The importance of studying this group
independently from the general population is three-fold. Firstly, optimal cognitive
performance is arguably more important for ECPs than for the general population, as
errors or inadequate performance can have critical outcomes, ranging from loss of
competition for high-level athletes, to loss of life in safety-critical occupations. Numerous
high-profile catastrophes have involved human errors linked to sleep loss, such as the
fatal decision to launch the Space Shuttle Challenger in 1986. In the report on the
Presidential Commission on the Space Shuttle Challenger Accident (1986), it was stated
that prior to an important teleconference regarding the decision to launch (a decision
proving to result in seven casualties), “key managers obtained only minimal sleep the
night before the teleconference” (p. G5), which may have led to poor judgement
contributing to the fatal decision to launch. Another example is the pervasiveness of
fatigue in aviation, where it is estimated that fatigue contributes to 4-8% of aviation
catastrophes (Caldwell, 2005).

Secondly, ECPs are at an increased risk of experiencing SR due to their occupational
requirements. For example, sleep opportunity can be sparse and unpredictable throughout
military combat operations, while other military-specific stressors, such as watch duty
and field-based exercises, result in the frequent occurrence of SR (Capaldi et al., 2019).
Commercial pilots often have demanding schedules, are constantly exposed to rapid time-
zone changes, and often must obtain night-time sleep in uncomfortable cockpit
environments, resulting in regularly experienced SR. Rapidly changing work schedules
are common for air traffic controllers, causing drastic reductions in sleep quantity, with
some operating with as little as 2 hours of sleep at times (Signal & Gander, 2007).
Irregular and demanding shift work schedules can lead to SR for emergency medical
practitioners (Cheng et al., 2014). Finally, elite athletes can experience SR due to the
timing and intensity of training and competition schedules, as well as air-travel

requirements, especially when travelling over multiple time-zones (L. Gupta et al., 2017).
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Thirdly, contemporary literature has suggested that ECPs at a group level may
demonstrate an increased resistance to the effects of sleep loss on cognitive performance.
For example, one study found a group of seven active-duty F117 fighter pilots to have
greater baseline global cortical activation compared to non-pilots during a working
memory task, which then positively correlated with performance on a flight simulator
task after 37 hours of TSD (Caldwell et al., 2005); however the authors advocated for
further research on larger samples to validate such a finding. In reference to this, some
authors have discussed the idea that naturally tolerant individuals to sleep loss may either
self-select into, or that vulnerable individuals may self-select out of, active military
professions due to the necessity of maintaining performance following sleep loss
(Caldwell et al., 2012; Van Dongen & Belenky, 2009; Van Dongen, Caldwell, et al.,
2011). Similar theories have been posited to explain a lack of performance degradation
following sleep loss among medical residents (Schlosser et al., 2012; Veasey et al., 2002).
It is noted that individual differences in tolerance to sleep loss within elite groups such as
the U.S. Air Force are still present (Van Dongen et al., 2006).

Together, the importance of optimal cognitive performance for ECPs, their increased risk
towards experiencing SR, and their potential increased tolerance to the performance
effects of SR at a group level, all make the study of the effects of SR on cognitive
performance in ECPs worthwhile. To date, no attempt has been made to review the
existing literature examining the effects of SR on the cognitive performance of ECPs. As
a result, the purpose of this review is to synthesize and summarize the existing literature
explicitly examining the effect of SR on cognitive and occupation-specific performance
among ECPs.
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2.3. Methods

2.3.1. Database search strategy

This review was not registered prior to its undertaking. Included articles did not have to
be published in peer-review scientific journals to be considered. Articles included for the
current review were obtained through an exhaustive systematic search, in accordance with
the updated PRISMA guidelines (Page et al., 2020). Embase, MEDLINE (Ovid
MEDLINE(R) and ePub ahead of print, in-process & other non-indexed citations, daily
and versions(R)), Web of Science (Core Collection), and Google Scholar databases were
searched, as the combination of these four databases presents superior
sensitivity/specificity trade-off for systematic searches (Bramer et al., 2017). Subject-
specific databases APA, PSYCinfo, and SportDiscus (both EBSCO host) were also
queried to add further sensitivity to the search. Searches using these databases took place
on 27/01/2020, except for Google Scholar, which took place the next day. The exact
syntax used for each primary database can be found as appendix 2.1. The search strategy
for each database involved identifying key-words (22 total) within titles and abstracts
pertaining to motor or cognitive abilities, or performance, and combining them with
words pertaining to SR (5 total), with the exclusion of words related to animal studies,
clinical conditions, or reviews. Controlled vocabulary terms (MeSH/EMTREE) were
explored and used as exploded terms (searching for the particular word as well as the
more specific words that stem from it within the given organisation system) where
relevant in databases that allowed for them. Inbuilt database filters were used where
available to remove studies specifically investigating nonhuman subjects, children, or the
elderly; no date or language restrictions were enforced. TDS performed the search and
screening described.

All identified article references were extracted and exported into Endnote version 9.2
(Clarivate Analytics), except for those found via Google Scholar, where only the first 200
references (when searched by relevance; as per Bramer et al. (2017)) were extracted.
Overall, 4,648 articles were identified through this search process, with 2,421 remaining

once duplicates had been removed (see Figure 2-1).
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2.3.2. Grey Literature & Backward Snowballing

As some research concerning the effects of SR on performance among ECPs may not
have been detected by the above database searches, an additional grey literature search
was performed in addition to the use of backward snowballing techniques. Five sources
of grey literature were queried; two conventional search engines (Google, duckduckgo),
two grey literature specific databases (OpenGrey and Science.gov), and the Defence
Technical Information Centre (DTIC). These searches took place between 31/01/2020
and 04/02/2020. For these searches, similar terms to those used in the primary database
searches were used (see appendix 2.2 for the exact syntax used for each grey literature
database search). For the DTIC search, the first 100 results were investigated, while for
the other grey literature sources, the first 50 were investigated (or less, if less than 50
results appeared), in a similar fashion to that discussed for Google Scholar by Bramer,
Rethlefsen, Kliejnen and Franco (Bramer et al., 2017). Backward snowballing refers to a
technique where the reference lists of previously identified reviews or journal articles
within a relevant topic are searched to obtain further relevant articles (Wohlin, 2014).
Due to prior knowledge that many studies conducted in defence institutes are not
published in peer-reviewed journals and are therefore not identified by primary database
searches, reviews focussing on such studies were targeted for backward snowballing.
Additionally, the references of two reviews on the effects of SR on cognition in the
general population were also searched, as they were considered to be the closest in content
to the current review. Overall, the reference sections of five reviews and one annotated
bibliography were searched for relevant studies (Belenky et al., 1987; Grandou et al.,
2019; Lowe et al., 2017; Miller et al., 2007; Vrijkotte et al., 2016; Wickens et al., 2015).
Backward snowballing was manually performed by TS. In total, 264 articles identified
based on their title and abstract through the grey literature searches, and 577 articles
identified through backward snowballing were screened (Figure 2-1).
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- Not original data (n=47)
2
B Full-text articles assessed Participants not ECP (n=339)
E’ for eligibility (n = 802) No objective sleep change (n=40)
L
TSD, SO<2hr or chronic SR (n=133)
—_— No cognitive performance measure (n=90)
No comparison between SR and baseline (n=69)
Time of SR not consistent, not specified, or protocol
involves night shifts with potential for prior daytime
2 sleep (n=24)
°
% Time of performance measurement not consistent or
E y not specified (n=12)
Studies included in Jet-lag protocol or participants not adapted to sleep
qualitative synthesis period prior (n=2)
(n=14) Unclear if baseline TST>6hrs or habitual (n=2)
| —
Presented outlier effect sizes (n=2)
Failed NHLBI risk of bias (n=1)
Full-text not available in English or unobtainable
(n=27)

Figure 2-1 PRISMA flowchart outlining the eligibility and inclusion process for the
current review.
2.3.3. Eligibility Criteria

The titles and abstracts obtained from the primary database search, the grey literature
search, and through backward snowballing were screened and excluded only if they

unambiguously did not fit the following eligibility criteria:
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1. Data. Articles must present original data; reviews or articles re-presenting
previously available data were excluded.

2. Population. Participants must have been ECPs: that is, they must be members
of the military (e.g. army, navy, air-force, special forces), in aviation
(specifically pilot and air traffic controllers), medical personnel (physicians,
surgeons, anaesthesiologists, residents etc.), alternate emergency responders
(police, firefighters etc.), process operators in a high-risk environment (i.e.,
mines, oil-rigs, power plants etc.), or elite athletes (highly trained and
competing regularly in their given sport). Data for participants that was
influenced by the use of alcohol or psychostimulants was excluded with the
exception of habitual caffeine or tobacco use.

3. Baseline Sleep Condition. Each study must have compared a SR condition to
a baseline condition. This could have been conducted through a repeated
measures design (each participant is exposed to both baseline and SR
conditions) or an independent group design (participants exposed to a SR
condition are compared to participants exposed to a baseline condition). For
repeated measures designs, baseline conditions must have been conducted
either before the SR condition or multiple days after SR was experienced (two-
days recovery for every one-day SR), to account for delayed recovery of
cognitive performance noted following SR (Banks et al., 2010; Belenky et al.,
2003); where both are provided, only the baseline prior to SR condition was
considered. Where a mean TST or sleep opportunity value is provided, it must
be at least 6 hours (TST > 6 hrs) and at least 2 hours longer than one or more
nights in the SR condition; otherwise, it must be clearly stated that baseline
sleep was habitual or unhindered.

4. Intervention. Articles must have included SR conditions within their protocols
that involved 1-7 nights whereby sleep was restricted to between 2 and 6 hours
of sleep opportunity or mean sleep obtained. Sleep restriction must have been
either experimentally induced or resulting from an abrupt event directly
causing SR to occur (e.g., 24-hour overnight shift). Sleep undertaken during
an overnight shift was only considered if sleep was not likely to have occurred
earlier during the same day, hence 24-hour shifts were considered if
participants obtained some sleep throughout the night, however night-only
shifts were not. An example of a near-miss article that fulfilled all other

criteria but was not included due to this point was by Szelenberger, Piotrowski
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and Dabrowska (Szelenberger et al., 2005); this article was not included as it
was unclear whether the sleep loss condition was due to sleep during a night-
only shift allowing for prior daytime sleep or from a 24-hour overnight shift.
For protocols involving multiple nights of SR, all periods of sleep (sleep onset
or wake time) must have commenced within the same three-hour time window
within the recurring 24-hour cycle. This was implemented to minimise any
confounding circadian phase-shifting effects on cognitive performance
(Burgess et al., 2013; Santhi et al., 2007). Similarly, any studies where
protocols involved participants travelling across three or more time-zones
were excluded to eliminate any confounding effects of jet-lag (Waterhouse et
al., 2007). If multiple SR conditions were presented within the same article,
only the SR condition involving night-time sleep was included. Further,
daytime sleep periods were only considered if it was explicitly clear that
participants were adapted to diurnal sleep prior to measurement. Sleep
restriction interventions must have been monitored using sleep diaries or
subjective recollections provided the day immediately following sleep,
objective sleep measurement techniques (actigraphy, polysomnography
(PSG) etc.), or enforced in an experimental setting through limiting sleep
opportunity. If multiple sleep measurement techniques were implemented,
preference for reporting sleep obtained was given to the gold standard PSG,
followed by actigraphy, and finally subjective recollections.

Outcome. Articles must have evaluated cognitive performance using a
validated neuropsychological test or an occupation-specific cognitively
demanding task. Testing following SR interventions had to occur within the
same three hour window as testing following the baseline condition, to
minimise the influence of circadian factors on performance (Mollicone et al.,
2010). For reviews on the effects of circadian factors on cognitive
performance, see articles by Carrier and Monk (Carrier & Monk, 2000);
Valdez, Reilly and Waterhouse (Valdez et al., 2008); and Van Dongen and
Dinges (Van Dongen & Dinges, 2000). Additionally, sufficient information
must have been provided within the manuscript for each test or task (or be
freely available if commonly used) to allow for classification of test

(classification described further below).
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Although effect sizes are not presented within this review, they were calculated for each
relevant measure. In doing so, we observed two studies presenting effect sizes on
performance effects of SR that were highly improbable (hedges’ g >3 and greater than
double the next largest effect size observed by a separate article within the test category).
Due to their improbability, these two studies (Daaloul et al., 2019; Taheri & Irandoust,

2019) were removed from consideration in this review.

Following exclusions based on titles and abstracts, the full texts of the 802 remaining
articles were screened and excluded if they did not satisfy any of the criteria described
above, if articles were written in a language other than English with no translation
available, or if full-texts were not present (i.e. conference abstracts). Nine corresponding
authors of articles were contacted, as the results of these articles could not be included in
the current state, however with clarification of population, methodologies, or results, they
may have fit the criteria for the review. Unfortunately however, only one author
responded, confirming that the relevant article was not suitable for consideration here.
Following full-text exclusions, fifteen articles were assessed for quality.

2.3.4. Quality Assessment

Study quality was assessed using the specific study design tools from the National Heart,
Lung, and Blood Institute (NHLBI, 2014). These criteria were chosen as the NHLBI
provides multiple checklists which differ depending on study design and because they
include the only standard assessment tool specifically catered for assessing repeated-
measures designs within systematic reviews. These tools have been developed by expert
panels, are intuitive and easy-to-use for researchers, and have been used within systematic
reviews previously (Frestad & Prescott, 2017; A. Gupta et al., 2017; Saltzman & Liechty,
2016). For the thirteen studies with a repeated measures design, the Quality Assessment
Tool for Before-After (Pre-Post) Studies With No Control Group checklist was used, and
for the two independent-group designs the Quality Assessment of Controlled Intervention
Studies was used (see appendix 2.3 for the checklists in tabular form). In the latter, criteria
regarding the blinding of participants to the intervention were excluded due to the
practical difficulties of doing so within SR protocols. Included articles were assessed
independently by TDS and AJT, with agreement being reached through consensus. Using
the checklists and their accompanying guidelines, articles were given a rating of good,
fair, or poor, with poor articles being removed from further consideration. Overall, seven
studies were assessed as good, eight studies were assessed as fair, and one study was
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assessed as poor. For the study assessed as poor, this was due to a >15% difference in
drop-out rate between groups, constituting a fatal flaw and mandating a poor rating
according to the tool (Naitoh et al., 1987). This study was thus not included further in the

review.

Overall, fourteen articles were included in the review (Figure 2-1) and were categorised
according to the task used to evaluate cognitive performance (cognitive tests or
performance in cognitively demanding occupation-specific tasks), as well as the risk of

performance bias due to training effects.
2.3.5. Test/Task Categorisation

The tests used within each of the fourteen articles to evaluate cognitive or occupation-
specific performance were categorised as low-salience (LS), high-salience stable (HSS),
or high-salience flexible (HSF). The low-salience (LS) category included simple
attention-based tests that involved no distractors, very limited decision-making, and
typically required simple, timely responses to a stimulus. Performance was dependent on
vigilance and simple attentional capacity. Low-salience tests included the psychomotor
vigilance task (PVT) and serial reaction time (SRT) tests. Occupation-specific tasks were
coded as low-salience if performance on the task primarily depended on vigilance and
maintenance of simple attentional capacity. An example of such would be a vigilance rifle
task, where stimuli is interspersed over very long periods of waiting, the response (shoot)
is always the same, and the main determinant of performance is clearly how long the

individual can maintain vigilant attention.

The high-salience stable (HSS) category included tests which are typically used to
evaluate more complex cognitive functioning. However, performance on these tests did
not depend on the ability to flexibly shift attention or adapt to changing task dynamics
(i.e. cognitive flexibility). High-salience stable tests included working memory tasks,
grammatical reasoning tests, and the digit symbol substitution test (DSST). Occupation-
specific tasks were similarly coded as HSS if performance primarily depended on more
complex cognitive functions without requiring task switching or adapting to changing
dynamics. This could include psychomotor dominant tasks (skilled sport performance,
surgery skill performance) as well as tasks such as friend foe discrimination tasks where

the features discriminating friends and foes remain constant throughout.
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The high-salience flexible (HSF) category consisted of complex/higher-salience cognitive
tests & occupation-specific tasks that required cognitive flexibility and/or task switching
ability for optimal performance. Examples of high-salience flexible tests included task-
switching tests, multitask tests, and tests where the nature of targets could change
unpredictably throughout the test. The categorization of both neuropsychological tests
and ECP tasks was performed independently by two researchers (TDS and MK); where
there was disagreement, consensus was reached upon consultation with AJT and MJC.

2.3.6. Categorisation of Training Effect Bias

In order to assess the degree to which repeated-measure study designs risked confounding
the effect of SR on cognitive ability by showing a training effect on cognitive
performance, TDS and NR reviewed the included repeated-measures design articles,
rating them as having a no risk, low-to-moderate risk, or moderate-to-high risk of training
effects, with consensus being reached through discussion. Repeated-measures studies
were considered no risk if the order between baseline and SR measurements was
counterbalanced or if PVT was the performance outcome measure, due to thorough
demonstration of robustness of PVT to training effects (Basner et al., 2017). Studies were
considered low-to-moderate risk if no more than three testing sessions were administered,
and moderate-to-high risk if more than three testing sessions were administered where
the order of baseline and SR conditions were not counterbalanced between participants.
Of the fourteen remaining studies, nine had no-risk, one had low-to-moderate risk, and

four had moderate-to-high risk of training effects biasing results.

The number and age of participants in the article, occupation, nature and measurement
method of SR and baseline conditions, performance test/task used, whether a significant
difference was found between performance in conditions, risk of training effect bias, and
quality assessment, was coded for each included article and is presented in this review.

Results of the review are synthesised narratively below.
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2.4. Results

2.4.1. Study Characteristics

The details pertaining to each study included in this review can be found in Table 2-1
(also provided in spreadsheet form for readability as appendix 2.4). The fourteen included
articles were published between 1985-2019 with thirteen of the articles published in peer-
reviewed journals and one article published as a technical report within the Naval Medical
Research Unit (Hartzler et al., 2015). A total of 246 participants (41 females) were tested
across all studies, with each individual study sampling 18 participants on average
(SD=10). The mean age of participants was not provided in each study (with some instead
opting to only provide an age range), however for those that did provide this data (11 of
14), the mean age ranged from 19-30 years. The absence of mean age information in some
studies was not considered particularly troublesome as similar effect sizes have been
noted for the effects of SR on cognitive performance for individuals aged from 18-59
(Lowe et al., 2017).

Six studies included military personnel as participants, three tested medical service
workers, four tested elite or highly-trained athletes, and one tested oil refinery process
operators. Nine studies assessed performance following only one day of SR, one study
following two days of SR, two studies following three days of SR, one study following
four days of SR, and one study each following four days and six days of SR respectively.
Two studies used polysomnography (PSG) to measure the sleep of participants, five used
actigraphy, two used subjective recollection, and five used enforced restriction of sleep
opportunity (SO) within a laboratory. Eleven studies experimentally manipulated the SR
protocol (mean reported sleep obtained across articles ~ 3.6+0.9hr per night SR), while
the remaining three all observed sleep obtained during a 24-hour overnight shift (mean
reported sleep obtained across articles = 4.4+0.4hr per night SR). Mean baseline sleep
duration was approximately 7.3+0.6hr (Figure 2-2); note that the report by Hartzler,
Chandler, Levin and Turnmire (Hartzler et al., 2015) was not included in this baseline
mean calculation, due to reporting “unhindered” baseline sleep rather than a quantity.
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Sleep Obtained (Hours)
(@)

SR(EM) SR (Obs) Baseline
Condition

Figure 2-2 Amount of mean sleep obtained (xSD) within each condition. Note that for

2

studies reporting only “sleep opportunity,” sleep obtained was considered to be the
entirety of the reported period. SR = sleep restriction, EM = experimentally manipulated

(n=11), Obs = observed (n = 3).

Assessed using the NHLBI checklists, strengths generally included well-defined research
questions, thoroughly described procedures, and minimal participant drop-out. Common
weaknesses included a lack of evidence provided on the validity of performance measures
and outcomes used, not providing information of whether test administrators were blinded
to the condition of the participants, and a lack of consideration of statistical power when
determining sample size (although in many cases, the sample size was likely limited by

the availability of participants, given the specialised populations).
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Table 2-1 Study Characteristics for included articles, organised by their test/task categorisation and type.

Cognitive Sleep Risk of
Authors (Year) Population Occupation Test/'l_'ask Test or Cognitive Test Used Measure Baseline Sleep Restriction Result Tralnl_ng_
Categorisation Occupation- Protocol Effects Biasing
. (SR) Protocol
specific task Results
Englund, Ryman, 22 marine Military LS Cognitive Test  Alpha-Numeric Visual ~ % correct 8hr SO 3hr SO ! Moderate-to-
Naitoh & corps Vigilance Task high
Hodgdon (1985) 4-Choice SRT % correct NS
Gillberg and 7 military 6-minute Visual SRT Response Time 8hr SO 4hr Undisturbed | None
Akerstedt (1994)  consripts (1/RT) SO
4hr SWS- 1
suppresed SO
Hartzler, 24 naval PVT Lapses (reaction "Unhindered 1 night 4hr SO 1 None
Chandler, Levin aviation time > 500ms) sleep”
& Turnmire preflight 2 nights 4hr SO 1
(2015) training
program -
participants 3 nights 4hr SO 1
4 nights 4hr SO 1
Slowest 10% 1 night 4hr SO l
Response Time
(1/RT) 2nights 4hr SO |
3 nights 4hr SO l
4 nights 4hr SO l
Romdhani et al. 14 elite judo Athlete SRT Response Time 8hr SO 1 night 4hr SO l None
(2019) athletes (1/RT) (early wake)
1 night 4hr SO NS

(late sleep onset)
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Roberts, Teo,
Aisbett &
Warmington
(2019)

Mah, Sparks,
Samaan, Souza &
Luke (2019)

Saxena & George
(2005)

Sallinen et al.
(2004)

9 trained
cyclists or
triathletes

10 elite OR
highly trained
and actively
competing
cyclists

13 medical
residents

Medical

Process
Operators

2-choice SRT

10-minute PVT

10-minute PVT

5-minute PVT

10-Choice SRT

Lapses (reaction
time > 500ms)

Response Time
(U/RT)

Reaction Time

Fastest 10%
Reaction Time
Response Time
(1/RT)

Slowest 10%
Reaction Time
Fastest 10%
Reaction Time

Reaction Time

7.1(0.8)hr sleep
6.5(1.0)hr sleep
6.7(0.7)hr sleep

6.5(1.5)hr sleep

7.1(0.8)hr sleep
6.5(1.0)hr sleep
6.7(0.7)hr sleep

6.5(1.5)hr sleep

7 nights of
mean 6.7(0.7)
sleep

7.6(3.0)hr sleep

7.1-7.4(0.6-
0.9)hr sleep

1 night 4hr SO
(early wake)

1 night 4hr SO
(late sleep onset)
1 night 4.7hr
sleep

2 nights 4.7-
4.8hr sleep

3 nights 4.7-
4.9hr sleep

1 night 4.7hr
sleep

2 nights 4.7-
4.8hr sleep

3 nights 4.7-
4.9hr sleep

1 night 4.7hr
sleep

2 nights 4.7-
4.8hr sleep

3 nights 4.7-
4.9hr sleep

1 night 4.7hr
sleep

2 nights 4.7-
4.8hr sleep

3 nights 4.7-
4.9hr sleep

3 nights of
3.7(0.2)hr sleep

4.8(2.4)hr sleep

3.6-3.7(0.1-
0.2)hr sleep

NS

NS None

NS

NS

NS

NS

| None

NS None
NS

NS None
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12 process NS
operators at an Slowest 10%
oil refinery Reaction Time
Haslam (1985) 6 trained Military Occupation- Marksmanship: Number of Hits 2 nights 7.25hr 6 nights 4hr SO NS Moderate-to-
infantrymen Specific Task  Vigilance Rifle SO high
Shooting
Hartzler, 24 naval Flight Simulator Total Lapse Time  Unhindered 1 night 4hr SO 1 Moderate-to-
Chandler, Levin aviation sleep high
& Turnmire preflight 2nights 4hr SO |
(2015) indoctrination
program .
participants 3 nights 4hr SO l
4 nights 4hr SO 1
Sallinen et al. 12 process Process Simulated Distillation  Periods of Nil 7.4(0.6)hr sleep  3.6(0.2)hr sleep NS None
(2004) operatorsatan  Operators Process — Production
oil refinery Monotonous Workday
Simulation
Haslam (1985) 6 trained Military HSS Cognitive Test  Adapted Williams Number Correct 2 nights 7.25hr 6 nights 4hr SO ! Moderate-to-
infantrymen Word Memory Test SO high
15-minute Addition Number Correct NS
Test
Number of Errors NS
Englund, Ryman, 22 marine Baddeleys Logical % correct 8hr SO 3hr SO NS Moderate-to-
Naitoh & corps (11 Reasoning Test high
Hodgdon (1985)  exercise, 11 Williams Auditory % correct NS
non exercise) Word Memory Test
Gates-Peardon Number Correct NS
Reading Exercise -
"Remembering
Details"
Gates-Peardon NS
Reading Exercise -
"Section About"
Gates-Peardon NS
Reading Exercise -
"Following Direction"
Miller Reading Number of Lines NS
Efficiency Test Completed
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Reimann, Manz,
Prieur,
Reichmann &
Ziemssen (2009)
Schlosser et al.
(2012)

32 neurology
residents

38 surgeons

Sallinen et al. 12 process Process
(2004) operatorsatan  Operators
oil refinery
Haslam (1985) 6 trained Military
infantrymen
Englund, Ryman, 22 marine
Naitoh & corps (11
Hodgdon (1985) exercise, 11
non exercise)
Smith et al. 15 active duty
(2019) soldiers
Reyner and 28 first or Athlete
Horne (2013) second team
univeristy
tennis players
Schlosser et al. 38 surgeons Medical

(2012)

Paced Auditory Serial Proportion of 6.5(6.0-7.0)hr 4.3(2.8-4.6)hr NS N/A
Addition Test Items Correctly sleep sleep observed (independent-
(PASAT) Answered on 24hr group design)
overnight shift
d2-Paper-Pencil test Main 6.7(0.2)hr sleep  4.1(0.3)hr sleep 1 Low-to-
Concentration observed on moderate
inTdex 24hr overnight
shift
Subtraction Test Reaction Time 7.1-7.4(0.6- 3.6-3.7(0.1- NS None
0.9)hr sleep 0.2)hr sleep
Slowest 10% NS
Reaction Time
Occupation- 10-minute Map Grip Number Correct 2 nights 7.25hr 6 nights 4hr SO NS Moderate-to-
Specific Task ~ Reference SO high
Encoding/Decoding Number of NS Moderate-to-
Errors high
Marksmanship: Shooting NS Moderate-to-
Grouping Capacity Accuracy high
Air Defense Game Average Range of  8hr SO 3hr SO NS Moderate-to-
Intercept high
Marksmanship: Errors (incorrect ~ 7.7(0.1)hr sleep 1 Night 2hr SO NS Moderate-to-
Friend vs. Foe response to friend high
Discrimination Task - or foe target) 2 Nights 2hr SO NS
"'Low Cognitive Load .
(LcL)" A_cc_uracy on 1 Night 2hr SO NS
hitting foes (%)
2 Nights2hr SO NS
Marksmanship: Army  Accuracy 1 Night 2hr SO NS
Record Fire Task
2 Nights2hr SO NS
Tennis Serving Hits Within a 6.6- 4.3- l None
Accuracy Designated Area 7.8(SE=0.1- 5.4(SE=0.1)hr
0.2)hr sleep sleep
LapSim Low-Fidelity ~ Composite 6.7(0.2)hr sleep  4.1(0.3)hr sleep 1 Low-to-
Tasks Performance observed on moderate
High-Fidelity Score (%) 24'hr overnight 1
Intracorporeal shift
Suturing
High Fidelity Chole- I
Cystectomy
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Sallinen et al. 16 military
(2008) conscripts
Hartzler, 24 naval
Chandler, Levin aviation
& Turnmire preflight
(2015) indoctrination
program
participants
Smith et al. 15 active duty
(2019) soldiers
Sallinen et al. 12 process
(2004) operators at an
oil refinery

Military HSF Cognitive Test  Brain@work Score obtained 8.0(0.4)hr sleep  2.1(0.1)hr sleep 1 None
Multitask relative to highest
possible score
obtainable for the
individual
Dual n-back Dual n-back Unhindered 1 night 4hr SO 1 Moderate-to-
Metric sleep . high
2 nights 4hr SO 1
3 nights 4hr SO 1
4 nights 4hr SO 1
Occupation- Marksmanship: Errors 7.7(0.1)hr sleep 1 Night 2hr SO l Moderate-to-
Specific Task  Friend vs. Foe . high
Discrimination Task, 2 Nights 2hr SO |
nghfiognltlve Load High Value 1 Night 2hr SO NS
(HCL) .
Target Detections .
2 Nights 2hr SO |
Accuracy on 1 Night 2hr SO NS
hitting foes (%) .
2 Nights 2hr SO NS
Process Simulated Distillation ~ Amount of Time 7.1(0.9)hrsleep  3.7(0.1)hr sleep NS None
Operators Process — Busy with Nil
Workday Simulation Production

Note. |: significant negative effect of SR condition, 1: significant positive effect of SR condition, NS: no significant effect of SR condition. LS: Low-salience, HSS: High-salience stable, HSF: High-salience
flexible, PVT : psychomotor vigilance task, SRT: serial reaction test, CRT: choice reaction test, SO: Sleep opportunity provided, SWS: slow-wave sleep. Variance for sleep measures is standard deviation

except when specified using 'SE' for standard error and is given in brackets following the value. Bolded cognitive tasks and outcomes are occupation/expertise specific performance measures.
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2.4.2. Low-Salience Test/Task Performance

2.4.2.1. Descriptive Information

Nine studies investigated low-salience cognitive or occupation-specific task performance
following SR among 117 participants. Four of these studies tested military personnel,
three tested elite or highly-trained athletes, one tested medical residents, and one tested
oil refinery process operators. Five studies examined the effect of only a single night of
SR on performance, while the remaining studies examined the effect of multiple
consecutive nights of SR on performance. Three studies incorporated occupation-specific
tasks; a marksman vigilance task, a distillation simulation task (monotonous workday

condition), and a flight simulator lapse task.
2.4.2.2. Findings

Only performance on the flight simulator task (deviation from a simple flight profile) was
found to be significantly weakened by SR (Hartzler et al., 2015). In the other two studies,
the vigilance of trained infantrymen was found to be unaffected while performing a
shooting task following six consecutive nights of SR (4hr SO) (Haslam, 1985), and no
significant performance change was found on a simulated distillation task among
experienced oil-refinery process operators following one night of ~3.5hr TST (Sallinen
etal., 2004). Among the eight studies testing cognitive abilities directly, Englund, Ryman,
Naitoh and Hodgdon (Englund et al., 1985) observed a significant performance
decrement among a sample of U.S. marines on the alpha-numeric visual vigilance task,
but not on a four-choice SRT, following one night of SR (3hr SO). Gillberg and Akerstedt
(Gillberg & Akerstedt, 1994) found response times on a SRT were not significantly
affected by SR when tested at 08:00, but were significantly worsened when tested at 14:00
or 20:30, as well as when the results from all time points were combined; this was
regardless of whether the four hours of SO allocated were undisturbed or manipulated so
that participants could obtain minimal slow-wave sleep. Among a sample of naval
aviation trainees, Hartzler and colleagues (Hartzler et al., 2015) found the number of
lapses (reaction time >500ms) increased during each night of SR experienced (4-nights
of 4hr SO), with an increased overall response time of the slowest 10% attempts on the
PVT compared to baseline following SR. Romdhani and colleagues (Romdhani et al.,
2019) found that one night of SR (4hr SO) slowed reaction times of judo athletes on (a)
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a SRT when sleep was restricted by initiating an early wake time but not when delaying
sleep onset, and (b) a choice reaction time task when sleep was restricted by delaying
sleep onset but not when initiating an early wake time. Roberts, Teo, Aisbett and
Warmington (Roberts, Teo, Aisbett, et al., 2019) found a significant increase in PVT
lapses and response times among highly trained cyclists and triathletes following three
days of SR (~4.5 to 5hr TST) when compared both to the day before the first night of SR
(6.5hr TST) or the equivalent day within a baseline condition (~6.5 to 7hr TST),
additionally finding differences in lapses following two days of SR and in response times
following both one and two days of SR when compared to the equivalent baseline
condition. Mah and colleagues (Mah et al., 2019) similarly found the vigilance of ten elite
(or highly trained & actively competing) cyclists (PVT reaction time, inverse reaction
time & fastest 10% reaction time) to be adversely affected by three nights of ~4hr SO.
Interestingly, no significant differences in LS test performance (PVT, serial reaction time
task) were found between SR (~5hr TST) and baseline conditions for medical residents
(Saxena & George, 2005), nor among oil refinery process operators following one night
of ~3.5hr TST (Sallinen et al., 2004).

2.4.3. High-Salience Stable Test/Task Performance

2.4.3.1. Descriptive Information

Seven studies examined the effects of SR on cognitive and occupation-specific high-
salience stable tasks among 153 participants (Table 2-1). Three of these studies tested
military personnel, one tested highly-trained athletes, two tested surgeons or medical
residents, and one tested oil refinery process operators. Five studies implemented only a
single night of SR, while two involved multiple consecutive nights of SR. Five studies
incorporated occupation-specific tasks, including marksmanship accuracy tasks, a
marksmanship friend vs. foe discrimination task (low-cognitive load condition), an “air
defense” game, a map-grip encoding/decoding task, a tennis serving accuracy protocol,

and a VR-surgery simulator task.
2.4.3.2. Findings

Two studies found SR to significantly decrease performance relative to a baseline
condition. Haslam (1985) found significant deterioration in the number of correctly
recalled items by trained infantrymen on a word memory test throughout six nights of SR

(4hr SO). Conversely, Englund and colleagues (Englund et al., 1985) found no effect of
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one night of SR (3hr SO) on the immediate recall of marine corps on an almost identical
task to that in Haslam (1985), as well as the ability to immediately recall details in a short
reading task. Performance on the d2-paper-pencil test (selective attention) was found to
significantly improve following SR (one night of ~4hr TST) relative to a previously taken
baseline among surgeons (Schlosser et al., 2012). This study additionally found
performance on surgery skills of varying complexity (as well as “economy of motion”
measures which comprised these overall composite scores) on a VR-surgery simulator to
improve following SR. It is noted however that in measurements taken 24hr after the SR
condition testing, d2-paper-pencil test performance improved again from the SR
condition, and performance on two of the three surgery performance measures (Low-
Fidelity Task and Chole-Cystectomy performance score) was maintained from the SR
condition and also significantly better than in the baseline condition. When examining
studies that evaluated occupation-specific task performance, Reyner and Horne (Reyner
& Horne, 2013) found serving accuracy of semi-elite tennis players to be hindered by one
night of SR (~4.5 to 5.5hr TST), whereas all other studies utilising occupation-specific
HSS measures failed to detect significant performance differences between baseline and

SR conditions.
2.4.4. High-Salience Flexible Test/Task Performance

2.4.4.1. Descriptive Information

Four studies examined performance outcomes on high-salience flexible cognitive and
occupation-specific tasks among 67 participants. Three of these studies tested military
personnel, and one tested oil refinery process operators. Two of these studies investigated
only a single night of SR, while the other two implemented multiple consecutive nights
of SR. Two studies incorporated occupation-specific tasks including a military
marksmanship friend vs. foe discrimination task (high-cognitive load condition), and an
oil-refinery distillation simulation task, similar to the task mentioned previously but with

increased cognitive demand and functional instability embedded within it.
2.4.4.2. Findings

Among those studies investigating cognitive test performance, Sallinen and colleagues
(Sallinen et al., 2008) tested 16 military conscripts on a multitask test (Brain@Work)
involving four cognitive tests performed simultaneously, and reported a significant

decrease in performance following SR (one night ~2hr TST) relative to baseline.
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Alternatively, Hartzler and colleagues (Hartzler et al., 2015) used an adaptive dual n-back
measure requiring simultaneous attention towards both visual and auditory stimuli, and
found improvement compared to baseline on all four days of SR (4hr SO). However, the
authors concluded that “practice effects were evident throughout the study” (p. 24) and
these likely confounded the results. For studies investigating occupation-specific
performance, Smith and colleagues (C. D. Smith et al., 2019) found one and two nights
of SR (2hr SO) led to an increase in the number of errors made on a high cognitive load
(HCL) challenge of the marksmanship friend vs. foe discrimination task. In this task,
colours that represented friends and foes changed frequently, requiring participants to
flexibly adapt to the task details for correct completion. Notably, in the low cognitive load
(LCL) version of this challenge, whereby colour coding was held constant (HSS task),
error rate did not significantly differ between baseline and SR conditions. Additionally
for high value target detection, a measure present only for the HCL version of the task,
percentage detection rate was impaired after 2-nights of SR. No effect of SR was found
in either version of the task for the marksmanship accuracy in shooting foes. Lastly, time
at nil production, the main performance outcome referring to a lack of activity occurring
within the busy condition of a simulated distillation process, was not found to change
significantly between SR (one night of ~3.5hr TST) and baseline conditions for oil
refinery process operators (Sallinen et al., 2004). Again, this task was identical to the
monotonous condition in the simulated distillation included in the LS table except for a

greatly increased depletion speed and the addition of functional instability.
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2.5. Discussion

Our systematic review explored the literature examining the effect of SR on cognitive and
task-related performance specifically among Elite Cognitive Performers (individuals
within occupations that (a) have cognitive demands exceeding the norm and (b) have
critical outcomes associated with these demands). In doing so, we aimed to provide an
indication of how SR may affect the cognitive performance of those for whom the
outcomes are arguably more important than is often the case within the general
population, with a degree of specificity not previously available within the literature.
Overall, this review found that the performance of this select group on monotonous, low-
salience tasks is often poorer following SR, and while performance on more complex, yet
cognitively stable, tasks is usually maintained, performance may be more prone to decline
when the task involves adaptation to changing goal-oriented information and a shifting
of attention.

2.5.1. Differences of the Effects of Sleep Restriction as a Function of

Task Demands

In this review, we found performance on simple tests designed to measure vigilance and
rudimentary attentional capacity (whether occupation-specific or not) was most
commonly hindered by SR. This corroborates findings from a meta-analysis on the wider
population (Lowe et al., 2017) and is consistent with the effects found following TSD
(Lim & Dinges, 2010). The ability to maintain attention in low-salience circumstances is
integral to many components of safety-critical work (i.e., monitoring human-machine
interfaces or environment), however two of the three studies using low-salience
occupation-specific task performance found no significant deterioration resulting from
SR. These two articles however had factors within their design or within the outcomes
themselves that could have confounded results. Specifically, Sallinen and colleagues
(Sallinen et al., 2004), who tested performance on a simulated distillation task among oil
refinery workers, reported that their failure to find an effect of one night of SR on
participants’ monotonous and busy workday (the latter coded as HSF) may be due to the
performance task being “too rough to demonstrate a significant sleep debt-related effect”
(p. 293). The other task was a vigilance rifle shooting task for trained infantrymen
following six nights of SR (Haslam, 1985). This article stated that the infantrymen were

to receive long-weekend leave if they “maintained a certain standard” of performance on
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“key tasks” (p. 91), likely raising the external motivation to maintain performance in spite
of SR (although it is unclear which were the “key tasks” in this study). Such external
motivation likely increased task engagement, which purportedly facilitates the
maintenance of performance in spite of sleep loss (Harrison & Horne, 2000). Along these
same lines, one of the few studies that did not find a difference in PVT performance
following SR rewarded the highest-performing participants with $100CAD (Saxena &
George, 2005). Hence, it appears that context and motivation are key moderators of the
effect of SR on the performance of simpler tasks; if task engagement is promoted (through
task demand, external motivation etc.) performance is likely to be maintained, whereas if
there is a lack of exogenous factors promoting task engagement, ECPs, like the general
population, will show degraded performance on tasks prioritising simple attention.

In stark comparison to studies investigating the effect of SR on simple cognitive
performance, studies using evaluation tools that required more complex cognitive
processes that rewarded cognitive stability almost unanimously reported no effect of SR.
The two studies which reported SR to negatively affect performance tested the immediate
recall of infantrymen on a working memory task (Haslam, 1985), and university
representative tennis players on a tennis serving accuracy test respectively (Reyner &
Horne, 2013). The former suggests that immediate recall is vulnerable to SR, however it
is to be noted that the immediate recall of marine corps in a separate study (Englund et
al., 1985) with a similar procedure to Haslam (1985), as well as the ability to immediately
recall details in a short reading task, was not significantly affected by SR. The latter
finding would suggest perhaps that skilled, psychomotor performance outcomes could be
vulnerable to SR, however Schlosser and colleagues (Schlosser et al., 2012) contrastingly
noted an increase in performance on simulated surgery tasks of differing complexity
following SR and compared to a previously taken baseline condition. Investigating tasks
with similar cognitive demands, Haslam (1985) and Smith and colleagues (C. D. Smith
et al., 2019) did not report a significant effect of six or two nights of SR respectively on
marksmanship tasks specifically measuring accuracy. Taken altogether, these results
suggest that acute SR alone is unlikely to negatively affect the performance of ECPs on
complex cognitively stable tasks when they are related to their area of expertise. In a
practical sense, this could be interpreted to closed skills for elite athletes (i.e., a free-throw
or a golf putt), performance of routine fine-motor, yet demanding surgery task, or the
ability to perform fixed and predictable tasks such as adhering to correct pre-flight

procedures for an aircraft pilot. Lastly, in further support of the influence of context,
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engagement and motivation, Englund and colleagues (Englund et al., 1985) noted in
discussing the (statistically insignificant) trend of performance improvement on a
complex ‘air defense’ game and the lack of performance loss on a reading efficiency
following SR, that “competition and interest, each a motivating factor, influenced both

psychomotor and cognitive task performance” (p. 84).

We separated HSS and HSF based on whether the task demanded cognitive flexibility;
that is, the ability to shift attention to new, more relevant information, or to adapt to a
changing task dynamic (lonescu, 2012; Scott, 1962). Here we found that performance on
a multitask test (Sallinen et al., 2008) and error rate within a task embedded within a
marksmanship context (C. D. Smith et al., 2019), both of which required cognitive
flexibility, were negatively affected by SR. The latter is particularly notable as error rate
in a simpler adaptation of the same task, which didn’t require participants to adapt to the
changing meaning of different colour targets throughout, was not negatively affected by
the same conditions of SR. When considering the two studies that did not find a negative
effect of SR on HSF outcomes, one used an adapted version of the aforementioned oil
refinery distillation task with potential sensitivity issues, and the other one had a
moderate-to-high risk of bias, with the authors (Hartzler et al., 2015) themselves stating
that “practice effects were evident” (p. 24). The ability to flexibly shift attention and adapt
to changing dynamics is of obvious ecological importance, particularly for safety-critical
workers handling emergency situations. For example, aircraft pilots are presented with a
multitude of information from dials, outputs, and air-traffic controllers when in an
emergency situation (i.e., engine failure) and must be able to rapidly shift their focus to
the most important interface to gather the most relevant information for the resolution of
their current circumstance. Pilots must then be able to adapt to their new situation (flying
an aircraft without the engine) and adjust their approach accordingly. Further
experimental work is clearly required to understand how the cognitive flexibility of ECPs’
is affected by SR and how this impacts high-demand tasks within their workplace, given
(a) the importance of cognitive flexibility particularly within emergency scenarios, (b)
the increased prevalence of SR in ECPs versus the general population, and (c) the studies

detailed within this review outlining the effects of SR on the cognitive flexibility of ECPs.
2.5.2. Strengths and Limitations

It is accepted that the classification of performance tests in this review can be considered
coarse. For example, standardised cognitive tests within the HSS category can be
48



attempting to test primarily inhibition, working memory, decision-making, executive
functioning, complex attention, cognitive throughput and so on. These are regularly
discussed as distinct cognitive outcomes with distinguishable underlying neural
processes. Although previous meta-analyses have demonstrated differences in effect sizes
among different complex cognitive domains (Lim & Dinges, 2010; Lowe et al., 2017),
the most tangible distinctions regarding effects of sleep loss on cognitive performance
appear to be: (a) the extent to which performance is dependent on sustained, simple
attention (Harrison & Horne, 2000; Lim & Dinges, 2008, 2010; Lowe et al., 2017), and
more recently, and (b) whether cognitive flexibility is prioritised over cognitive stability
for performance (Honn et al., 2019; Whitney et al., 2015; Whitney et al., 2019) (spawning
the rationale behind the classification used). This information is of direct practical use to
members of safety-critical industries, elite athletes and coaches, and other individuals in
occupations with cognitive demands spanning beyond the norm. The separation of tasks
into cognitive domains limits applicability because tasks that ECPs engage in are complex
by nature and require significant contributions from multiple domains simultaneously. By
separating tasks as we have in the current review, we provide a simple framework that
applies to real-world tasks in a host of occupations with large cognitive demands, but that
seemingly distinguishes between tasks in which performance is likely or unlikely to be
affected by SR (Figure 2-3).

Is performance dependent on simple or complex cognitive processes?

Complex l

Does the task require cognitive

Simple flexibility for performance?
Yes No
Performance likely Performance may be Performance unlikely
to be impaired by SR impaired by SR to be impaired by SR

Figure 2-3 Proposed framework explaining the likelihood of sleep restriction affecting

cognitive performance for Elite Cognitive Performers.

The current review had particularly stringent eligibility criteria. Studies that investigated
sleep restriction and cognitive performance among ECPs, but that allowed significant

variance (or lacked reporting) of participant sleep onset & wake times, or testing times,
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were removed. Additionally, multiple studies included in this review presented additional
measurements taken and statistical comparisons made that were not included due the
these reasons (Hartzler et al., 2015; Haslam, 1985). By removing these studies and
measurements we likely lost some degree of ecological validity as SR in practice is often
accompanied by a shift in sleep onset and wake times (i.e., following transmeridian travel,
change from day-shifts to night-shifts etc.) resulting in circadian desynchrony, and
performance at different and often rapidly changing times of day is necessary (i.e.,
rotating shift schedules). The effect of rhythmic fluctuations of performance related to
circadian rhythm, as well as the desynchronisation of circadian rhythm likely to arise
from large variance in sleep onset and wake time, is non-trivial (Blatter & Cajochen,
2007; Carrier & Monk, 2000; Mollicone et al., 2010; Van Dongen & Dinges, 2000).
Therefore, without controlling for changes based on when the participants were sleeping
or when they were being tested, it would be incredibly difficult to discern whether
differences in performance were due to the changes in sleep quantity or these circadian
factors. Controlling for these factors allows us to more confidently conclude that any
performance decrements observed were due to SR and not other influences. In short, this
review only examined the effects directly related to change in sleep quantity, and that
other features commonly experienced with SR such as shifts in sleep periods are likely to
further exacerbate the performance impairments discussed in this review; hence, the
findings of this review should be considered conservative and a best case outcome for
how moderate sleep loss impacts task performance for Elite Cognitive Performers in the

real-world.

Despite the stringency of the eligibility criteria, there was still a surprisingly small number
of articles that met the inclusion criteria of the review, given the exhaustive nature of our
systematic search. In particular, there was a dearth of research investigating the role of
SR on cognitive performance among elite athletes. Using the criteria for defining and
quantifying expertise as outlined by Swann et al. (2015), semi-elite athletes were the top
level participants tested among the included studies. Some of the other studies utilised
interns and junior medical residents (Saxena & George, 2005; Schlosser et al., 2012) and
military personnel either within their first few years of service or within the process of
completing specialised programs such as a naval preflight training program (Hartzler et
al., 2015; C. D. Smith et al., 2019), and may not be representative of more experienced
individuals who (a) have more experience performing while fatigued, and (b) have greater

expertise on occupation-specific tasks. This distinction is highly important as more expert
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individuals tend to utilise different cognitive strategies compared to their less skilled
individuals when performing tasks within their field of expertise, such as different gaze
and fixation strategies (Mann et al., 2007) and decision making processes (Salas et al.,
2009). Hence, it is possible that experts and novices may be differentially affected by
sleep loss on a particular cognitively demanding task. Ideally, further experimental work
which directly investigates the potential for expertise to moderate the effect of SR on
cognitive performance would elucidate such a possibility. However, recruiting such an
array of participants within a specific area can prove difficult. Additionally, as
demonstrated by Sallinen and colleagues (Sallinen et al., 2004), selecting a performance
outcome within the context of ones area of cognitive expertise that is also sensitive
enough to show performance deficits following SR provides another layer of difficulty.
Still, such experimental work could be extremely beneficial in (a) understanding the
relationships between sleep loss, cognitive performance, and cognitive expertise, and (b)
further improving our overall understanding on how SR affects the task performance of
ECPs.

2.5.3. Future Directions

One area where it is both relatively easy to evaluate cognitive and occupational
performance among individuals with a vast array of skill level is esports. Here, we believe
that research on elite esports athletes may be able to provide insight into the moderating
effect of cognitive expertise on performance loss resulting from SR. Esports refers to the
competitive (and for some, professional) play of commercially available video games,
with esports athletes being referred to as “cognitive athletes” due to the cognitive
expertise that they possess (Campbell et al., 2018). Many esports games often adopt the
Elo rating system, allowing for expertise to be quantified on a continuum and the digital
nature of game play facilitates the collection of large amounts of relevant performance.
In addition to being an exemplar test population, esports athletes also share many
similarities with many ECPs with respect to work environment and the enhanced
cognitive skills required by both for optimal performance (Smithies et al., 2020). Future
research on the effects of SR on esport athletes could thus provide applicability to ECPs
in general, furthering our understanding of how elite cognitive performers are affected by
sleep loss. Moreover, as esport athletes can be considered ECPs themselves and that their

shared commonalities with traditional athletes likely leading to higher-than-normal
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prevalence of SR, the results of the current review are of great relevance to this

population.

Sleep restriction presents as one of many factors which may adversely affect performance
on complex, cognitively demanding tasks. In addition to circadian factors mentioned
earlier, sleep inertia, referring to the grogginess and degraded performance immediately
following wake, is of high relevance to individuals performing tasks at night or those
working extended shifts and are able to sleep on the job but simultaneously may be
required to respond to complex emergency situations at a moment’s notice (i.e., night-
shift medical workers, pilots, air traffic controllers, emergency responders). Extended
periods of wakefulness and time on task (particularly for boring, monotonous tasks) can
also further contribute to fatigue related performance impairment within the workplace
(Caldwell et al., 2019), and are important considerations for safety-critical workers and
other elite cognitive performers (i.e., athletes, esport athletes). As aforementioned, the
context surrounding a given task (i.e. the presence of external motivating factors) is an
important consideration in addition to the nature and demands of the task itself. Lastly,
the extension of sleep quantity beyond what is habitually obtained has shown positive
effects on cognitive performance outcomes for high-level collegiate athletes measured
both through standardised cognitive tests and through outcomes directly related to their
expertise (Mah et al., 2011), and may resemble a fruitful strategy to improve performance

on demanding tasks for Elite Cognitive Performers overall.

2.5.4. Conclusion

In summary, the current review demonstrates that the performance of ECPs is more
negatively affected on simple cognitive tests and monotonous occupation-specific tasks,
where simple attentional capabilities are instrumental to task success, over more complex
cognitive tasks; however, performance may be more affected on complex tasks when
adaptation to changing goal-oriented information and a shifting of attention (i.e.,
cognitive flexibility). Further research is required particularly when using tasks
demanding cognitive flexibility as there is little and conflicting evidence on the effect of
SR on the performance of such tasks. Lastly, we believe that esports presents as a fruitful
medium to explore the effects of sleep loss on Elite Cognitive Performers, potentially
uncovering moderating roles of expertise and providing applicability to many industries

and occupations.
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2.6. Linking Section

2.6.1. Esport Athletes are ECPs

The systematic review presented in the above chapter provides insight into how sleep loss
(in the form of SR) could impact the performance of esport athletes. No prior research
had experimentally determined how sleep loss impacts esports performance. The great
cognitive demands of esports have led some researchers to refer to esport athletes as
cognitive athletes. (Campbell et al., 2018). In order to gain insight into how sleep loss
may impact esport performance and justify the experimental investigation of this
phenomenon, | explored prior literature on an Elite Cognitive Performer (ECP)
population. This population was chosen as they also are specifically required to perform
cognitively demanding tasks with critical outcomes (i.e., requiring timely responses for
success/ avoidance of failure). Furthermore, | explored performance both on laboratory
based standardised cognitive tests and on occupation-specific cognitively demanding
tasks, to provide insight into the effects of sleep loss on performance outside of a highly

controlled environment and circumstances.

While the similarities between esport athletes and ECPs (as well as the fact that esport
athletes themselves can be considered ECPs) was discussed in this review, it was
elaborated on in much greater detail in my 2020 article Life After Esports: A Grand Field
Challenge (Smithies et al., 2020). The purpose of this article was to outline post-career
employment difficulties of esport athletes, suggesting that better connections should be
established between the world of esports and occupations which could best benefit from
the unique attributes that esport athletes possess. | uncovered these occupations using a
systematic approach (querying the Occupational Information Network or O*net), and
found that the three occupations which best aligned with esports in terms of cognitive and
environmental demands were military drone operators, aircraft pilots, and air traffic
controllers; three ECP occupations. A figure from this article (presented here as Figure
2-4) highlights this relationship.
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occupations which best match these skills and experience (right). Figure is from Smithies
et al. (2020).

Additionally, it would appear that esport athletes exhibit the same improved cognitive
performance that ECPs seemingly tend to exhibit within laboratory-testing. While there
is limited evidence specifically for professional esport athletes, there is a now large body
of evidence (summarised by Bediou et al. (2018), Bediou et al. (2023), and Toth et al.
(2020)) demonstrating how frequent players of video games commonly played as esports

outperform non-gamers in laboratory-based cognitive tests.

It is also pertinent to highlight that esport athletes may be (like the ECP populations
included in the review) more susceptible for experiencing sleep restriction. This is as not
only do esport athletes face most of same factors that traditional sport athletes, but they
also possess some risk factors which are unique. These include the use of blue-light
emitting monitors (which may negatively impact/ shorten sleep through suppression of
endogenous melatonin secretion), the highly stimulating nature of the games commonly
played as esports, and a ‘culture’ of late-night training and play. These factors are

discussed in greater detail in section 1.5.
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2.6.2. Implications for Experimental Research

The systematic review outlined in this chapter helped determine the cognitive domains of
interest for my future inquiries into sleep loss and performance of esport players (Chapter
7). Firstly, the review found (in corroboration with reviews and meta-analyses in broader
populations and under broader conditions of sleep loss; (Lim & Dinges, 2010; Lowe et
al., 2017; Pilcher & Huffcutt, 1996) that performance on low-salience tasks (LS; defined
as simple tasks with no distractors, limited decision-making, and requiring simple, timely
responses) was consistently hindered by SR. I argue that this has limited relevance to in-
game esport performance. Esports are highly engaging, almost always provide multiple
sources of information to attend to or avoid distraction from, and require rapid and
frequent decision making. Nonetheless, given the demonstrated sensitivity of LS tests to
sleep loss, combined with the largely universal use of PVT to assess performance changes
in sleep research, | decided to include one (PVT) in my experimental sleep loss study.

The review also suggested that performance on more complex tasks is likely more
sensitive to sleep loss when cognitive flexibility is required (i.e., HSF tasks; task-
switching tests, multitask tests, and tests where the nature of targets could change
unpredictably throughout the test). HSF tests/ tasks appear much more relevant to esports
than LS tests/ tasks, given the multitude of information sources that players must switch
their attention between in most esports. Task-switching seems especially relevant, as
studies consistently show task-switching ability to improve with the play of video games

commonly played as esports (Nuyens et al., 2019; Toth et al., 2020).

In light of this, I sought to include a task-switching paradigm in addition to the PVT in
my experimental sleep loss study. Within the “Inquisit” neuropsychological test platform
(Millisecond Software, 2016), there are two unpredictable (i.e., the participant is unaware
when the cue will switch) task-switching paradigms; the Color-Shape Task, and the
Category Switch Task (CST). An unpredictable task-switching paradigm was sought (as
opposed to a test with predictable switches) as it seemingly better reflects the
unpredictable nature of player vs. opponent interactions within esports. Of these tests, the
CST was shown to result in lower residual variance (i.e., variance unrelated to task-
switching ability) than the Color-Shape Task, in a single administration setting (Friedman
et al., 2008) using Switch Costs (SC) as the outcome measure. Hence, | sought to
incorporate the (shortened) CST into the experimental sleep loss study. However, there
were outstanding questions with regards to the test-retest reliability of this measure, and
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whether practice effects may be an issue to overcome with the use of the CST. The latter
is particularly notable, given that my review included many papers presenting results that
were highly likely biased by the presence of practice effects (called training effects within
the review). These questions are addressed through my pilot study, which is outlined in

the following chapter.
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Chapter 3. Test-Retest Reliability and Practice Effects on
a Shortened Version of the Category Switch Task — A Pilot
Study

This chapter is currently under review for publication in a peer-review journal:

UNDER REVIEW: Smithies, T. D., Toth, A. J., Campbell, M. J. (2023). Test-Retest
Reliability and Practice Effects on a Shortened Version of the Category Switch Task — A
Pilot Study.

Changes to the version submitted for publication for the purposes of this thesis are

outlined below:

e Change in referencing style (article version is in numbered format).

e References to supplementary files are changed to the appropriate location within
the appendix.

e Words emphasised using quotation marks were changed to be emphasised using
italics, in line with the thesis format.

e The words Figure and Table in in-text references to figures was capitalised.
Furthermore, figure/ table numbering convention was changed in line with the
thesis format.

e Additional of a linking section for the purpose of thesis flow.

¢ Minor amendments have been made based on examiner correction suggestions.
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3.1. Abstract

Study Objectives: Test-retest reliability and practice effects (PEs) have not been
assessed for the Category Switch Task (CST), a task-switching paradigm readily available
to researchers. This pilot study aimed to assess the test-retest reliability of the CST, and
the presence of Pes among three short test-retest intervals (same day, next day, and next

week).

Methods: Forty-eight participants completed a shortened CST twice. Test-retest intervals
were either same day, one day, or one week. Test-retest reliability was assessed via
Pearson’s correlation and intraclass correlation coefficient. PEs were assessed using
paired-samples t-tests, and the effect of interval was examined through a series of
ANCOVA:s.

Results: Single task, switch cost and mixing cost response time test-retest reliability was
comparable to other task-switching paradigms, while reliability for switch and mixing
cost accuracy was poor. Test-retest PEs were present for single task response time and
accuracy, and mixing cost response time. Of these, PEs varied as a function of interval
only for single task accuracy, where an interval of one week resulted in a smaller

improvement compared to one day.

Discussion: The CST produces reliable values for single task RT, single task accuracy,
switch cost RT, and mixing cost RT. Researchers should be aware that PEs may confound
results in a test-retest design when single task RT, single task accuracy, or mixing cost

RT are considered as outcome measures.

Keywords: reliability, practice effects, task-switching, test-retest, category

switch
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3.2. Introduction

Researchers often wish to use cognitive tests in test-retest research designs. If a test is to
be used in this fashion, it is important to consider its test-retest reliability as more reliable
tests will minimise risk of error and will thus be generally better to use in practice. Test-
retest reliability refers to a measure of the consistency of scores (or the minimisation of
error) obtained from an individual when a test is administered multiple times. If test-retest
reliability is low due to measurement error, the risk of both Type I and |1 error increases
(however, note that a lower test-retest reliability as a function of low between-subject
variability may be beneficial in test-retest designs; see Hedge et al. (2018) for further
discussion). Sources of error that can reduce test-retest reliability can be random, such as
natural fluctuations in an individual’s alertness, or systematic, such as improved
performance attributable specifically to an intervention or to repeated engagement with
the test (practice effects (PEs); McCaffrey et al. (2000)).

When considering these sources of error, the presence and magnitude of PEs can, and
should, be measured when using test-retest designs to account for the extent to which an
intervention truly affects the behavioural outcome being quantified. If improvement due
to repeated test administrations is not accounted for, the improvement could be
mistakenly attributed to a positive effect of an intervention. Concurrently, a lack of
numerical score difference between test and retest sessions could be erroneously
interpreted as a null finding, when, in fact, test-retest PEs are masking the deleterious
effect of a given intervention on performance. This scenario has been demonstrated within
the context of underdiagnosis of mild cognitive impairment (Duff et al., 2011; Elman et
al., 2018) and cognitive impairment among women undertaking chemotherapy for breast
cancer (Cerulla et al., 2019). Many factors are known to influence the magnitude of PEs,
including task difficulty and, perhaps even more importantly, the time interval between
administrations (test-retest interval). For example, shortening the test-retest interval
generally leads to a larger PE, with its influence seemingly being task dependent (Bartels
etal., 2010; Calamia et al., 2012).

Task-switching (or set shifting) is an executive function commonly studied as a measure
of one’s cognitive flexibility. Task-switching paradigms have been used in a variety of
test-retest designs, including the study of the potential cognitive benefits of action video
game play (Boot et al., 2008; Green et al., 2012), and the study of the deleterious effects
of total sleep deprivation on cognition (Couyoumdjian et al., 2010; Slama et al., 2018).
The test-retest reliability and magnitude of PEs for various outcome metrics of some task-
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switching paradigms have been previously described (affective task-switching: Eckart et
al. (2021); colour-shape: Paap and Sawi (2016); number-letter task-switching: Soveri et
al. (2018); Timmer et al. (2018); linguistic task-switching: Timmer et al. (2018); colour-
shape and linguistic task-switching: Segal et al. (2021)), specifically within university
student populations and with test-retest intervals ranging from 1-6 weeks. In task-
switching paradigms, two common outcomes of interest are switch cost scores (SC;
referring to the cost of responding to a changing cue/task/ruleset (hereafter simply ‘cue’)
compared to when the cue remains the same) and mixing costs (MC; referring to the cost
associated with knowing the cue could potentially change in a block of trials vs. knowing

the cue will not change).

A specific task-switching paradigm which has not been assessed with respect to its test-
retest reliability is the Category Switch Task (CST). Originally described by (Mayr &
Kliegl, 2000), the CST requires participants to categorise target words as either living/
non-living, or smaller/ bigger than a basketball, depending on a cue presented with or
slightly before the target. The CST has been used (with adaptations depending on the
purpose of the study) in research on the affective response to task-switching (Van Dessel
et al., 2020; Vermeylen et al., 2019) and effect of reward on task-switching behaviour
(Braem, 2017), as well as to test the congruency of targets (Schneider, 2015) and the
effect of varying stimulus onset asynchronies (Schneider & Logan, 2014). It is one of two
unpredictable (i.e., the participant is unaware when the cue will switch) task-switching
paradigms (along with the colour-shape task) available on the popular Inquisit
neuropsychological test platform (Millisecond Software, 2016). The CST was
demonstrated by Friedman et al. (2008) in a single administration design to provide lower
residual variance (i.e., task impurity and measurement error) than not only other task-
switching paradigms (colour-shape and number-letter), but of all eight executive
functioning tasks explored (when using the outcome measure SC), within a factor analysis

model.

To date, only one study (Chihiro et al., 2017) has explored whether the CST (translated
from English to Japanese) is susceptible to PEs, noting SC response time (RT) reduced
from 230.5ms to 98.4ms following eight consecutive test blocks. However, given the
blocks were performed consecutively, it remains unclear if / how the time interval
between test and retest impacts PEs on the CST. Friedman et al. (2008) reported the split-
half internal consistency for SC RT on a single administration of the CST as r = 0.85;

however, this does not capture error unique to the administration at a certain time point
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and thus is not reflective of test-retest reliability. Hence, both test-retest reliability and
PEs for the CST when considering SCs have not yet been examined; however it is also
important to note that there are other metrics are often explored following the use of task-

switching paradigms, such as single task performance and MCs.

Overall, the purpose of this study is to (a) describe the test-retest reliability of CST
outcome measures, (b) to assess the presence and magnitude of test-retest PEs on these
CST outcome measures, and (c) to explore whether presence and magnitude of PEs varied
as a function of test-retest interval (same day, next day, and next week). Regarding (b)
and (c), we hypothesised that performance in all outcome measures would improve from
test to re-test, and that shorter test-retest intervals (same day) would lead to greater

improvement compared to longer intervals (next week).
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3.3. Methods

3.3.1. Participants

51 healthy adults provided written informed consent to participate in the study. We did
not consider the data of three participants due to the incompletion of the second test
session, English nonproficiency, or near chance performance. Our final sample included
48 healthy adults (mean age 25.98 + 6.61 years (range: 19 — 53), 17 females; see appendix
3.1 for demographics by interval group). All participants reported to be free from
neuropsychological or neuromuscular disorders. All procedures described were approved
by the Education and Health Sciences Research Ethics Committee at the University of

Limerick, in accordance with the Declaration of Helsinki.

Participants were randomly assigned to one of three interval groups (N = 16 in each
group). In all groups, participants completed two test sessions of the Category Switch
Test (CST; described below). In the first group (same day), participants arrived at the
laboratory in the morning between the hours of 09:00 and 12:00 to complete their first
test session. Participants then arrived back at the lab between the hours of 12:00 and 18:30
the same day to complete their second test session (mean interval length = 4hrs 19min +
78min). In the second group (next day), participants completed their first and second test
sessions at any time between the hours of 09:00 and 18:30 one day apart, given the times
were similar between days (mean interval length = 23hrs and 59min £ 42min), while in
the third group (next week), participants completed their first and second test sessions at
any time between the hours of 09:00 and 18:30 seven days apart, given the times were

similar between days (mean interval length = 7days £ 71min).

The Category Switch Task (CST) used in this study was adapted from that originally
described by (Mayr & Kliegl, 2000) and administered using Inquisit 5.0 software, by
Millisecond™. Specifically, the test was shortened to one single task test block per cue,
and two mixed task test blocks (see the procedure section below), and the stimulus
response mappings between the response keys were pseudorandomised across test
sessions. The task was completed by all individuals on the same computer, using the same

computer peripherals and a 27-inch monitor with a 144hz refresh rate.

Within a CST trial, participants were presented with a word, which they categorised
according to one of two distinct categorisation rules, determined by an image which
served as a cue. Each word was randomly chosen from a set of sixteen words (Mayr &
Kliegl, 2000), (see appendix 3.2 for the complete list). The first rule dictated whether a
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given word resembled an item that was living or non-living (living cue), with this rule
denoted by a heart image that appeared 150ms before the word and which remained
present above the word until a response was inputted (cue-target interval or CTI = 150ms).
A second rule dictated whether the word resembled an object that was bigger or smaller
than a basketball (size cue), with this rule denoted by a cross image that also appeared
with a CTI of 150ms. Participants inputted their responses using the E and | keys on the
keyboard to classify the object as living/non-living or big/small respectively. There were

four words that satisfied each living/size combination.

3.3.2. Procedure

Participants in all three groups completed two sessions of the CST, which each took
approximately 15 minutes to complete. During each session, participants were presented
with four test blocks (each 54 trials). A practice block (32 trials) preceded each of the first
two blocks and allowed participants to familiarise themselves with the task. In the first
block (single task living), the living cue was the only cue presented for all trials. In the

second block (single task size), the size cue was the only cue presented for all trials.

In the third and fourth blocks, trials could be presented with either cue (mixed task),
requiring participants to flexibly adapt their interpretation and categorisation of the word
according to the cue provided in each trial. During this block, trials could be switch trials,
in which the cue for the current trial differed from the previous trial, or repeat trials,
whereby the cue for a current trial was identical to the previous trial. Participants used the
cue provided to correctly classify each word using the E and | keys. Again, participants
were presented a practice block, but this practice block consisted of a minimum of ten
trials and continued until the correct response rate was 80%. Following the practice block,
participants completed two test blocks of 54 trials. Within the mixed task blocks, cues
were pseudorandomised such that there were an equal number of switch and repeat trials,
with the constraint that there could not be more than four switch trials in succession.
Figure 3-1 depicts both switch and repeat trial variations during the mixed task blocks of
the CST.
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Figure 3-1 A visual representation of the third or ‘combined’ iteration of the category
switch test. For each trial, a living cue or size cue is displayed alone for 150ms. After the
150ms, a word appears on the screen. The participant uses the ‘E’ or ‘I’ key to correctly
categorise the word according to the rule associated with the cue. The inter-stimulus
interval is 350ms for correct responses and 1500ms for incorrect responses. If the next
trial has a different cue, it is a switch trial, whereas if the next trial has the same cue, it is

a repeat trial.

Throughout all practice trials, visual error feedback was presented in the form of an
incorrect message, with participants correcting the error before continuing. Within the
testing trials, visual feedback for errors was provided however participants did not have
to correct their error. There was a 350ms inter-stimulus interval (I1SI) following correct
responses, and a 1500ms IS along with visual feedback (in the form of a x) for incorrect
responses. Participants were told ‘try to minimize reaction time while avoiding making

errors’.

The SRM between the E and | keys and big, small, living & non-living inputs was
consistent within a given test session but was pseudorandomised across test sessions for
a given participant and also among participants, such that 50% of the participants within
each group had the mapping for one cue only changed, and 50% had the mapping for both

cues changed.
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3.3.3. Data Processing

The first two trials within each test block were classified as buffer trials for the given
block (as per Paap and Sawi (2016)) and removed for any further analysis. Response
times (RTs) beyond three standard deviations of the mean RT per participant per session
were considered outliers and removed from subsequent analysis (2.00% of total responses

removed as outliers).

Response time (RT; ms) and accuracy (Correct/Incorrect) were recorded for each trial
within each test block. Performance on both single task blocks (living cue only, and size
cue only) was pooled for analyses (collectively named single task blocks). For the mixed
task, we explored two outcome measures commonly reported in task-switching literature;
switch and mixing costs (SC and MC). We calculated SC as the difference in mean
performance on switch trials and repeat trials, and considered MC as the difference in
mean performance on repeat trials and trials within the single task blocks (see appendix
3.3 for further description of derived variables). In total, mean RT and response accuracy

were considered for single task, SC, and MC, totalling six outcome measures.

3.3.4. Statistical Analysis - Test-Retest Reliability

The test-retest reliability of all outcome measures (irrespective of test-retest interval) was
assessed using Pearson’s r and intraclass correlation coefficient (ICC). Pearson’s r
demonstrates the strength and direction of linear relationship between test and re-test. We
interpreted r < 0.60 as low reliability, 0.60 < r < 0.69 as marginal reliability, 0.70 <r <
0.79 as adequate reliability, 0.80 < r < 0.89 as high reliability, and 0.9 <r as very high
reliability (Strauss et al., 2006). ICC further accounts for systematic error (i.e., PES); we
used ICC,1) as it is most appropriate when using ICC for test-retest reliability (Koo &
Li, 2016). We interpreted ICC < 0.5 as poor reliability, 0.5 < ICC < 0.75 as moderate
reliability, 0.75 <ICC < 0.9 as good reliability, and 0.9 < ICC as excellent reliability (Koo
& Li, 2016). Lastly, we performed variance decomposition analysis on each outcome
measure using the psych package (v 2.2.5; (Revelle, 2022)) in R (4.1.3; R Core Team
(2022)).

3.3.5. Statistical Analysis - Practice Effects

Regarding practice effects (PEs), we hypothesised that PEs would be present for all CST
outcome measures, and that the magnitude of PEs would be greater for shorter test-retest

intervals.
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To test if PEs were present across the entire sample, we pooled data from each interval
group and compared scores at test against retest using a series of paired sample t-tests.
Normality of difference scores (retest — test) was assessed through visual inspection and
via the Shapiro-Wilk test; where the assumption of normality was violated, bootstrapping
(Bias-corrected and accelerated (BCa), samples = 5000, 95%CI) was performed prior to
the paired sample t-test. Differences between test and retest were considered significant
if two-sided p < 0.05.

To test whether the magnitude of PEs varied across test-retest intervals, we ran a series
of six bootstrapped one-way Analysis of Covariates (ANCOVAS). Bootstrapping (BCa,
samples = 5000, 95%CI) was performed across all ANCOVAs due to performance at
retest exhibiting non-normal distributions (inspected visually & using the Shapiro-Wilk
test) in multiple groups for most outcome measures. In these ANCOVAS, we considered
interval as the independent variable, with three levels (same day, next day & next week),
and each performance variable at retest as a dependent variable. Performance at test was
considered as a covariate. ANCOVA was chosen as it tends to produce less biased results
when compared to other analytical methods factoring in baseline scores in a test-retest
design (i.e., split-plot ANOVASs or change scores (Overall & Doyle, 1994; Stanley, 2022;
Vickers & Altman, 2001). A main effect of interval (p<0.05) suggested that the
magnitude of performance change varied as a result of test-retest interval. When this
occurred, follow up Fishers LSD multiple comparisons were performed to determine
which specific interval groups differed. Fishers LSD is an appropriate analysis given our
design because it preserves type | error rate where three or fewer groups are tested
(Hayter, 1986; Levin et al., 1994; Meier, 2006).

All analyses were performed using the IBM SPSS Statistics v28 (IBM Corp, 2021)
software or R (4.1.3; R Core Team (2022)).

66



3.4. Results

3.4.1. Test-Retest Reliability

Test-retest reliability was calculated for each of the six outcome measures. Reliability
scores are shown in Table 3-1, and variance decomposition is shown in Figure 3-2.

Table 3-1 Test-retest reliability results for outcome variables considered. Upper and

lower 95% confidence intervals are given in squared brackets for ICC (2,1).

Outcome Variable Pearson's r ICC 1)

Single Task

RT (ms) 0.86*** (high) 0.84 [0.69, 0.91]*** (good)
Accuracy (% correct) 0.57*** (low) 0.52 [0.26, 0.70]*** (moderate)

Switch Costs

RT (A ms) 0.60*** (marginal) 0.60 [0.38, 0.75]*** (moderate)
Accuracy (A % correct) -0.08 (low) 0.00 [-0.28, 0.28] (poor)
Mixing Costs

RT (A ms) 0.66*** (marginal) 0.58 [0.32, 0.75]*** (moderate)
Accuracy (A % correct) -0.10 (low) 0.00 [-0.26, 0.27] (poor)

*xxn < 0,001

100%+
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W Error
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40%+

Source of Variance

20%"
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Figure 3-2 Stacked bar charts showing variance decomposition for the six outcome
measures. As between-participant variance (black) is analogous to the reported ICC
values, the thresholds used for defining reliability (poor, moderate, good, and excellent)

are also provided.
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3.4.2. Test-Retest PEs

All dependent variable difference scores were sufficiently normal besides mixing cost
(MC) response time (RT), for which a bootstrapped paired samples t-test was performed.
Paired-sample t-tests revealed a significant effect of test session (test vs. retest) for single
task RT (ART = 30.52 = 10.04; t(47) = 3.04, p = 0.004, 95% CI1[10.32, 50.72], Cohen’s
d = 0.44), single task accuracy (A accuracy = -1.46 £ 0.46; t(47) = -3.03, p = 0.004, 95%
Cl [-2.43, -0.49], Cohen’s d = -0.44), and MC RT (ART = 73.29 +23.00; t(47) = 3.19, p
=0.004, 95% CI [30.04, 121.30], Cohen’s d = 0.46), but not for SC RT (ART = 28.61 +
23.00; p = 0.154), SC accuracy (A accuracy = 0.45 + 1.11; p = 0.688), or MC accuracy
(A accuracy = -1.53 £ 0.83; p = 0.072).

3.4.3. Single Task

The covariate performance at test was significantly related to performance at retest for
single task RT (F(144) = 114.816, p < 0.001, n2 = 0.723). No main effect of the
independent variable interval group was present (p > 0.05), indicating that the change in
performance from test to retest did not significantly vary as a function of test-retest

interval.

The covariate performance at test was significantly related to performance at retest for
single task accuracy (F(144) = 26.990, p < 0.001, n2 = 0.380). A main effect of the
independent variable interval group was present (F(2,44) = 3.369, p = 0.044, n2 = 0.133),
with multiple comparisons revealing significantly greater accuracy at retest (AM = 2.21
+ 0.86%, p = 0.014, BCa 95%CI [ 0.48, 3.94]) for the next day interval group (M = 97.34
+ 0.45%) compared to the next week interval group (M =95.13 + 0.68%).

3.4.4. Switch Costs
The covariate performance at test was significantly related to performance at retest for
SC RT (F(1,44) =24.64,p<0.001, 12 =0.359). No main effect of the independent variable

interval group was present for SC RT (p > 0.05). There was no main effect of interval

group or significant relationship to performance at test for SC accuracy (p > 0.05).
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3.4.5. Mixing Costs

The covariate performance at test was significantly related to performance at retest for
MC RT (F(1,42) = 41.764, p < 0.001, n2 = 0.487). No main effect of the independent
variable interval group was present (p > 0.05) for MC RT.

The covariate performance at test was not significantly related to performance at retest
for MC accuracy (p < 0.05). A main effect of the independent variable interval group
was present (F(2,44) = 7.221, p=0.002, n2 = 0.247), with multiple comparisons revealing
that MC accuracy was significantly greater (i.e., a larger difference between single task
accuracy and repeat trial accuracy in the mixed task blocks) in the same day (M =4.13 +
0.97%) group, compared to both the next day (M = 0.46 + 0.81%, A% = 3.67 £ 1.47%, p
= 0.023, BCa 95%CI [ 0.95, 6.49]) and the next week (M =-0.97 + 0.96%; A% = 5.10 +
1.68%, p = 0.007, BCa 95%CI [1.89, 8.33]) groups. There was no significant difference
between the next day and next week group.
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Figure 3-3 Bar charts depicting the ANCOVA adjusted mean (xSEM) retest values of
the interval groups same day (SD), next day (ND), and next week (NW), adjusted for the
‘baseline’ test value (dotted line), for the six outcome variables of interest: A single task
RT, B single task accuracy, C SC RT, D SC accuracy, E MC RT, and F MC accuracy.
** denotes p < 0.01, and * denotes p < 0.05; denotations next to the dotted line indicate a
significant test-retest practice effect for the pooled data, and denotations above bars

indicate a significant difference between different interval groups at retest.
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3.5. Discussion

The current study aimed to uncover (a) test-retest reliability for various outcomes of a
shortened Category Switch Task (CST), as well as (b) the presence and magnitude of test-
retest practice effects (PEs) (c) among different test-retest intervals. Regarding (b) and
(c), we hypothesised that performance on all outcome measures of interest within the CST
would exhibit PEs, and that the magnitude of these effects would decrease as test-retest
interval increased. We found greater test-retest reliability on the single task measure,
compared to switch costs (SCs) and mixing costs (MCs), and on response time (RT) based
outcome measures, compared to accuracy-based measures. We found evidence of test-
retest PEs for all RT measures of the CST except SC, as well as for accuracy on the single
task block. We did not find any evidence of PE magnitude difference between test-retest
interval groups (same day, next day and next week) for any RT based measure; however,
we found a next day retest to result in a greater single task accuracy improvement
compared to a next week retest, and a same day retest to result in a greater MC increase

compared to a next day or next week retest. Results and implications are discussed below.
3.5.1. Test-Retest Reliability

Comparison between test-retest reliability score metrics found in the current study and
other studies on task-switching paradigms can be found as appendix 3.4. Regarding single
task RT, test-retest reliability was similar to or greater than those reported for single task
components of other task-switching paradigms (Paap & Sawi, 2016; Segal et al., 2021
(data from Prior & Gollan, 2013)t; Soveri et al., 2018), and close to that expected (r =
0.9) for a task with minimum 40 trials without consideration of day effects (Miller and
Ulrich, 2013; cited in Paap & Sawi, 2016). Similarly, test-retest reliability of MC and SC
was similar to or greater than most other task-switching paradigms. Only Eckart et al.
(2021) reported an appreciably greater test-retest reliability for difference score measures,
on an affective task-switching paradigm (r = 0.81 —0.88; ICC,1) = 0.78 — 0.82), however
their design included many more trials per test session (48 switch trials & 192 repeat
trials) than the current design (~52 switch trials & ~52 repeat trials). As Miller and Ulrich
(2013) demonstrate using the individual differences in reaction time (IDRT) model,
increasing the number of trials greatly increases test-retest reliability, particularly for

difference score measures. This was also shown by Eckart et al. (2021), who in their own

T When referring to Segal et al., 2021 (data from Prior and Gollan (2013)), we refer only
to their comparison between Test 1 and 3, which had a test-retest interval of one week,
and not the comparison between Test 1 and 2 which immediately went from test to retest.



analysis noted smaller (though still adequate/ moderate) test-retest reliability (r = 0.74;
ICC1) = 0.66 — 0.69) when only half the trials were included. Overall, the CST
demonstrated test-retest reliability that was comparable-to or greater-than other task-
switching paradigms for RT measures, boding favourably for its use both in single-test

and test-retest design studies.

Test-retest reliability for accuracy measures was found to be much lower when compared
to the test-retest reliability of RT measures from the same sub task type (single task, SC
& MC). At least regarding SC, this finding corroborates work by Eckart et al. (2021),
who found “consistently better psychometric properties for RT-based switch costs”
(Eckart et al., 2021, p. 929) when compared to error based measures in their affective
task-switching paradigm. While difference scores can often show poor reliability for
individual differences despite remaining suitable for group level comparisons (Hedge et
al., 2018; Paap & Sawi, 2016; Segal et al., 2021), test-retest reliability should at least
reach statistical significance to be suitable for testing for group level differences (Paap &
Sawi, 2016). Given non-significance of SC and MC accuracy test-retest reliability, we
advocate against the consideration of SC and MC accuracy when using our shortened
version of the CST. Note that interval effects are not responsible for the poor reliability
of these measures, as the poor reliability remains when analysis is performed on
individual interval groups (see appendix 3.5 for these results).

3.5.2. Test-Retest Practice Effects

We found evidence for test-retest PEs for both single task RT and accuracy, as well as
MC RT, but not SC RT, and both SC and MC accuracy (Figure 3-3). While a lack of
evidence for PEs in SC RT is contrary to our hypothesis, it is welcome, as it suggests that
when SC RT (the primary outcome measure in most studies using task-switching
paradigms) is considered as an outcome measure of the CST in a test-retest design, PEs
are unlikely to systematically bias results. Regarding the effects of test-retest PE on SC
and MC RT, previous analyses on task-switching paradigms have produced conflicting
findings. Eckart et al. (2021) found reduced switch trial RTs but not repeat trial RTs at
retest (interval = 11 — 17 days), resulting in a SC improvement of ~29 - ~41ms, while
conversely Segal et al., 2021 (data from Prior and Gollan (2013)) found MC but not SC
to improve with practice on a colour-switch task. Of course, differences in the specific
paradigm used and its administration (number of trials, extent of prior practice) can all

play a role in PE presence and magnitude. Our analysis suggests that those seeking to use
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the CST in a test-retest design and aiming to analyse single task RT and/ or accuracy, or
MC RT, should consider PE mitigation strategies such as extensive pre-testing practice
(potentially with use of alternate forms; Beglinger et al. (2005)), counterbalancing
(Greenwald, 1976), or using the performance of control groups (i.e., standardized

regression-based methodology; McSweeny et al. (1993)).
3.5.3. Effect of ‘Interval’

We found the magnitude of PEs to vary as a function of test-retest interval for single task
and MC accuracy measures, however not for RT measures, or SC accuracy. Regarding
single task accuracy, the direction of this effect corroborated with our hypothesis; a larger
test-retest interval resulted in smaller PEs compared to a shorter interval (though this only
reached significance when comparing to the same day group) (see Figure 3-3). A lack of
effect of interval on RT measures, while contrary to our hypothesis, does corroborate with
previous research finding no effect of interval on cognitive tests when only short-term (>
2 weeks) intervals were examined (Farahat et al., 2003; Salthouse & Tucker-Drob, 2008).
Overall, our results suggest that researchers looking to use RT outcome measures on the
CST should not be concerned about differences in interval confounding a test-retest
design by producing different PE magnitudes, so long as interval remains between a few

hours and one week.
3.5.4. Limitations

Firstly, although all included participants were proficient English speakers, we did not
explicitly check whether English was the first language of participants. Secondly, we did
not check whether participants only spoke English, or whether they were bilingual. This
is relevant as there is evidence that bilingual individuals possess enhanced task-switching
abilities that persist beyond language-switching (Declerck et al., 2017; Prior & Gollan,
2013; Prior & Macwhinney, 2010; Weissberger et al., 2012), though this domain-
generality is highly disputed (de Bruin et al., 2015; Paap & Greenberg, 2013; Paap et al.,
2015; Paap et al., 2017). Larger studies allowing more control over participants should
look to capture or control for bilingualism among groups. Thirdly, we examined RT and
accuracy as separate entities, as is commonplace among studies using task-switching
paradigms. However, we note that alternative approaches which have combined RT and
accuracy measures have been developed and proposed for SC in task-switching

paradigms, with comparable (and sometimes superior) reliability and validity compared
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to RT alone (Hughes et al., 2014). These approaches have the additional advantage of
accounting for potential speed-accuracy trade-offs which may be present. Fourthly
regarding the assessment of PEs, we note that only one retest bout was performed.
Performance improvement may be observable following many more than two repetitions
of cognitive test administrations (i.e. Watson et al. (1994). It is possible that should more
testing bouts have been performed, group differences compared to baseline may have
been observable for measures such as SC RT or MC accuracy. Our test-retest design did
not allow such performance improvement to be captured. Lastly, while the sample tested
in this pilot study was less than 50 individuals (Hopkins, 2000), the sample size used was
comparable to/ greater than those used in many of the studies used as comparisons (N =
47, Eckart et al., 2021; N = 34, Soveri et al., 2018; N = 53, Timmer et al., 2018).

3.5.5. Conclusions

In conclusion, in the current article we demonstrate the shortened CST to produce reliable
values for the outcome measures single task RT, single task accuracy, switch cost RT,
and mixing cost RT. However, researchers should be cautious when seeking to analyse
SC and MC accuracy based measures of the CST in their experimental designs. Of the
above outcome measures recommended for use, researchers should be aware that without
mitigation strategies, test-retest practice effects could confound results when single task

RT, single task accuracy, or mixing cost RT are considered as outcome measures.
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3.5.6. Linking Section

The investigation into the test-retest reliability and practice effects of a shortened CST
task, presented in this chapter, both augmented and provided confidence in my use of the
task as a high-salience flexible (HSF) task in my experimental sleep loss study. Firstly,
all RT based outcome measures (single task, SC and MC) from the shortened CST
presented with test-retest reliability that was either similar to or superior than other
comparable task-switching paradigms. However when observing accuracy outcome
measures, test-retest reliability was poor and insignificant for SC and MC. As stated by
Paap and Sawi (2016), test-retest reliability should be significant to be suitable for use in
testing group differences (see also Dorrian et al. (2004) for discussion about test-retest
reliability specifically in sleep research). Hence, this study informed us that SC and MC
accuracy were not reliable outcome measures that were suitable for use. Secondly, the
study informed us that PEs may be a potential source of bias within the test-retest interval
(1-week) I planned to use in the experimental sleep loss study. Given that recruitment of
a specialised population was necessary for my experimental sleep loss study (with many
individuals likely residing outside of Limerick and unable to attend one or multiple prior
training sessions), prior training to asymptote on the CST was not a feasible option to
overcome practice effects. | also note prior test-retest studies using task-switching
paradigms that exhibit evidence of PEs, despite attempts to train to asymptote before
study commencement (i.e., Couyoumdjian et al., 2010). Statistical approaches to
overcome PEs (i.e., McSweeny et al., 1993) presented as limiting and overall
unappealing. Hence, it was decided that counterbalancing was the ideal approach to
overcome PE issues that may arise from some CST outcome measures in the experimental

sleep loss study.

At this stage, | have identified the cognitive tests that | will use in the experimental sleep
loss study (PVT and CST) to assess the performance of esport players on low salience
and high salience flexible tasks (as per Chapter 2). The additional benefit to using the
CST is the single task component of the test, would be considered a high-salience stable
task using the categorisation rules of Chapter 2, and hence through using these two tests,
I am covering all three categories outlined in Figure 2-3. However beyond cognitive
performance, the current thesis aimed to explore how sleep loss would impact in-game
esports performance. The following two chapters discuss the target esport examined

within the thesis; Rocket League. Chapter 4 aims to provide an introduction to the esport
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for the esports naive reader, while Chapter 5 discusses performance and rank indicators

(and hence, outcome metrics of interest) within this esport.

76



Chapter 4.

An introduction to Rocket League
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As mentioned in the introduction, a primary outcome of the current thesis is to explore if,
how, and how much, sleep loss specifically impacts esports performance. Esports refers
not to specifically one game, but to any video game played competitively in an organised
manner. A recent compendium identified 1,007 video games which could be considered
as an esport (Independent Electronic Sports, 2023). Within the esports umbrella is great
diversity in-game dynamics, strategies, and specific human attributes more influential

toward in-game success.

Importantly however, there is great diversity in how practical different esports are for use
in an experimental research setting, if one wants to consider and measure performance
in-game. Regarding use practicality, a first important factor is the game length where
short and predictable is ideal, to allow for multiple matches within a given test session
which spanning across a predictable (and hence, manageable) period of time. A second
important factor is game popularity; an otherwise suitable esport is not worth
consideration if there are not sufficient players of that esport within the community to
render a study feasible. A third factor is in-game data availability, which varies between
esports for various reasons, such as fear of “cheaters” using available data to create tools
which provide an unfair in-game advantage (Reitman et al., 2019). A final factor is
whether an esport includes competitive play as individuals (1v1), as opposed to as a team;
this is as the inclusion of teammates greatly complicates analyses due to requiring the
consideration not only of interactions between opponents but also of interactions between
teammates (Ofoghi et al., 2013). Measuring gameplay within an 1v1 environment also
removes the factor of in-game roles, which could complicate the interpretation of any
performance data collected.

With a large playerbase (averaging ~90 million players per month, Active Player (2023),
short and predictable match lengths, data-availability, and competitive play as individuals
(1v1), Rocket League presented as an ideal esport with which to perform experimental
research. Hence, the primary aim of this chapter is to provide the reader with an
introduction to the esport Rocket League. The secondary aim of this chapter is to provide
information regarding the process of obtaining in-game metrics within Rocket League,
and an overview of the types of metrics that are obtained and used frequently in the
analysis of competitive/ professional Rocket League. The hope is that following this
chapter, the reader will have sufficient knowledge of Rocket League and in-game Rocket

League metrics to facilitate an understanding of my analysis of performance and rank
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indicators (PIs and RIs respectively) within 1vl Rocket League, which is outlined in
Chapter 5.

4.1. Rocket League

Rocket League, released in 2015 by the video game developer Psyonix LLC (now owned
by Epic Games) can be described as a vehicular soccer video game (Smithies, Campbell,
et al., 2021). Conceptually, it is one of the easiest esports to grasp for individuals new to
esports. At a competitive level, teams consist of either one (1v1), two (2v2) or three (3v3)
players. Rocket League can be played using both controller (i.e., Dualshock 4 or Xbox
One controller) or a keyboard and mouse as input modalities.

In Rocket League, each player controls a single vehicle, viewed from a third-person
camera angle (of which players have a large degree of control and customisation over).
Players are free to use vehicles with one of six hitboxes. Vehicles of different hitboxes
have minor differences in how they manoeuvre and interact with the ball in-game (i.e.,
length, width, height, centre of mass location, and turning circle of the vehicle). There is
one spherical ball in play, which may spin when it hits the ground but which does not
curve in the air (i.e., no Magnus effect) due to spin imparted on the ball. Teams must use
their vehicles to prevent the ball from entering their goal (shaped similarly to a soccer
goal) while simultaneously trying to hit the ball into their opponent’s goal. The goals are
situated on opposite ends of the map, which is a playing surface that is standardised in
terms of length, width, and shape (rectangular, with soft edges), and are completely
enclosed by walls and a ceiling (see Figure 4-1). Players are able to drive on these surfaces
if desired. At the start of each match and following a goal, a kickoff commences; this
places a member of each team at an identical distance to the ball, with a three second

counter occurring before game (re)commencement.
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Figure 4-1. A A simplified birds-eye view of a standardised Rocket League map. Blue
and orange rectangles denote goal locations. The white circle denotes the location of the
ball at the start of the match or immediately following a goal. Yellow circles (black
outline) denote the location of small pads, and black circles (yellow outline) denote the
location of big pads. B A top-down view of a Rocket League map (“Beckwith Park”™),
allowing view of the map walls and ceiling. C Players view of a kickoff about to
commence. Kickoffs place a member of each team at equal distance to the ball, and allow
players to move at an identical time. D A players view mid-game; in this instance, within
an aerial-based attacking play. In C and D, the current score and time left can be seen in
the top of the screen, and the player’s current boost total can be seen in the bottom-right
of the screen; this information is present to players throughout the entirety of a Rocket

League match.

Throughout the game, players may drive, jump, double jump, and dodge (a game
mechanic which flips the car in a specified direction) to move and strike the ball. Players
may also use boost, a finite resource collected at locations on the playing surface of the
map, which provides acceleration of one’s vehicle (up to an inbuilt maximum speed). By
using boost and pointing the nose of their vehicle away from the ground, players are also
able to fly into the air. Lastly, players are able to remove their opponents from the map
for three seconds by driving into them at ~95-100% of maximum speed and at a certain
range of angles (this action is called a demo). For a further overview, | guide the reader
to a 12-minute introductory video for Rocket League (Pilkin, 2022).
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For the purposes of my experimental research, | focussed on 1v1l Rocket League. While
most professional Rocket League is 3v3, there is a considerable (and growing) amount of
competitive and professional Rocket League which is played as 1v1. In 2022 and 2023,
1vl formed a major part of the Gamers8 Rocket League event, which possessed a 2
million USD prize pool on both occasions (Liquipedia, 2022, 2023). Elsewhere, it is
estimated (using data from rlduels.gg (2023), provided as appendix 4.1) that as of June
22 2023, >€750,00071 has been earnt as prize money through 1v1 Rocket League.

4.2. In-Game Rocket League Metric Categories

As mentioned, Rocket League is uniquely positioned for research purposes in part
because in-game data are readily available. In-game data can be made accessible using
ballchasing.com, which is a large data repository for Rocket League match replays. The
use of ballchasing.com is universal within the Rocket League gaming community, with
over 90 million Rocket League match replays publicly uploaded to the repository as of
30/05/2023; this is inclusive of official Rocket League tournament and World
Championship matches. One of the key features of ballchasing.com as a data repository
is its Application Processing Interface (API) applied to all uploaded replays, which strips
in-game data stored within the replay, and presents them as metrics generally considered
relevant within the Rocket League community. Further, ballchasing.com subsequently
allows for the downloading of these in-game metrics as .csv files. Essentially, this means
that any individual can obtain a complete summary of any of the >90million Rocket
League matches publicly uploaded to ballchasing.com (alongside any matches they
upload privately), presented as 72 data points, per individual player, per match. Clearly,
this is of extreme benefit if one seeks to explore in-game performance, either for an

individual matches or for trends across many thousands of matches.

In Chapter 5, I utilise the ballchasing.com API to obtain in-game metrics for 21,588
Rocket League matches. Following data processing and steps (outlined in Chapter 5), |
obtained 28 in-game metrics (26 when considering difference scores, i.e., differences
between player and opponent), for which analysis was undertaken from. These metrics
are divided into four categories for the purpose of Chapter 5; offense/ defence, boost,
movement, and positioning. While a brief explanation of all 28 metrics is provided in
F1 considered “Winnings” values presented by rlduels.gg as USD. While rlduels.gg inputs
prize earnings in the currency they are presented, the vast majority of 1v1 showmatches
or events with prize money provide potential earnings in USD — however, we accept as a

limitation of this estimation that not all values included were necessarily provided in
USD. 81



appendix 4.2., a brief description of these four categories is provided here to assist the

reader’s understanding of metrics in Chapters 5, 7, and 8.
4.2.1. Offense/ Defence Metrics:

These metrics relate to specific in-game events (saves, shots, and demos) rather than
information regarding boost, movement, or positioning. These metrics are often the first
considered and discussed by players and analysts alike. Live information regarding shot
and save count is available to players and spectators throughout any Rocket League
match. These are akin to metrics such as shots taken, saves made, tackles made, passes

made etc. within soccer.
4.2.2. Boost Related Metrics:

Boost is a finite resource present in Rocket League which, when used, allows for rapid
car acceleration and greatly assists in the ability to get high in the air. Boost can be
collected from big pads (6 locations, which provide 100 boost and respawn every 10
seconds) or small pads (28 locations, which provide 12 boost and respawn every 3
seconds), which are in standardised locations on each map. A player can only have a
maximum of 100 boost at any given time. Given that (a) access to boost is competed for
between players and (b) boost is necessary to fly in the air and provides significantly
greater speed and steering control, a player’s ability to control their access and use of

boost is considered highly beneficial to overall performance.
4.2.3. Movement Related Metrics:

Players have an incredibly large degree of control over the movement of their vehicles in
Rocket League. On the ground, they can drive forward, reverse and turn in any direction.
Just through driving, players can reach a maximum speed of 1400uu/s (unreal units per
second; unreal units are the distance unit used within game), however through using
boost, players may reach a maximum speed of 2300uu/s. If a player travels between
2200uu/s to 2300uu/s (~95-100% of maximum speed), they are considered to be
supersonic. When supersonic, players will not lose speed even if boost is not inputted,
provided they do not hit anything or turn beyond a certain angle. Being supersonic also
allows players to demo opponents. Additionally, players may use powerslide, an ability
which allows the vehicle to drift and thus have a tighter turning radius; using powerslide

alongside boost can allow for different and precise turning movements. Powerslide also
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allows players to maintain forward momentum while landing if a players vehicle is not
facing in the exact direction of their movement. Players are also able to jump, and if
within 1.25-1.45 seconds of a first jump (depending on the size of the jump), double jump.
If a jJump occurs while the players vehicle is in the air, the player may use the jump as a
dodge (flip), which can be performed in a multitude of directions. Dodges can be used for
hitting the ball or gaining speed beyond the maximum allowable through driving only
(i.e., without boost), as well as for more sophisticated in-game mechanics, such as a wave
dash and a flip reset. Lastly, players can fly in the air by boosting while aiming the front
of their vehicle away from the ground. While in the air, players can control their vehicle

in all three axis of motion (pitch, roll, and yaw).

Movement based metrics in Rocket League could draw analogy to metrics regarding a
players movements on a soccer pitch (as measured by global positioning systems/ GPS),
such as total distance covered, and proportions of matches spent walking/ jogging/

sprinting for example.
4.2.4. Positioning Related Metrics:

Like boost and vehicular movement control, optimal positioning is considered to be
crucial to success in Rocket League. Unlike conceptually similar invasion ball traditional
sports like soccer or hockey, Rocket League does not have set positions and roles due to
team and map size (see Pilkin (2022) for elaboration), even when played as 2v2 or 3v3,
let alone for 1v1 competition. Hence, players must play the roles of both an attacker and
defended depending on the situation, and position one’s vehicle accordingly. Positioning
based metrics could again draw analogy to metrics taken by a Global Positioning System
(GPS) in soccer for example, such as time spent in the penalty area, or time spent in front

of/ goalside of the ball.
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Chapter 5. A Random Forest approach to identify metrics
that best predict match outcome and player ranking in the

esport Rocket League

This chapter has been published in a modified format in Scientific Reports:

Smithies, T. D., Campbell, M. J., Ramsbottom, N., & Toth, A. J. (2021). A Random
Forest approach to identify metrics that best predict match outcome and player ranking in
the esport Rocket League. Scientific reports, 11(1), 1-12. https://doi.org/10.1038/s41598-
021-98879-9

Changes to the abovementioned publication for the purposes of this thesis are outlined

below:

e The original article was written in the format Introduction - Results -
Discussion > Methods, as per journal guidelines. To ensure consistency with
other chapters and to facilitate readability, the order of sections has been changed
to Introduction - Methods - Results = Discussion. As such, the first few
paragraphs in the Methods section (up to the Data Processing subheading) was
originally within the Results section, and was moved to ensure coherency within
the chapter.

e Change in referencing style (article version is in numbered format).

e References to supplementary files are changed to the appropriate location within
the appendix, or to an OSF online repository link for supplementary data.

e Words emphasised using quotation marks were changed to be emphasised using
italics, in line with the thesis format.

e The words Figure and Table in in-text references to figures was capitalised.
Furthermore, figure/ table numbering convention was changed in line with the
thesis format.

e Addition of a linking section for the purpose of thesis flow.

e Minor amendments have been made based on examiner correction suggestions.
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5.1. Abstract

Notational analysis is a popular tool for understanding what constitutes optimal
performance in traditional sports. However, this approach has been seldom used in
esports. The popular esport Rocket League is an ideal candidate for notational
analysis due to the availability of an online repository containing data from millions
of matches. The purpose of this study was to use Random Forest models to identify
in-match metrics that predicted match outcome (performance indicators or PIs)
and/or in-game player rank (rank indicators or RIs). We evaluated match data from
21,588 Rocket League matches involving players from four different ranks. Upon
identifying goal difference (GD) as a suitable outcome measure for Rocket League
match performance, Random Forest models were used alongside accompanying
variable importance methods to identify metrics that were Pls or Rls. We found
shots taken, shots conceded, saves made, and time spent goalside of the ball to be
the most important Pls, and time spent at supersonic speed, time spent on the
ground, shots conceded and time spent goalside of the ball to be the most important
RIs. This work is the first to use Random Forest learning algorithms to highlight

the most critical Pls and RIs in a prominent esport.
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5.2. Introduction

The popularity of esports (competitive organised video game play) has grown rapidly
over the past ten years to the point where viewership now rivals that in many traditional
sports. In fact, it has been estimated that over one billion individuals viewed esports
content in 2020 (Ahn et al., 2020). This rapid rise in interest in esports has led to
increasing professionalisation, investment and attention towards optimising performance
among the top players with the ultimate goal of individual or team success. However,
extremely little research exists to date exploring what constitutes optimal performance
within various esports. Until the factors that determine optimal performance are
understood within a given esport (or any activity more broadly), it is very difficult to
create and implement effective and efficient strategies towards achieving optimal

performance.

For most tasks, optimizing performance is often predicated on the identification of
performance indicators (Pls; individual variables that predict the overall outcome of a
match or performance). A very popular approach to identifying Pls is a notational
approach. Notational analyses is the study of patterns within a match/ contest/
competition/ performance that lead to a successful overall outcome (Hughes & Bartlett,
2002) and can uncover the components most important for match outcome. In traditional
sports, identifying the Pls most important for successful task performance helps players
and coaches to better direct focus to those key components to accelerate learning and,
ultimately, improve performance. Thus, in traditional sport research, many have
employed a notational approach to identify Pls in Australian Rules Football (Robertson
et al., 2016), basketball (Garcia et al., 2013; Leicht et al., 2017), ice hockey (Gu et al.,
2016), rugby league (Whitehead et al., 2020; Woods et al., 2017), and rugby union
(Bennett et al., 2020; Bennett et al., 2019; Bishop & Barnes, 2013; Hughes et al., 2017,
Mosey & Mitchell, 2020; Vaz et al., 2010).

By using notational analysis to understand the components of an activity that are most
important to success, one can direct their attention to those components to accelerate
learning and ultimately improve performance. An example of a training method that could
benefit from this understanding is Variable Priority Training (VPT), in which individuals
complete a task with focused attention specifically towards improving key Pls within the

task (Boot et al., 2010). VPT has been demonstrated to enhance learning in video game
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contexts when compared to Fixed Priority Training (FPT: focussing on all aspects of a
task) (Boot et al., 2010; Voss et al., 2012).

In light of the evidence above, notational analyses may stand to benefit esports. Notational
analysis could be used in a similar way to that in the traditional sport examples mentioned
above to find the most important Pls within a given game to focus on, resulting in more
efficient training and use of techniques such as VPT to improve esport performance.
However, little research has explored this topic in esports to date. One recent study has
started to identify the important PI’s for differentiating expertise in the First Person
Shooter (FPS) esport, CS:GO, which has informed commercially available training
software (Toth, Ramsbottom, et al., 2021), while two others have identified Pls in
Multiplayer Online Battle Arena (MOBA) esports (Novak et al., 2020; Xia et al., 2017).
The lack of notational analysis and subsequent analysis in esports is surprising given that
esports appear ideal for such analyses as they are played digitally, with the ability to store
in-game metrics directly for any game. However similarly to traditional sports, esports
are extremely diverse in-game mechanics, objectives, equipment, and team size and
structure, meaning that PIs from one esport are unlikely to be relevant to another.
Additionally, in-match data can be difficult to obtain as they are often not made available

by game development companies.

One such esport whereby performance data are readily available, making it an ideal
candidate for notational analyses, is Rocket League. Rocket League is a vehicular soccer
video game released in 2015 by Psyonix. In Rocket League, players each control a rocket-
powered vehicle with the goal of hitting a large ball into a goal that is similar to a
football/soccer goal, while simultaneously defending their own goal. The popularity of
Rocket League has rapidly escalated since it became free-to-play on September 27 2020,
with its peak concurrent player count of 1.85 million surpassing the popular esport
mainstay, CS:GO, by more than 500,000 (Hindi, 2020; Moore, 2020). Alongside this high
concurrent player count, Rocket League has reported ~90 million monthly users every
month since November 2020 (Active Player, 2021b), approximately triple that received
for CS:GO (Active Player, 2021a). Additionally, Rocket League has a thriving esports
scene, with competing teams from top esports organisations such as Team Liquid, G2
esports, and NRG esports, and with ~12million USD won through Rocket League
competition (As of 12/03/2021; Esports Earnings (2021)). Overall, its popularity, the

drive for optimising player performance at the top levels and the wealth of freely and
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readily available match data position Rocket League as an ideal candidate for notational

analysis and the identification of the Pls that predict performance outcomes in this esport.

In Rocket League, players can save match replays and upload them to ballchasing.com,
which in turn makes over 65 in-match metrics publicly available. As of May 5, 2021,
there are over 24.5 million match replays available on the ballchasing.com online
repository, across matches of various formats and with players of various ranks, freely
available for anyone to download. Such volume of readily available match data is

unheralded in esports and in traditional sports.

Previous research has employed the use of general linear mixed effects models (Novak et
al., 2020) or solitary classification and regression trees (CARTS) (Xia et al., 2017) for Pl
identification within esports. While these methods have their benefits, one superior
approach that has yet to be adopted in esports is the use of Random Forest models
(Breiman, 2001). Random Forests are a machine learning ensemble algorithm and refer
to an ensemble of CARTS each trained using a unique bootstrapped data set and random
selection of splitting predictor features. Each case in the original data set is then run
through all CARTSs in the forest for which it was not part of the training process (and
hence is out-of-bag or OOB for these CARTS), and the mean (for a regression model) or
modal (for a classification model) response is considered the overall response of the
model for that case.

Random Forests are a superior option to linear or logistic models and solitary CARTSs for
the current data and objectives for many reasons. Firstly, Random Forests can incorporate
non-linear effects, and are superior to alternate methods at modelling complex
interactions when the interactions are not, or cannot be, pre-specified (Cutler et al., 2007).
This is ideal given the exploratory nature of Pl identification in esports research and the
unknown properties of the metrics included in model creation. Moreover, Random
Forests have no distributional assumptions for predictor or response variables and are thus
resistant to bias from non-parametric data, skewed data, and even nominal data, and
perform exceptionally well even when many predictors are weak (or noise) (Breiman,
2001; Cutler et al., 2007; Diaz-Uriarte & Alvarez de Andrés, 2006). Moreover, the fact
that Random Forests are an amalgamation of many CARTS using a bootstrapped data
samples and a random selection of predictor variables for node splitting per tree, they
inherently provide much greater predictive ability and reduce propensity for overfitting

when compared to the CART method alone (Breiman, 2001; Siroky, 2009), making them

88



suitable for large datasets. Given the above advantages over existing methods and that
Random Forest have been used previously to identify Pls within traditional sports
(Bennett et al., 2020; Bennett et al., 2019; Mosey & Mitchell, 2020; Whitehead et al.,
2020; Woods et al., 2017) they are arguably the most optimal method to identify Pls in

Rocket League and esports more broadly.

By leveraging the immense amount of freely available match data in Rocket League and
utilising the state-of-the-art notational approach of Random Forest machine learning
modelling, the purpose of this study is to identify metrics that predict performance (PIs)
and expertise (RIs) within the esport, Rocket League. Specifically, we aimed to first
identify a suitable match outcome measure that could capture more information than
provided by binary win vs. loss. We then aimed to identify in-match metrics that best
predict our match outcome measure, across a variety of player ability levels. Finally, we
aimed to also identify in-match metrics that best predict the ability level of the players

within matches themselves.
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5.2.1. Methods

While Rocket League can be played either individually (1v1) or in teams of two or three,
the analyses of multiplayer competition requires consideration of the interactions between
teammates, which is a necessary factor for team sports/esports and can greatly complicate
analyses (Ofoghi et al., 2013). Therefore, this study focused solely on 1v1 Rocket League,
which benefits from the fact that match metrics in this format are a direct result of player

actions or interactions between player and opponent.

The data from four Rocket League rank groupings were considered for our analyses:
Bronze, Gold, Diamond, and Grand Champion (GC). These rank groups were chosen to
allow for the capture of a broad range of ability levels while simultaneously creating clear
distinctions between each rank group (see Figure 5-1). Ranks within Rocket League
correspond to a player’s matchmaking rating (MMR). A players MMR increases after
every win and decreases after every loss, with the magnitude of the increase/decrease

determined by the difference between players’ MMR before the match.

06 MMR % of Players

0 [Bronze 0264  85.7-100%

0.0

S Gold 453625 20.3-49.4%
Diamond 808-985 1.1 -6.7%

Champion 3 Grand Champion

Renk lac 51220  0-0.1%

% of Total Accounts
[e)]

Rank

Figure 5-1 A density plot showing the distribution of accounts within the Rocket League
rank system. Colour shaded areas correspond to the skill brackets, and associated MMRs,
considered for the current study. This distribution is as per season 14 of Rocket League,

which was the season at the time of the most recent match used in the analysis.

Data from 33,854 total matches were downloaded from ballchasing.com
(http://www.ballchasing.com), a repository of Rocket League match replays and
statistics, on 16/12/2020. In addition to downloading all the data for all Bronze (4,111
matches) and GC matches (9,743 matches), we downloaded all the data for the most
recent 10,000 Gold and Diamond rank matches respectively. Data were gathered from
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matches prior to September 29, 2020, and this was done for two reasons. Firstly, an update
to the game with an accompanied rank redistribution saw additional ranks added after this
date. Secondly, this update hindered the ability for ballchasing.com to recognise the
ranking of players within a match. These issues have since been resolved, however were
such during our data collection and analysis that we did not include match data from after
September 29, 2020. These data were downloaded directly from the public domain, are
freely available to all individuals, and results are completely de-identified. Further, all
General Data Protection Regulations (GDPR) have been fulfilled.

5.2.2. Data Processing

Using the website’s inbuilt filters and replay group function, match statistics were
downloaded as a .csv file. Each match file contained general descriptions of the match
(i.e., map, player names, cars used) as well as 65 columns corresponding to data
describing the performance for 65 in-match metrics (potential performance (PIs) and rank

(RIs) indicators) (https://osf.io/z2fjg/ contains an anonymised sample file directly from

ballchasing.com).

From here, many processing steps were undertaken to result in the final 28 raw-score
metrics and 26 difference-score metrics included in the Random Forests analyses (see
Table 5-1). We have provided a brief description of these steps below, however the reader
is directed to appendix 5.1 where we provide a detailed description of these steps,

allowing for reproduction.

First, we calculated match length using metrics provided, and used this to normalise all
metrics that were not already presented as a percentage of match length to the average
length of a rocket league match (360 seconds). Second, we removed all draws in the data,
as well as matches that did not exceed 150 seconds duration to avoid overestimation of
time normalised data. Next, we recalculated average speed using these time measures,
and used metrics provided to calculate the metric True boost wastage. True Boost
Wastage represents the proportion of boost used when a player is already travelling at
max or near max speed. It is generally considered a measure of poor boost use, or wasted
boost (Rocket Sledge, 2019; SquishyMuffinz, 2020). Appendix 4.2 contains descriptions
for boost, true boost wastage and all other metrics are described in greater detail.

From here, we calculated difference-scores for each metric (the difference between a

given player and their opponent’s metric values). This was done in light of evidence that
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difference-scores can provide superior predictive ability compared to raw-score metrics
in a Random Forest analysis of Pls in Rugby Union (Bennett et al., 2019). We then
maximised independence of data by removing all games besides the most recent ten from
a given player, and de-identified the data. Penultimately, we ensured that no metrics could
be combined to entirely explain the variance of another included metric. Lastly, shots
conceded difference and demos taken difference were removed, as these metrics mirrored
shots taken difference and demos inflicted difference metrics respectively (see appendix
4.2 &5.1).

Following the above processing steps, 28 raw-score predictor metrics and 26 difference-
score predictor metrics were retained per match. Raw-score metrics and difference-score
metrics were split into two in separate dataset files and metrics in each file were divided
into four categories, offense/defence metrics, boost metrics, player movement metrics and

player positioning metrics (see Table 5-1).
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Table 5-1 Predictor metrics obtained through ballchasing.com and subsequent processing. Metrics are time normalised to an average match length (360

seconds) unless provided as a percentage of total time in the original dataset, Metrics are expressed both as raw-score and difference-score except those

denoted by a T, which are raw-score only.

Offense/Defense Boost

Movement

Positioning

Shots taken
Shots conceded T
Demos inflicted

Demos takenf

Boost used

Average boost reserve

Total boost collected

Count boost collected from big pads
Count boost collected from small pads
Total boost stolen

Count boost stolen from big pads
Count boost stolen from small pads
True boost wastage (%)

Total boost overfill collected

Total boost overfill stolen

Time spent at 100 boost

Time spent at 0 boost

Average speed

Time spent at slow speed

Time spent at supersonic speed
Average duration for a powerslide

Instances of powerslides

Time spent on the ground

Time spent high in the air

Time spent goalside of the ball
Time spent in the defensive third

Time spent in the offensive third
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5.2.3. Analysis 1: Identifying a continuous outcome measure

Upon identifying the relevant matches and metrics to carry forward for analyses, and in
line with the first aim of this study, we determined a continuous match outcome metric
that that could be reasonably substituted for the binary win vs. loss outcome measure
while providing additional information regarding the severity of a win or loss. To do this,
the in-game score difference (IGSD) and goal difference (GD) metrics were considered
as candidates. Point-beserial correlations were conducted between the candidate measures
and the dichotomous Win vs. Loss (WL) metric across all rank groups and with matches
from all ranks combined. Additionally, we explored the accuracy of the two candidate

metrics in separating WL, using zero as the cut-off.
5.2.4. Analysis 2: Obtaining Performance Indicators (PIs)

Our second objective was to identify the metrics that best predicted our match outcome
measure (GD) within matches across individual rank groupings, and within matches
across all included ranks combined (PIs). To address this objective, individual Random
Forest regression models were created each for matches within given ranks (i.e., Bronze
matches only) and for all matches, regardless of rank. Two models were created per rank
(and with all matches combined); one using raw-score metrics and one using difference-
score metrics. Random Forest regression models were created using the statistical

software, R: A Language and Environment for Statistical Computing (Vienna, Austria).

In addition to the steps taken in data processing to remove metrics that, when combined,
could entirely account for the variance of another metric, multicollinearity was assessed
for each dataset using qr-matrix decomposition (p < .05) in the rfUtilities package in R
(Evans & Murphy, 2018). Average speed within the model with GC matches only was

identified as multicollinear and was subsequently removed from further analyses.

Random Forest models were then created using the randomForest package in R (Liaw &
Wiener, 2002). The sole purpose of these models was to determine the optimal value of
ntree for each model (amount of CARTSs within the Random Forest model). The optimal
ntree was the number under 1,000 that gave the lowest mean square error of GD, provided
the mean square error in the number of trees surrounding this number was also stable.
Mean square error was measured using out-of-bag (OOB) data; that is, using only matches
that were not involved in the creation of a given tree within the forest. A maximum of

1,000 trees was chosen as it was likely that this would be sufficient to produce highly
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predictive models if this was possible given the data (default is 500) while simultaneously
balancing computational speed. The default mtry value was used, due to evidence that the
default values provided within the RandomForest package perform well (Liaw & Wiener,
2002), and that this number does not tend to affect the performance of the model greatly
(Breiman, 2001; Diaz-Uriarte & Alvarez de Andrés, 2006).

Using the optimal ntree, new Random Forest models were then created using the
rfPermute package in R (Archer, 2020). As well as making a Random Forest model, the
rfPermute package provides significance values for metric importance. The percentage
increase in mean square error (%incMSE) observed when a metric is permuted compared
to when no metrics are permuted was used as the measure of metric importance score for
each metric. %incMSE was chosen over Mean Decrease in Impurity (Gini), as Gini has
shown to be biased when the scale that features are measured on varies (Strobl et al.,
2007). To obtain a significance value, rfPermute additionally permutes the outcome
metric (GD) a specified number of times, so that there is to be no relationship between
any predictor metric and GD. Significance values are obtained per predictor metric each
time GD is permuted, forming a null distribution of importance scores per predictor
metric. P-values are then calculated from the fraction of metric importance scores within
this null distribution that are greater than the metric importance score obtained when GD
was not permuted, with p <.05 being considered a significant metric.

5.2.5. Analysis 3: Obtaining indicators of in-game rank (RIs)

The third objective of this research was to identify the metrics that were able to predict
the rank of players within a match regardless of match outcome (i.e., win vs. loss, IGSD
& GD). To do so, a Random Forest classification model was created in R using data from
all included ranks. Unlike a regression model, which provides a numerical outcome
prediction, a Random Forest classification model provides a categorical prediction.
Feature dependence was explored in the same manner as in Analysis 2. For metric

importance, GD was permuted 50 times.

Raw-score Mean Decrease in Accuracy (MDA) was chosen as the measure of metric
importance over Mean Decrease in Impurity (Gini) and normalised MDA, for the same
reasons as mentioned for the regression models and %incMSE. A Random Forest
classification model was only created using raw-score metrics because difference-score

metrics should always tend to approach 0 when not considering match result.
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A flowchart outlining the methods for this study can be found in Figure 5-2.
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Figure 5-2 Flowchart depicting the methods of the current study. The three outlined analyses are labelled in blue. The T highlights where average speed

was removed due to multicollinearity.
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5.3. Results

5.3.1. Obtaining a continuous performance outcome measure

In line with the first aim of this study, we determined a continuous match outcome metric
that could be reasonably substituted for the binary win vs. loss (WL) outcome measure
while providing additional information regarding the severity of a win or loss. To do this,
the in-game score difference (IGSD) and goal difference (GD) metrics were considered

as candidates.

We conducted point-biserial correlations that tested the association between each metric
and WL across all matches and across matches within each specific rank group. All point-
biserial correlations demonstrated large (rpb > 0.70) significant (p < .001) associations,
however GD yielded larger association with WL for matches within each rank and when
matches for all ranks were combined (Bronze: r = 0.77, Gold: r = 0.80, Diamond: r = 0.79,
GC: r=0.78, all ranks: r = 0.79) compared to IGSD (Bronze: r = 0.76, Gold: r = 0.78,
Diamond: r = 0.77, GC: r = 0.75, all ranks: r = 0.77). Finally, we noted that when using
zero as a cut-off for IGSD and GD (positive scores corresponding to win, and negative
scores corresponding to loss), IGSD correctly identified wins 93.56% of the time, and
losses 93.70% of the time, while GD correctly identified wins and losses 99.94% of the
time. Figure 5-3 displays the distribution of the data from all skill brackets combined

using a density plot (default bandwidth).
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Figure 5-3 Density plots showcasing a: the distributions of goal difference and b: in-

game score difference as a function of win vs. loss.

Through these analyses, we demonstrate that GD and IGSD are both appropriate
continuous variables for game outcome. However, due to the superior association of GD
with WL across all matches and matches within each rank group, GD was used as the

performance outcome measure in subsequent analyses.

5.3.2. Obtaining indicators of performance (PIs)

Random Forest regression models were created using the raw-score metrics (player
metrics, not accounting for opponent) and difference-score metrics (player metrics
accounting for opponent). These models were created for 1vl Rocket League matches
occurring in Bronze rank (lowest in-game rank; 2,527 matches), Gold rank (7,226
matches), Diamond rank (7,193 matches) and Grand Champion (GC) rank (highest in-
game rank; 4,642 matches), as well as in all matches regardless of rank (21,588 matches).

The match outcome variable for these regression models was the goal difference (GD)
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between players within a match. These models were used to identify the in-game metrics
that best predicted in match outcome and could thus be described as Pls for Rocket
League.

All of the models created were highly predictive of GD (R? > 0.7). As can be seen in
Table 5-2, models created using the difference-scores were better able to predict match

outcome compared to models using raw-scores in all cases.

Table 5-2 R? (mean of squared residuals) of the Random Forest models created using the

raw and difference-score metrics for each ranks and for all ranks combined

Bronze Gold Diamond GC All

Raw-score 0.793(3.91) 0.741(355) 0.725(3.66) 0.713(4.06) 0.747 (3.61)
Difference-score  0.841 (2.99)  0.823 (2.43) 0.823(2.35)  0.816 (2.59)  0.839 (2.29)

5.3.2.1. Raw-Score Models

In all Random Forest regression models using raw-score metrics, the following metrics
led to a significant (p < .05) increase in mean square error (MSE) when permuted, and
hence were identified as Pls: shots taken, shots conceded, time spent goalside of the ball,
saves made, demos taken, and demos inflicted. Figure 5-4a shows the relative contribution
that each Pl metric made to the total MSE increase when all Pls were included together
for matches within each rank category, as well as for matches across all ranks combined,
for the raw-score models. For matches in the Bronze rank, Gold rank, and when all ranks
are combined (i.e. all matches without considering player rank), shots taken and shots
conceded were more important than time spent goalside of the ball, whereas for matches
in the Diamond rank and GC rank, time spent goalside of the ball was more important
than shots taken, and shots conceded.

100



Al

Bronze-]

Rank

Gold

Diamond-}

GCH

Performance Metrics

Al

Bronze

Gold

Rank

Diamond

GC

Performance Metrics

Figure 5-4 Heat map displaying the percentage of the total increase in MSE that can be
found when a metric is permuted individually compared to the sum of increase in MSE
for all metrics when permuted individually. Only metrics that were significantly
important for predicting GD within each raw-score and difference-score model are
presented. White squares represent metrics that were not significant for the rank they are
assigned to. a: results from raw-score regression models, and b: results from difference-

score regression models.
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5.3.2.2. Difference-Score Models

In all Random Forest regression models using difference-score metrics, the following
metrics led to a significant (p < .05) increase in MSE when permuted, and were hence
classified as Pls: shots taken difference, time spent goalside of the ball difference, and
saves made difference. Figure 5-4b shows the relative contribution that each Pl makes to
the total MSE increase when all Pls are included together for matches within each rank
category, as well as for matches across all ranks combined, for the difference-score
models. For matches in the Bronze rank, Gold rank, and when all ranks are considered,
shots taken difference and saves made difference were more important than time spent
goalside of the ball difference, whereas for matches in the Diamond rank and GC rank,
time spent goalside of the ball difference was more important than shots taken difference
and saves made difference. Saves made difference was also more important than time
spent goalside of the ball difference for matches in the Gold rank and when all ranks are

considered.

5.3.3. Obtaining indicators of in-game rank (RIs)

The Random Forest classification model correctly classified the rank of players within
1764 of 2527 Bronze matches (69.81%), 5394 of 7226 Gold matches (74.65%), 5098 of
7193 Diamond matches (70.87%), and 3417 of 4642 GC matches (73.61%), resulting in
an overall out-of-bag (OOB) accuracy of 72.6%.

All metrics were found to significantly decrease the accuracy of the model when permuted
(p <.05), and so were deemed RIs in Rocket League (Figure 5-5).
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Figure 5-5 Metrics found to be of significant importance to the classification model
created to predict the ranks of individuals playing 1v1 Rocket League, ordered by the
increase in mean decrease in accuracy experienced within the model when each metric

was permuted.

Overall, time spent at supersonic speed, time spent on the ground, shots conceded, and
time spent goalside of the ball were the four RIs most important to the Random Forest
model for correctly classifying data according to the rank of the players within the match.
Violin plots showing the means and distributions of these four RIs across included ranks
are displayed in Figure 5-6.
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Figure 5-6 Violin plots displaying the means and distributions, within each rank, of the
four most important features for predicting rank, a: Time spent at supersonic speed, b:

Time spent on the ground, c: Shots conceded, d: Time spent goalside of the ball.
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5.4. Discussion

In this work, we used a Random Forest machine learning algorithm analysis to identify
key performance metrics that predicted expertise (RIs) and match outcome (PIs) for the
first time in a prominent esport, Rocket League. Specifically, we first aimed to identify a
continuous match outcome metric that provided more information on in-game
performance than the binary win vs. loss measure. Goal difference (GD) was identified
as this suitable match outcome metric. Secondly, we aimed to identify metrics that are
significantly important to influencing our outcome metric, GD (labelled as PIs), both
across matches played by players of specific ranks and across matches played by those of
all ranks. Hence, these Pls differentiate good and poor performance within a given rank.
Here, we found specific Pls that are important to GD across all ranks, as well as Pls that
are only important to GD in matches with players of specific ranks. Thirdly, we aimed to
identify metrics that best predicted player expertise or rank within matches (labelled as
RlIs). These RIs differentiate between players of different ranks. All metrics were
significantly important to the classification of rank in our Random Forest classification
model. Importantly, we show for the first time the order of importance that each metric
has for the prediction of rank within our model, with time at supersonic speed, time spent
on the ground, shots conceded, and time spent goalside of the ball being the four that
decreased the performance of the model the greatest when permuted. The following

discusses the implications of these findings.

Firstly, our finding that difference-score metrics lead to better match outcome prediction
compared to raw-score metrics corroborates previous literature in rugby union (Bennett
et al., 2019). Models incorporating difference-score metrics for any rank were able to
account for over 80% of the variance in GD between two players in a given match. This
highlights the utility of the in-game statistics obtained from the online repository
ballchasing.com for Rocket League and the utility of Random Forest models for

predicting performance within Rocket League.

Focussing on Pls within the difference-score models, when compared to a rank-matched
opponent, taking more shots, making more saves, and spending more time goalside of the
ball all appear to be beneficial for success in Rocket League matches, regardless of one’s
rank. The difference in time spent goalside of the ball was found to be most important
within higher ranked matches (Diamond & GC), suggesting that as the quality of players
increases, so does the relative importance of maintaining one’s positioning between the
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ball and one’s own goal, compared to simply taking more shots or making more saves.
This could be due to the greater ability of higher ranked players to swiftly and accurately
shoot a ball into a goal left unattended due to an opponent’s poor positioning. This also
may suggest that higher ranked players may generally be well served to adopt a safer
playstyle, reducing the number of high-risk attacking plays such as air dribbles (referring
to when a player achieves many controlled touches on the ball while both the player and
ball are in the air) that if failed, might leave them positioned in front of the ball. For GC
rank players, this is further supported by the finding that increasing time spent high in the
air (a necessity for air dribbles) did not predict performance, whereas this was a PI of

match outcome in all other ranks.

When considering the application this new awareness of important Pls, Rocket League
players of all ranks can leverage Variable Priority Training (VPT), which has already
been demonstrated to be superior to Fixed Priority Training (FPT) (Boot et al., 2010), to
actively focus on improving performance on the key metrics that are actually shown to
be important for match outcome. Based on the results, a player might specifically work
to improve spending more time goalside of the ball than their opponent during their
matches. Our results also suggest that lower ranked players (Bronze and Gold) could
harness VPT by monitoring the shots they take relative to their opponent during matches
and focussing on skills that facilitate improvement on this PI. This has been discussed by
professional Rocket League coaches previously as a beneficial strategy as similarly
lower-ranked opponents are less likely to save shots regardless of quality (Virge, 2020).
Inflicting more demos on your opponent than they do on you also appears to provide a
performance benefit in matches for all ranks except those in the Bronze rank group. A
demo (short for demolition) is achieved when one player drives into an opposing player
at supersonic speed at the correct angle and removes them from the field for three seconds
before the opposing player respawns in one of two prespecified locations in their
defensive third. The fact that this metric was not found to be a PI for Bronze level matches
may be due to the fact that Bronze players may not possess the skills to capitalise on the
three second advantage awarded by a demo to score, whereas higher ranked players may

be better able to use demos to score or prevent goals.

The metrics that best predicted differences between ranks (RIs) were not necessarily
predictive of performance when two rank-matched players play against one another (i.e.,
within rank). For example, the percentage of time that a player spent at supersonic speed

was the most important RI (Figure 4-6), whereas this metric it did not significantly
106



improve the ability of regression models to predict the outcome of a match within a given
rank group. The fact that time at supersonic speed was found to be a Rl and not a PI may
be due to the fact that playing at higher ranks requires one to have the ability to play at
near maximum speed for longer durations so as to match the speed of the opponent in
case they were to attack at maximum speed. However, once both players are able to do
so, attacking at supersonic speed does not provide additional benefit within the match
between two similarly ranked players. This explanation can also be applied to the PI
number of powerslides, which, when permuted from the model, led to a large decrease in
accuracy (which demonstrates its high importance) in the classification model predicting
rank. Powerslides are a difficult manoeuvre that provide the opportunity to maintain speed
when landing on the ground and turning sharply, however powerslide turns can be
difficult to control. Higher skilled players appear to use this mechanic more often to
achieve greater control of their car, however when players are of similar rank,
powersliding more or less than an opponent within a match does not appear to provide an
advantage. Taken together, higher rank players show better control over the movement
of their car and are able to play a greater proportion of their matches at high speed.
However, within rank-matched matches, this metric does not predict match outcome.
Therefore, our findings suggest that while focussing on game speed and car movement
may not provide immediate benefit to the outcome within matches, these Pls are
important to develop as they may facilitate one’s improvement in overall expertise over

time.
5.4.1. Significance

While the identification of Pls to predict match outcome and in-game ranking within
Rocket League provides new knowledge regarding how Rocket League players and
coaches may structure training programs, the results from this analysis are also
foundational for future experimental work utilising esports as a performance arena.
Esports have been identified as a promising new avenue to study expertise (Campbell et
al., 2018), due to their data rich nature, continuous and accurate skill rating systems (Elo),
and the naturally controlled, laboratory like environment that esports are typically
engaged in. More recently, esports have been identified as an ideal framework for
exploring whether task expertise moderates task performance deficit experienced from
sleep loss (Smithies, Toth, et al., 2021), with applications spanning beyond esports due

to the shared work environment and cognitive skills required between esports and pilots,
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air traffic controllers, and military drone operators for example (Smithies et al., 2020).
This framework could be extended to study how ability level on a task moderates the

effect of a given intervention on task performance.

1v1 Rocket League in particular is an ideal esport to use as a performance task in an
experimental setting as it has a short & predictable match length (5 - 10 minutes),
allowing for many trials within an experimental setting, a simpler experimental design
than other esports due to the ability for one to play individually, and experimenters can
easily access player rank and in-match metrics. The results of our analysis specifically
inform as to the important Pls of interest when evaluating the efficacy of an experimental
intervention on Rocket League performance. A reduction of the outcome variable, GD,
alongside key Pls such as difference in shots taken, difference in saves made, and
difference in time spent goalside of the ball, would represent a negative effect on the
intervention on task performance. Interestingly, a reduction in time spent at supersonic
speed or instances of powerslides following an intervention, but a maintenance of
performance, could suggest an adaptation by players to simplify their play style to

maintain performance following an intervention.

This is the first study to use Random Forest models to identify Pls within an esport.
Random Forests are robust to data of any distribution from a large number of features
(regardless of if many are actually predictive of the outcome or not) and can ascertain
non-linear effects and complex interactions without prior specification. Thus, Random
Forests present as a valuable tool for notational analysis within esports, which is in its
infancy and has limited prior information available on potential Pls for various games and
genres. Random Forests for notational analysis in esports could be used to explore what
predictor metrics are most important for match outcome in other genres, such as FPS’s

and MOBA’s.
5.4.2. Limitations and Future Research

When considering the power of Random Forests as a notational analysis, one limitation
is that feature importance measures from Random Forest models can show bias when
features are correlated (Hooker & Mentch, 2019; Strobl et al., 2008). To mitigate this,
where the variance of one predictor metric could be entirely explained by one or more
other metrics, these additional metrics were removed, and multicollinearity was assessed

for each model with multicollinear metrics being removed. Additionally, features shown
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to be important for game outcome or skill within each model showed no greater
correlation with other features compared to those not found to be important (correlation
matrices for all models can be found in appendix 5.2). Future research should consider
feature importance measures such as permutation conditional on remaining features
(Strobl et al., 2008), leave-one-covariate-out (Lei et al., 2018), and permute and relearn
(Hooker & Mentch, 2019) to address correlated features, however given the large amount
of data and extra computational resources required for these methods, they were not

feasible here.

In this study, we chose to exclusively explore 1v1l Rocket League. While identical in
game mechanics, positioning and decision making vary between 1v1, 2v2, and 3v3
formats of Rocket League. Hence, Pls and RIs for team-based Rocket League may be
different to 1v1. However, this analysis would have been greatly complicated if we
additionally included team-based Rocket League, as interactions between teammates
would have to be considered, further complicating analysis (Ofoghi et al., 2013).
Interestingly, 1v1 is considered by many professional Rocket League players (i.e.,
Flakes) to be the best way to improve in Rocket League overall due to affording players
more time to interact with the ball compared to other formats. Hence, the Pls and RIs here
can provide great benefit for all Rocket League players and coaches, even if improvement
specifically in 1vl Rocket League is not the primary goal. However, future research
should attempt to use similar analysis methods to those described here to identify the Pls

and RIs for 2v2 or 3v3 Rocket League.

5.4.3. Conclusions

In summary, this study is the first to use Random Forest models to identify Pls and RIs
that could predict match outcome and rank respectively across over 20,000 matches in
the rapidly emerging esport of Rocket League. Overall, spending more time goalside of
the ball, taking more shots, conceding less shots, and making more saves, were all
identified as beneficial for in-match performance across all ranked matches. All metrics
were found to be significantly important (and thus, RIs) for a Random Forest model’s
ability to predict player rank, and we have classified the order of importance of these
metrics using our model. Interestingly, we found that time spent at supersonic speed, time
spent on the ground, shots conceded, and time spent goalside of the ball were the most
important RIs. This type of analysis can provide useful insight to Rocket League players
and coaches regarding the structuring of VPT programs to improve match success of in-
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game rank. The findings from our analysis also provides researchers with key metrics to

consider if using Rocket League as a performance task in experimental research.
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5.5. Linking chapter

The analysis outlined in this chapter served several purposes for the thesis. Firstly, |
demonstrated that Goal Difference (GD), referring to the time-normalised difference in
goals scored between players, was the most ideal continuous outcome metric for overall
in-game performance. Secondly, the in-game performance indicator (P1) metrics outlined
within the current study provide further metrics to explore when considering the effect of
experimentally induced sleep loss on in-game Rocket League performance. Such analysis
could elucidate whether sleep loss induces in-game playstyle changes within Rocket
League. | decided to use difference score Pls as outcome variables of interest within
exploratory analyses in the experimental sleep loss study, owing to models created using
difference-score metrics consistently outperforming those made using raw-score metrics.
This included shots taken difference, time spent goalside of the ball difference, and saves
made difference, however also included time spent high in the air difference and demos
inflicted difference, owing to these metrics being significantly important within the

majority of ranks and when all ranks were combined.
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Chapter 6. Key methodologies for the experimental sleep

loss study
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The current chapter serves to outline some key methodologies relevant to the
experimental sleep loss research, which is disseminated in the following chapter. The first
two sections pertain to the use of actigraphy (specifically the Readiband™ (v5) by Fatigue
Science) as the primary sleep-measurement method of choice within this study. Firstly, a
brief outline of common sleep measurement methods is provided, with this outline
narrowing to a specific description of the Readiband device. Secondly, my novel
approach used to manage missing actigraphy derived sleep data is outlined, along with a
demonstration of its efficacy. The third section of this chapter will specifically discuss
the use of Mixed Effect Models (MEMs) within the analytical approach. MEMs are
becoming increasingly common within sleep research for good reasons, including the
inclusion of all data despite sources of dependence (this can be more than one source, and
can be complex in nature), robustness to missing or unbalanced data, and the ability to
manage categorical and continuous independent variables (or fixed effects)
simultaneously. However, given the inherent increase in complexity associated with
MEMs, along with the variation in implementation, it was necessary to provide a detailed
explanation of how they were used in the research outlined in Chapter 7. | describe the

best-practice guidelines followed in model selection and dissemination of results.
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6.1. Using Readibands for Actigraphy-Derived Sleep Outcomes

Sleep measurement was undertaken in the research outlined in Chapter 7, and the
analysis described in Section 6.2 of this chapter, using concurrent wrist-worn actigraphy
(Readiband ™ (v5)) and consensus sleep diary (CSD; Carney et al. (2012)). The following
section outlines different methods of measuring individual nights of sleep within

contemporary research, providing insight as to why these methods were chosen.
6.1.1. Polysomnography

The measurement of individual nights of sleep for research purposes is normally
undertaken using one of three approaches. On one end of the spectrum is
polysomnography (or PSG), widely considered to be the gold standard of sleep
measurement (Marino et al., 2013; Rundo & Downey, 2019). PSG (typically) employs
the use of concurrent electroencephalography (EEG), electrooculography (EOG), chin
and leg electromyography (EMG), pulse oximetry, nasal prongs, oronasal thermistors,
respiratory inductance plethysmography, body position sensors, microphones and video
recording. Naturally, such a set-up requires a dedicated sleep laboratory, with trained
sleep researchers present to continuously monitor the various channels of information and
use it to manually score sleep stages according to prespecified criteria; the most common
of which are provided by the American Academy of Sleep Medicine (AASM; Troester et
al. (2023)). Due to this, PSG tends to not only be expensive (estimated as $1500-
2000USD per night in the United States; Arnal et al. (2020)), but also may not be
representative of an individual’s natural sleep, due to a change in environment, discomfort
arising from the instruments used, and stress. This disturbance to one’s natural sleep may
persist beyond a single day of habituation (Le Bon et al., 2001). Although there is
continual and promising development of more practical derivatives of PSG for sleep
measurement, which use automated sleep scoring and less instruments (generally EEG
only or EEG and limited other instruments; i.e., Arnal et al. (2020); Myllymaa et al.
(2016); Shambroom et al. (2012)), the use of these instruments remains mostly limited to

single-night assessments or studies concerning sleep disorders.
6.1.2. Sleep Diaries

On the opposite end of the spectrum are sleep diaries, the most commonly used being the
Consensus Sleep Diary or CSD (Carney et al., 2012). Sleep diaries such as the CSD (the
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gold standard of subjective sleep measurement) certainly have their benefits; they are
extremely easy to administer, and present with little to no time or effort burden for
participants. They are recommended by the AASM to be used concurrently with
actigraphy (discussed in the following paragraph) for non-standard populations
(Morgenthaler et al., 2007), and are required by some actigraphy devices in order to
determine sleep onset and wake times. However, their subjective nature creates concerns
regarding the reliability and agreement of the data obtained (Carney et al., 2012). Many
sleep variables derived from sleep diaries present with consistent group-level biases when
compared both to the gold standard PSG and to actigraphy; namely, a ~20 minute greater
time in bed (TIB), ~15 to 55 minute greater total sleep time (TST), ~0 - 8% greater overall
sleep efficiency (SE%), ~1 to 36 min smaller sleep onset latency (SOL), ~2 to 38 minute
smaller wake after sleep onset (WASO), and a ~6-7-fold decrease in total number of
awakenings (Kaplan et al., 2012; Lehrer et al., 2022; Matthews et al., 2018; McCall &
McCall, 2012). Furthermore, the tendency to under or overestimate sleep variable
quantities (& the severity of over or underestimation) compared to objective measures is
highly variable between individuals, as shown by Moore et al. (2015) for Breast Cancer

Survivors, and in Section 6.2 for a young male population.
6.1.3. Actigraphy

With PSG and sleep diaries at either end of the sleep measurement spectrum, sleep
wearables or actigraphy devices provide a happy balance of objectivity and practicality,
and hence are the default for field-based or longitudinal sleep measurement in research.
Such devices are generally wrist-worn, and either exclusively or predominantly use tri-
axial accelerometery to detect periods of movement or rest. This movement information
is converted to sleep and wake data through pre-defined algorithms, which can be

implemented both manually or automatically.

Research-grade actigraphy devices such as the Actigraphtwm are the overall most widely
used actigraphy devices in research. However, within contemporary research there has
been a substantial increase in the use of alternative (and often commercially available)
actigraphy devices, coinciding with validations of these devices within peer-reviewed
literature (Evenson et al., 2015). Two major contemporary articles of this kind found
many of these alternative actigraphy devices to be comparable to or outperform research
grade actigraphy devices, when compared both to in-lab PSG and at-home EEG (Chinoy
et al., 2021; Chinoy et al., 2022).
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One of these devices is the Readiband™ (v5) wrist-worn activity monitor (Fatigue
Science, Canada). When compared to at-home PSG, the Readiband has been shown to
outperform the research-grade Actiwatch 2 (Philips Respironics), with no significant bias
for TST, SE%, SOL and WASO (Chinoy et al., 2021). When compared to at-home EEG,
the Readiband has been shown to provide superior specificity vs. the Actiwatch 2, and
overall presents as a “viable option for sleep-wake tracking and with longer battery life
(~30 days) compared with the other devices tested (~4-7 days)” (p. 512, Chinoy et al.
(2022)). A separate study comparing both the Readiband and the research-grade
ActiGraph found both actigraphy devices to be suitable for use when considering the sleep
variables TST, time at sleep onset (TASO) and time at wake (TAW) (Dunican, Murray,
et al., 2018). However, the authors encouraged exercising caution when interpreting the
outcome variables SOL, WASO, and SE%, derived from either actigraphy device. The
Readiband uses a proprietary sleep scoring algorithm which performs favourably
(accuracy = 93% vs. PSG) compared to the commonly used Sadeh algorithm (91-93%;
Sadeh et al. (1994)) and Cole-Kripke algorithm (88%; Cole et al. (1992)) on sleep data
collected by the validated AMI-32 (Ambulatory Monitoring Inc) (Russell et al., 2010).
This algorithm automatically scores all sleep and wake periods as well as bed-time, and
as such, the Readiband does not possess an event marker. Sleep and wake scoring from
this proprietary algorithm was assessed by an experienced researcher and cross-validated

against consensus sleep diary measures.

The Readiband has high (ICC > 0.8) inter-device reliability (including ICC = 0.99 for
total sleep time) and a mean inter-device difference of only two minutes per night of sleep
(Driller et al., 2016). Readibands have been used in previously published sleep research
for a variety of populations, including traditional and esport athletes (Bonnar et al., 2022;
Dunican et al., 2023; S. Lee et al., 2021; Power et al., 2023; Smithies, Eastwood, et al.,
2021), medical personnel (James et al., 2019; Min et al., 2023), pilots (Rocha & Silva,
2019), and military personnel (Edgar et al., 2023). For the reasons outlined above, the
Readiband was used as the objective sleep measurement device within the study described

in Chapter 7.
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6.2. Managing Missing Actigraphy-Derived Sleep Data

6.2.1. Brief Background

One issue encountered within data collection for the study outlined in the following
chapter was the existence of missing actigraphy-derived (Readiband) sleep data. 4.56%
of total collected nights worth of actigraphy-derived sleep data were missing, while
3.64% of nights within three nights of test sessions (the range reported in Chapter 7)
were also missing. The presence of missing actigraphy-derived sleep data was foreseen
in the analytical approach, given how pervasive this issue is within actigraphy-based sleep
research. This is demonstrated by three large-scale (>500 nights of data) actigraphy
studies on different populations (healthy adults, Ustinov and Lichstein (2013); healthy
women, Tworoger et al. (2005); children and adolescents, Acebo et al. (1999)) reporting
rates of missing data between 14-28%.

There are five strategies generally employed to deal with missing actigraphy-derived
sleep data (I note that published articles have documented methods to deal with missing
epochs of actigraphy data, rather than missing sleep data for an entire night (Fuster-Garcia
etal., 2013; Jang et al., 2020; Smith et al., 2021); For a detailed summary of missing data
methods for summary and epoch actigraphy data, see Di et al. (2022)). These are listwise
deletion, use of summary statistics, simple imputation, multiple imputation, and the use
of analytical approaches which are robust to missing data (i.e., models that use maximum-
likelihood estimation, such as MEMS). The pros and cons for each strategy, along with

the scenarios which warrant a specific strategy, are beyond the scope of this section.

In this section, I outline a novel simple imputation approach (named Diary * Individual
Bias) and compare its agreement to other simple imputation strategies (adapted to the data
collected). A simple imputation strategy was chosen for use as it was required to have a
specific estimated value (as opposed to MI or maximume-likelihood approaches which do
not provide one specific value) provided for any missing actigraphy data within the
critical nights in my experimental design (the three nights prior to each test session), for
the purposes of Figure 7-4. Also given that the rate of missingness was relatively small,
the computational and theoretical complexity is not particularly warranted (Sainani,
2015).
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6.2.2. Testing Approach

I considered data collected as part of the study described in the following chapter;
however, | only considered participants who provided written informed consent and who
did not have any missing data, so as to avoid bias risk. This resulted in data from 21
healthy young males (20.48 + 2.50 y/o) being considered, providing 282 days of
concurrent actigraphy-derived (Readiband) and Consensus Sleep Diary (CSD; (Carney et
al., 2012)) data. The number of days with concurrent Readiband and CSD data varied
between participants (as a function of days collected, not as a result of missing days);
Table 6-1 shows the distribution of participants by number of days worth of data
available. Data collection was approved by the Education and Health Sciences Research
Ethics Committee (2021 06 13 EHS) and conducted in accordance with The

Declaration of Helsinki.

Table 6-1 Number of participants with N amount of days available

Days Available 14 13 12
N 10 10 1

6.2.2.1. Simple Imputation Approaches Tested

6.2.2.1.1. Proximity Imputation

This approach has been described by Bjorvatn et al. (2006), Bjorvatn et al. (2007),
Forberg et al. (2010) and Saksvik et al. (2011). For a day of missing actigraphy data, this
approach takes the mean actigraphy-derived value for the previous and following day as
the imputed value, unless one of which is not available (i.e., when the first or last day
within a date-range is missing), in which the value of the remaining available day was
directly imputed as the replacement value. If three consecutive days are missing, the mean
of the previous and following days around this three-day missing block were imputed for

all consecutive missing days.

6.2.2.1.2. Hot-Deck Imputation

This approach has been used by Rigney et al. (2015). Hot-deck imputation is a process
whereby missing data is replaced with a value from an observation (donor) which exhibits
similar characteristics. Characteristics that determine donor suitability are researcher-
determined. When multiple donors are available, a donor is randomly selected from the

pool of donors (for more detail, see Myers, 2011).
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I considered two Hot-Deck approaches; one in which donor values were from the same
individual in which the data is imputed for (Within-participant or WP hot-deck) and the
other in which the donor values are from other participants (Between-participant or BP
hot-deck). For within-participant hot-deck, potential donor values were categorised only
by whether the data was from a weekday or weekend. For between-participant hot-deck,
donor values were determined by the following characteristics (in order of importance;
weekday/ weekend, overall Pittsburgh Sleep Quality Index (PSQI) score, self-report mean

sleep duration, age).

6.2.2.1.3. Diary Only
This approach refers to the replacement of a missing actigraphy-derived sleep variable
with the equivalent variable obtained from the same individuals’ CSD on the

corresponding day.

6.2.2.1.4. Diary % Individual Bias

This approach refers to imputation using the corresponding CSD value (as per above),
however also factoring in the mean difference between the participants CSD value and
the actigraphy derived value for all other days in which both values were available. For
example, if a participant overestimated TST by an average of 30 minutes, 30 minutes was

taken off the CSD value subsequently used for imputation.
6.2.3. Imputation and Testing Procedure

| tested the performance of the five approaches on three actigraphy-derived sleep

variables:

Time at Sleep Onset (TASO; hh:min) The time of day in which the first epoch of sleep

occurs in a nighttime sleep period

Time at Wake (TAW; hh:min) Time of day following the last epoch of sleep occurs in a

nighttime sleep period, following by a prolonged period of wake

Total Sleep Time (TST; mins): Amount of time between TASO and TAW, minus any time
spent awake (i.e., Wake After Sleep Onset). | also included napping periods (periods of
sleep outside of a nighttime sleep period, with naps occurring before 12:00 added to the

previous night, and naps occurring after 12:00 added to the upcoming night.
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An imputed value was obtained for each day and for each participant, using all five
imputation approaches. However, some approaches used data available from previous or
following days from the same participant. For the data collected in Chapter 7, the
minimum amount of days available for a given participant was 10, and the maximum
(with at least one day of missing data) was 13. Thus, separate imputed value for each day,
participant, and approach, were obtained for when participants had 13, 12, 11, and 10
days of other days worth of data available. For 13 days of available data, only the data
from ten participants (140 days of total data) was available. Once an imputed value was
obtained each day, participant, and approach, I removed one day’s worth of data from
each participant, such that each participant had 13 days of concurrent actigraphy-derived
and CSD data available. This also allowed me to include participants with only 13 days
available, increasing the days of data available (N = 20, 260 days of total data). From
these data, | again obtained an imputed value for each day, participant, and approach.
This process was iterated until the included participants had 11 days of concurrent
actigraphy-derived and CSD data available (N = 21, 231 days of total data). This allowed
for the testing of imputation approaches across the range of missingness present within
the data in Chapter 7.

6.2.4. Analysis

The following analyses were performed to compare sleep variables for all imputation
approaches and across all amounts of data available per participant. Alpha was set to p <
0.05 (two-tailed) for all analyses.

Agreement was assessed using two measures. Firstly, | calculated Absolute Percentage

Error (APE; as per Stone et al. (2020)), according to the formula below:

|Imputed Value — Readiband Value)|
= x 100

APE
Readiband Value

To explore whether mean APE differed among imputation methods, a series of pairwise
least-squared comparisons were made, with Satterthwaite’s approximation for degrees of
freedom, and using Tukey’s HSD to correct for familywise error rate. Imputation
approaches were inputted as fixed effects, with random intercepts for both participant and
the participant day combination, to account for correlation between imputed values
attributable to the specific day measured and to the specific individual.
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Secondly, | assessed agreement using a mixed-effects Limits of Agreement (LoA)
analysis with accompanying Bland-Altman plots (Parker et al., 2020). LoA analysis is a
common method of measuring agreement (particularly in actigraphy-based research) due
to its easy interpretability. While I did not specify a clinically acceptable difference
threshold a priori, | considered the imputation methods with the narrowest confidence

limits to demonstrate the best agreement.

Lastly, | tested for presence of bias (tendency for imputation method to under or
overestimate actigraphy-derived values) through a series of pairwise least-squared
comparisons of mean derived values for each imputation approach, against actigraphy-
derived values. Source of sleep variable values (imputation approaches and actigraphy-
derived values) were inputted as fixed effects, with identical random effects to that
mentioned for APE. Again, Satterthwaite’s approximation for degrees of freedom was
used. As only comparisons between each approach and actigraphy-derived values were
relevant (as opposed to comparisons between all imputation approaches), Dunnett’s test

was used to correct for familywise error rate (Dunnett, 1955).
6.2.5. Outcomes and Discussion

6.2.5.1. Absolute Percentage Error

The following results are with reference to all levels of available data per participant (10
— 13 days) and for all sleep variables considered (TST, TASO & TAW). Firstly, the BP
Hot Deck approach yielded a significantly larger APE compared to all other approaches
(p < 0.001), except for TST with 13 days available, where APE was significantly larger
only when compared to the diary-based approaches, and TAW with 13 days available,
where APE was significantly larger than all approaches except for WP Hot Deck.
Secondly, WP Hot Deck and Proximity Approach did not significantly differ in APE (p >
0.05), but yielded a significantly larger APE than diary based approaches (p < 0.05) using
all sleep variables with all numbers of days available. Lastly, APE did not significantly
differ between diary-based approaches. Figure 6-1 shows the APE for each approach as
across all days of available data per participant; Figures showing the APE for all sleep
variables within individual amounts of data available per participant can be found as

appendix 6.1.
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Figure 6-1 Line graphs depicting the mean absolute percentage error (APE) of imputed
values, obtained using the five outlined imputation approaches, for A TST, B TASO, and
C TAW.

6.2.5.2. Limits of Agreement

Limits of Agreement (LoA) were consistently and considerably narrower for the two
diary-based imputation approaches. Of the diary approaches, limits were equidistant from
0 for the Diary % individual bias approach, but not for the Diary Only approach. Figure
6-2 displays Bland-Altman plots for imputed vs. actual TST values, when 13 days of data
were available per participant. Replicated figures for other sleep variables with 13 days
of data available, as well as all sleep variables with 10 days of data available, can be found
as appendix 6.2.
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Figure 6-2. Bland-Altman Plots displaying the agreement between actigraphy-derived
Total Sleep Time (TST) values, and values derived from the five considered imputation
approaches (with 13 days available per participant): A Diary + Individual Bias, B Diary
Only, C Proximity Imputation, D WP Hot Deck, and E BP Hot Deck. Blue dashed line
represent the mean for TST (imputed) minus TST (actigraphy-derived). Red dashed lines
represent 95% Confidence Limits. Black dotted lines represent the 95% bootstrap

confidence intervals for these values.
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6.2.5.3. Group Level Bias

For all levels of days of data available per participant, the Diary Only approach was the
only approach with a mean TST significantly different to actigraphy-derived TST,
overestimating TST by 29.76 to 31.84 minutes (p < 0.001). The only other approach
which resulted in a significant group-level difference from actigraphy-derived values was
the BP Hot Deck approach when 12 days of data per participant were available, for which
it underestimated TASO by 19.31 minutes (p = 0.01). Table 6-2 provides the mean values
for actigraphy-derived and imputed sleep variables, assessments of bias, and limits of
agreement, for analysis with 13 days of data available per participant; replicated table
with 10 days of data available per participant can be found as appendix 6.3.

6.2.5.4. Discussion

This section outlined analyses performed to uncover an optimal simple imputation
approach for imputing missing actigraphy-derived sleep variable data. | assessed a
method which used values from day/s immediately before and/ or following the missing
day (Proximity Approach), and two hot-deck approaches, based on previous use in studies
within the current scientific literature. | also assessed two approaches which utilised
concurrent sleep diary derived data; direct diary imputation (Diary Only) and the use of
diary values factoring in one’s tendencies to over or underestimate sleep variable values

when compared to actigraphy (Diary * individual bias).

Both the diary approaches demonstrated much greater agreement with all actigraphy-
derived sleep variable values than the other approaches, as outlined both by lower
absolute percentage error (APE) values, and narrower limits of agreement. Agreement
between both diary-based approaches remained indistinguishable throughout the range of
days available per participant assessed. However, when assessing bias, | found a
consistent tendency for the Diary Only approach to overestimate TST by ~30min.
Comparatively, the Diary + Individual Bias approach did not yield any group-level bias.
Hence, the Diary * Individual Bias approach presents as the superior approach for simple
imputation of actigraphy derived TST, while remaining equivalent to a diary-only
approach for TASO and TAW. Due to this, the Diary * Individual Bias was chosen as the
simple imputation approach for the study outlined in Chapter 7.
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Table 6-2 Mean values for actigraphy-derived and imputed sleep variables, assessments of bias, and limits of agreement, for analysis with 13 days of

data available per participant.

Method TST (+ SE)
Total Sleep Time (TST)

Overall Bias (x SE) t(p) Cohen'sd Lower LOA  Upper LoA

Readiband data 435 £ 9 min

Diary £ Bias 435+ 9 min 0 0 (1.00) 0 -1 hr33min 1 hr33 min
Diary 465 = 9 min 30+ 7 min 4.19 (<0.001)*** 0.84 -1 hr 8 min 2 hr 8 min
Proximity 433 =9 min -2+ 7 min -0.28 (0.99) -0.06 -2hr55min 2 hr51 min
WP Hot-Deck 430 =9 min -5+ 7 min -0.70 (0.89) -0.14 -2hr56 min 2 hr 46 min
BP Hot-Deck 436 £ 9 min 1+ 7 min 0.11 (1.00) 0.02 -3hr16 min 3 hr 18 min
Time at Sleep Onset (TASO)

Readiband data 25:31 £ 18min

Diary + Bias 25:31+18min 0 0 (1.00) 0 -54 min 54 min
Diary 25:24 £ 18min -7 £ 8 min -0.82 (0.83) -0.12 -59 min 45 min
Proximity 25:33+18min 2 £ 8 min 0.25 (0.99) 0.04 -2hr15min 2 hr 19 min
WP Hot-Deck 25:31£18min 1+ 8 min 0.07 (1.00) 0.01 -3 hr 7 min 3 hr 8 min
BP Hot-Deck 25:34 +18min 3+ 8 min 0.35 (0.98) 0.05 -4 hr42 min 4 hr 48 min
Time at Wake (TAW)

Readiband data 33:13 £ 15min

Diary £ Bias 33:13+15min 0 0 (1.00) 0 -48 min 48 min
Diary 33:10 £15min -4 £7 min -0.50 (0.95) -0.06 -52 min 45 min
Proximity 33:13£15min  -1£7 min -0.08 (1.00) -0.01 -2hr41min 2 hr 40 min
WP Hot-Deck 33:07 £ 15min -6 £ 7 min -0.81 (0.84) -0.10 -3hr18 min 3 hr 6 min
BP Hot-Deck 33:13£15min 0+ 7 min 0.03 (1.00) 0 -3hr22min 3 hr 22 min
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An interesting point to note is that while the Dairy Only approach overestimated
actigraphy-derived TST by ~30min, which is consistent with previous literature from
other samples, there were large individual differences in TST over/under estimation. This
is demonstrated in Figure 6-3, and again is consistent with previous literature in other
samples (i.e., breast cancer survivors; Moore et al., 2015), highlighting the utility of
considering bias within participant.
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-300
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Figure 6-3. Boxplots showing individual tendencies to over/ underestimate total sleep
time (TST), in comparison to actigraphy-derived values. Each box represents an
individual. Values below the dotted horizontal line resemble a tendency to overestimate
TST. * indicate outliers as determined by Tukey’s method (Tukey, 1977).

Obtaining a simple imputation approach with strong agreement does not entirely render
the approach faultless. It is noted that simple imputation reduce variance estimates as they
do not factor in any uncertainty into the estimation of missing values (Sainani, 2015); this
is an accepted limitation of my approach. Secondly, if data is not missing-completely-at-
random (MCAR), simple imputation methods can induce bias. | do not identify any reason
for actigraphy-derived sleep data to be missing which is not detectable from other data
collected (i.e., not-missing-at-random, or NMAR). A Little’s MCAR test (Little, 1988)
was used to determine that the actigraphy-derived sleep data within Chapter 7 could be
considered MCAR, and as such, my diary + individual bias approach was used to impute

such data.

126



6.3. A Description and Discussion of Mixed Effect Models

Chapter 7 includes the analysis of multilevel data; that is, rows of data which are likely
to be correlated by a factor not considered as an independent variable (or fixed effects).
Multilevel data is extremely common in cognitive testing, which typically involve taking
many (>50) trials per given test session from many participants, who are further grouped
(intervention vs. control for example). In this instance, trials taken from a certain
individual are correlated to other trials from the same individual. Extending the cognitive
testing example, often participants will be required to respond to a set of n items (i.e., one
of ten possible stimuli), with multiple exposures of each item per test session; multiple
trials with the same item are also likely to be correlated. Similar issues of dependence are
extremely common in longitudinal research, with multiple measurements of a participant
across a period of time. In these scenarios, performing subsequent statistical analysis
which does not consider the dependence attributable to multiple trials from either the
same participant/ item is sometimes called psuedoreplication, and can result in inflation
of Type | error rate (Judd et al., 2009; Judd et al., 2012).

An increasingly popular way of dealing with multilevel data is through use of mixed-
effect models (MEMs). MEMs are regression models built using all available rows of
data. Hence, there is no need for aggregationt (i.e., mean response across a test session
for each participant), even when data possesses correlation between rows not attributable
to fixed effects (independent variables). This is facilitated by the inclusion of correlating
factors as random effects within the created model. Essentially, random effects allow for
the explicit modelling of variance components, including these otherwise problematic
dependencies. Random effects can be included as random intercepts, which allow the
intercept (zero-point) of a created model to vary as a function of the random effect. For
example, say a model is to be built to predict response time within a population at two
time-points; once when rested, and once when sleep deprived. If participant is included
as a random intercept, the model allows the response speed to vary between participants,
however this variance will be irrespective of the time-point. Random effects can also be
included as random slopes, which allow magnitude of one or more fixed effects (or even
their interaction) to vary as a function of the random effect. Following the earlier example,
the inclusion of a time-point by participant random slope allows the effect of time-point
to vary between participants. A thorough description of MEMs are beyond the scope of

this thesis, however the reader is guided to descriptions by Brown (2021). MEMs with a

1 1 note that MEMSs can also provide enhanced power when compared to other methods
requiring aggregation; Aarts et al., 2014
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continuous outcome variable are called linear mixed models, while MEMs with a

categorical outcome variable are called generalised linear mixed models.

Regarding the use of MEMs, the fields of experimental psychology and ecology are
trailblazers both for the use, and improvement of use, of MEMs (i.e., Baayen et al. (2008);
Barr et al. (2013); Bolker et al. (2009); Brehm and Alday (2022); Jaeger (2008);
Matuschek et al. (2017); Meteyard and Davies (2020)). However, MEMs have begun to
feature very prominently both in sleep science and sport science journals within the past
decade (i.e., Basner et al., 2017; Dunican, Higgins, et al., 2018; Dunican et al., 2019; Flaa
et al., 2021; Honn & Van Dongen, 2023; Knufinke et al., 2018; Lastella et al., 2015;
Rigney et al., 2015; Sargent et al., 2014; Smith et al., 2021; Smithies, Eastwood, et al.,
2021 as a few of many examples). Unfortunately however, many of these articles suffer
from the same flaws as in many psychology papers as outlined by Brehm and Alday
(2022) and Meteyard and Davies (2020); namely, a severe lack of information regarding
fixed and random effect selection and structure, and insufficient information regarding
contrast coding (the numerical coding of categorical fixed effects). In particular, many
studies report using intercept-only models without justification, which can severely
inflate risk of Type I error when not justified by the data (Barr et al., 2013; Judd et al.,
2009; Judd et al., 2012; Matuschek et al., 2017). To avoid these concerns, | have provided
a brief summary and justification of the modelling choices made regarding my MEM use

in Chapter 7:

Fixed Effect Selection: Models included fixed effects that were directly relevant to the
specific hypothesis being tested, as well as all possible interactions (i.e., full factorial). |
used treatment coding for all categorical fixed effects. Treatment coding refers to the
coding of the two-levels of a dichotomous variable as 0 and 1 respectively (Brehm &
Alday, 2022). Treatment coding was considered the intuitive option as there are sensible

baseline levels within each fixed effect considered.

Random Effect Selection (Including Structure Selection): Random effect structure
was selected using a data driven approach outlined by Matuschek et al. (2017) for each
model created. This approach begun by building a MEM with a maximal random effect
structure. Following this, a model was created simplifying the random effect structure by
the smallest possible amount. These two models were compared using a likelihood ratio
test (LRT; goodness-of-fit measure). If aLrr > 0.2, @ new model is made, which further

simplified the random effect structure by the smallest possible amount; this model was
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subsequently compared to the previous model created. This process was continued until
a model is created for which aLrT<0.2. At that point, the model with the simplest random
effect structure and for which aLrt > 0.2 when compared to the model it was simplified
from, was selected. Our procedure used here differed from that outlined by Matuschek et
al. (2017) only when the model to be selected was singular (i.e., overfitted; as detected
by using the default convergence control settings in the Ime4 package in R (Bates et al.,
2015). Singular models were not interpreted as they can produce conservative fixed effect
estimates and can result in inappropriate/ inaccurate results from inferential analysis
procedures (Bates et al., 2015). Hence if a selected model was singular (/overfitted), then
the next most complex model which was not singular was selected, and if all models prior
were singular, random effect simplification continued until the next most complex model

that was not singular was identified, and this model was subsequently selected.

Assumption Checking: Assumptions for linear mixed models include the normality of
conditional residuals (i.e., differences between observed and fitted values should follow
a normal distribution) and of random effects, constant variance (homoscedasticity),
influential observations (/outliers), multicollinearity (I note that multicollinearity was not
an issue for any MEM within Chapter 7 due to no possibility of fixed effect correlation),
linearity of simple/ main effects, as well as sensibility of overall model fit. Once a model
was selected (using the abovementioned procedures), these assumptions were visually
examined using the model_check() function within the performance package (0.10.4;
Lidecke et al., 2021). Assumptions for binomial generalised linear mixed models are
checked additionally using the simulation-based approach from the DHARMa package
(0.4.6; Hartig, 2022) and include sensibility of overall model fit, the uniformity of scaled
conditional residuals (i.e., differences between scaled observed and fitted values should
follow a uniform distribution), normality of random effects, constant variance
(homoscedasticity), influential observations (/outliers), and multicollinearity. The outputs
from these packages (and hence, the assumption checking process) for Psychomotor
Vigilance Task (PVT) Response Speed, Lapse likelihood, and raw reaction time, within
the study described in Chapter 7, are provided as an example in appendix 6.4.
Transformations performed to satisfy the assumptions listed above are specified in the
results section of Chapter 7 where applicable.

Degrees of Freedom Estimation & Significance Testing: The calculation of p-values
can be performed in multiple ways within linear mixed models. Luke (2017)

demonstrated that the use of Satterthwaite or Kenward-Roger approximations for degrees
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of freedom produced the most robust significance tests, while other approaches can be
anticonservative. Hence, | used the Satterthwaite approximation of degrees of freedom.
Degrees of Freedom cannot be estimated using these methods in generalised linear mixed
models, and as such, Wald tests are used on z-scores produced within the model to

determine the significance of fixed effects included (Wald, 1943).

Model Reporting: The reporting of model selection steps and details of the final model
selected was undertaken using a table format provided by a best practice guide (Meteyard

& Davies, 2020). These are provided for each model created as appendix 6.5.
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Chapter 7. Don't lose sleep over esports: exploring how
total sleep deprivation affects the cognitive and in-game

performance of rocket league players

This chapter is currently under review for publication in a peer-review journal:

UNDER REVIEW: Smithies, T. D., Toth, A. J., Campbell, M. J. (2023). Don't  lose
sleep over esports: exploring how total sleep deprivation effects the cognitive and in-

game performance of rocket league players.

Changes to the version submitted for publication for the purposes of this thesis are

outlined below:

e Change in referencing style (article version is in numbered format).

o References to supplementary files are changed to the appropriate location within
the appendix.

e Words emphasised using quotation marks were changed to be emphasised using
italics, in line with the thesis format.

e The words Figure and Table in in-text references to figures was capitalised.
Furthermore, figure/ table numbering convention was changed in line with the
thesis format.

e References to previous chapters, instead of supplementary files, for information
presented within previous chapters.

e Minor amendments have been made based on examiner correction suggestions.
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7.1. Abstract

Study Objectives: It is presumed by many that acute sleep loss results in degraded in-game
esports (competitive, organised video game play) performance. However, this has not been
experimentally investigated to date. The objective of the current experiment was to elucidate
whether ~29hrs of total sleep deprivation impacts in-game performance for the popular esport

Rocket League.

Methods: Twenty skill-matched pairs (N = 40 total) were recruited. Within each pair, one
participant was assigned to an intervention group (TSD), while the other was assigned to a
control group (CON). Two test sessions occurred; one while both participants were rested, and
the other while the CON participant was rested, but the TSD participant was sleep deprived.

Results: Following total sleep deprivation, TSD participants reported higher Karolinska
Sleepiness Scale-measured subjective sleepiness, and lower subjective alertness and
motivation, as well as worsened PVT response speed (~50msec) and ~5 times greater PVT
lapse incidence, and worsened response speed on a two-choice categorisation task (~40msec)
(p < 0.05 for all). However, overall in-game Rocket League performance (goal differential or
‘GD”) did not worsen due to total sleep deprivation (AGD = 0.23+0.34, p = 0.50). Exploratory
analyses on performance indicators suggest a potential shift toward a simpler and safer strategy
following sleep deprivation.

Conclusions: Following a bout of ~29hrs total sleep deprivation, and in spite of increased
subjective sleepiness, decreased subjective alertness and motivation, and decreased
performance on the PVT and single task component of the category switch task, overall in-
game Rocket League performance remained unaffected. This presents as a promising finding
given high potential for acute pre-competition sleep disturbance in esports, though habitual

sleep remains as a concern for esport athletes.

Keywords: esports, performance, sleep deprivation, cognitive, task-switching, PVT, Rocket

League

Statement of Significance: Esports are quite comfortably the fastest growing competitive
activity worldwide. The work presented is the first experimental study exploring how a bout of
sleep loss impacts in-game performance in any esport. We found ~29hrs acute total sleep

deprivation to have no impact on in-game outcome. This presents as a positive finding for
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esport athletes and coaches alike, but certainly does not absolve sleep from being an impactful
human factor within esports. Future studies should explore other esports with characteristics
(i.e., longer bouts of sustained attention, such as Multiplayer Online Battle Arena or MOBA
esports) purportedly sensitive to sleep loss, to see if the impact of sleep loss on esports
performance is specific or agnostic to esport genre.
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7.2. Introduction:

Esports are by far the fastest growing competitive and high-performance activity
worldwide. Defined as the competitive play of video games through the medium of
cyberspace (Campbell et al., 2018), esports are a key part of the gaming industry, which
has a projected market value of €375billion in 2023 (Statista, 2023). The value of esports
as an industry can be largely attributed to the size of its audience and public engagement.
With viewership estimates exceeding one billion individuals in 2020 (Ahn et al., 2020)
(and growing yearly), esports is and continues to be an enticing arena for investment. As
a result, companies such as Xfinity, Kraft Group, PepsiCo, FTX, Red Bull, Coca-Cola,
BMW, Nike, Asos, Ralph Lauren, and DC Comics (to name a few), over 319 traditional
sporting teams (Code Red Esports, 2017), as well as even government organisations such
as the U.S. Army (Nicholson, 2021) and Air Force, are either heavily invested in one or
more esport teams, or own an esport team themselves. In response to this prolific interest
in esports, there is an ever-increasing interest in understanding the human factors which

influence esport competition performance in order to maximise the success of players.

One frequently highlighted human factor is sleep, or more specifically, the disturbance/
loss of sleep experienced by players. Previously published literature has cited sleep loss
in esports as a cause for concern specifically due to potential adverse impact on in-game
performance (Bonnar, Castine, et al., 2019; Bonnar, Lee, et al., 2019; Bonnar et al., 2022;
Kemp et al., 2021; S. Lee et al., 2021; Sanz-Milone et al., 2021), a sentiment shared with
some esport athletes themselves (Baumann et al., 2022; Rudolf et al., 2020). Habitually,
on average, professional esport athletes obtain a similar amount of sleep to others in their
demographic (mid-late teenagers/ young adults, mostly male) (Bonnar et al., 2022;
Gomes et al., 2021; S. Lee et al., 2021; Moen et al., 2022). However, esport athletes are
characterised by incredibly late sleep onset (01:30 — 05:00) and wake (09:00 — 12:00)
times on average, though large cultural/ regional group level differences have been noted
(S. Lee et al., 2021). Sleep efficiency has also been cited as a concern, with a large
longitudinal study of 1,243 nights of habitual esport player sleep data reporting a mean
sleep efficiency of only 67.7% (Moen et al., 2022). Additional concern regarding the
habitual sleep of esport players is warranted, given that multiple studies report mean
insomnia severity index values at or beyond the cut-off for insomnia (Bonnar et al., 2022;
S. Lee et al., 2021) and mean Pittsburgh Sleep Quality Index (PSQI) values well beyond

the cut-off for poor sleep quality in this population (Gomes et al., 2021; Sanz-Milone et
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al., 2021), somewhat mirroring the poor PSQI assessed sleep quality prevalent within
traditional sport athletes (Doherty et al., 2021).

Furthermore, while elite esport athletes share many of the well-cited risk factors of sub-
optimal sleep of traditional-sport athletes (i.e., pre-competition arousal/ anxiety, post-
competition arousal, caffeine use, travel/ jet-lag), there are further risk factors uniquely
associated with esports. Firstly, as esports are played through blue-light emitting
computer monitors, there is a propensity for evening or night-time play leading to
melatonin suppression, which can increase in sleep latency and reduce in sleep quality/
quantity (Green et al., 2017; Schéllhorn et al., 2023). Secondly, video games played as
esports are cognitively/ physiologically arousing by design (i.e., high-intensity gaming),
and as such, evening or night competition can reduce sleep quality and quantity through
heightened arousal (Higuchi et al., 2005; Roberts, Teo, & Warmington, 2019). Such risk-
factors have already been identified as potential mechanisms underlying associations
between various sleep problems (poorer sleep quality, lower total sleep time [TST],
increased prevalence of insomnia) and gaming frequency/duration (Kemp et al., 2021).
Tying these risk factors together is a culture among professional esport athletes which
promotes (and seemingly necessitates) training and playing late at night and into the early
hours of the morning (Bonnar, Lee, et al., 2019; Lee et al., 2020). Overall, despite mean
TSTs that are generally comparable to their peers, esport athletes are exposed to a cocktail

of factors which together appear particularly conducive to bouts of acute sleep loss.

As mentioned, a common reason given for why sleep loss should be a major concern for
esport athletes is that it can lead to in-game performance decrements. In contrast to many
traditional sports, esports performance is predicated largely on cognitive abilities rather
than physical abilities, leading some researchers to refer to esport athletes as cognitive
athletes (Campbell et al., 2018). Though specific cognitive demands differ between
different esports (Dobrowolski et al., 2015; Toth, Conroy, et al., 2021), most esport titles
(especially those considered action video games) require rapid perception, processing and
integration of multisensory stimuli originating from various sources (taxing visuospatial
working memory systems), alongside fast and accurate decision making and responses
through a peripheral device (keyboard/ mouse/ controller). Convincing evidence can be
found for the robust cognitive demands of esports by looking at the now large body of
quasi-experimental and intervention studies demonstrating how exposure to video games
commonly played as esports improve aspects of cognition, even when tested outside of
the specific game’s context (see Bediou et al., 2018; Bediou et al., 2023; Toth et al., 2020
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for relevant reviews/ meta-analyses). These improvements remain present even when
disentangled from general improvements in motor execution (Bediou et al., 2023). Robust
evidence is present for such video games improving attentional capacities (particularly
visual attention), information processing speed and accuracy, and cognitive flexibility (in
particular, task-switching), speaking to the importance of such elements for gameplay

SUCCESS.

Simultaneously, it is understood that acute sleep loss (i.e., total sleep deprivation/ sleep
restriction) degrades performance in these same aspects of cognition (Lim & Dinges,
2010; Lowe et al., 2017). Though effects tend to be larger and more robust for simple
(i.e., Psychomotor Vigilance Task or PVT) rather than complex attentional tasks
(Glenville etal., 1978; Lim & Dinges, 2010; Pilcher & Huffcutt, 1996; Smithies, Toth, et
al., 2021), sleep loss protocols have found response times and accuracy to worsen for
tasks taxing visual attention, information processing, working memory, decision making,
and executive functioning. A specific aspect of executive functioning, cognitive
flexibility, has been highlighted as a domain particularly susceptible to sleep loss
(Harrison & Horne, 2000; Honn et al., 2019; Whitney et al., 2019). Given that task-
switching ability (a primary component of cognitive flexibility (see lonescu, 2012; Uddin,
2021) appears integral to esports performance, the degradation of task-switching
performance through sleep loss has been previously highlighted as an avenue for sleep

loss to impact esports performance (Toth et al., 2020).

Despite this logical link between sleep, cognition, and esports performance, there has
been no formal investigation into the effects of experimentally induced sleep loss on
esports performance. Moen et al. (2022) investigated associations between habitual sleep
and in-game performance for CS:GO (a popular first-person shooter esport) as a
secondary analysis, finding no effect of TST on performance; however this approach was
uncontrolled and only based on habitual sleep, and hence was unlikely to capture any
subtle effects of TST on in-game performance, should they have been present. A
controlled, experimental approach appears warranted to elucidate what (if any)
observable effect acute sleep loss may have on the cognitive and in-game performance of
esport players. Implications of such an experiment may be large for esport athletes and
organisations alike, who have great desire to optimise every human factor which may

impact their in-game performance.
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The purpose of the current study is to explore how a bout of acute sleep deprivation (~29
hours awake) affects the cognitive and in-game performance of esport players in the
esport Rocket League. Rocket League is a popular vehicular soccer video game, which
averages ~90 million active players per month (Active Player, 2023), and as an esport,
ranks 10" for most prize money earnt (Esports Earnings, 2023b). The weight of evidence
linking sleep loss to decreased cognitive performance, combined with the substantial
cognitive demands of esports, leads us to hypothesise that sleep deprivation will worsen
both cognitive (specifically, vigilance and task-switching performance) and in-game
performance. We also aim to explore if (and how) certain established in-game Rocket

League performance indicators are affected by sleep deprivation.
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7.3. Methods:

All procedures and data collection were approved by the Education and Health Sciences
Research Ethics Committee (2021 06 13 EHS) and conducted in accordance with The

Declaration of Helsinki.
7.3.1. Participants

7.3.1.1. Sample

An a priori power analysis was conducted, based on the predicted model structure for the
primary analysis exploring the effect of total sleep deprivation on our overall in-game
outcome measure, goal difference (GD), and following simulation processes outlined by
DeBruine and Barr (2021). The details of this power analysis and R script can be found
as appendix 7.1, however in short, we used an estimated effect size equivalent to the
average effect size from all cognitive domains within a prior meta-analysis on sleep loss
and cognitive performance (Lim & Dinges, 2010), combined with estimated variance
components obtained through analysis of large databases of Rocket League matches, and
a predicted level of warranted random effect complexity (correlated random intercept and
slope). Using an alpha of 0.05, this power analysis suggested that 19 player pairs were
required to achieve a power of 0.8. Using this (and adding one for the sake of evenness
in counterbalancing), we sought to recruit 40 participants within the current study,

allowing for 20 pairs.

46 young (18-35 years) adults provided written informed consent to participate in study.
However, due to protocol non-adherence and participant drop-outs, we obtained a final
sample of 40 (19.88+2.07 years, 1 female) participants (20 pairs). Initially, we sought for
participants to fulfil the criteria of a “normal healthy sleeper” according to the “Revised
Research Diagnostic Criteria for Defining Normal Sleeping Controls” (RRDC) (Beattie
et al., 2015), using answers obtained through an eligibility questionnaire. However due
to extreme difficulty recruiting participants who were Rocket League players and also
fulfilled this criteria, this was relaxed such that participants were eligible if they (a)
habitually slept for six or more hours per night, (b) had no history of diagnosed sleep
disorders and (c) were not alcohol dependant, nor were habitual users of other recreational
drugs (besides tobacco). A summary of the included population with reference to the
RRDC criteria can be found as Table 7.1. Of particular note, one included participant self-

reported a seemingly inverted sleep-wake pattern (06:00 bed time, 17:00 rise time).
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Table 7-1. Summary of included participants with reference to the Revised Research Diagnostic Criteria for Defining Normal Sleeping Controls (Beattie

etal., 2015).
N above/ below
Component  Aspect How Answered Criteria/Cutoff Mean(+SD)/ Median threshold Range
;';‘if’ty Sleep duration PSQI - Question 4 > 6hrs 7.53+1.17 hrs 0 6-11hrs
Time in bed PSQI - Question 1 and 3 < %hrs 8.64+1.25 hrs 11 6.5-11hrs
Sleep continuity PSQI - Component 4 SE > 85% 87.62+9.98 % 14 65 - 100 %
PSQI - Question 2 SL <30min 23.44+14.85 mins 8 5 - 60 mins
WASO &
PSQI - Derived from Questions 1, 2, and 4 EMA <30min  46.81+52.09 mins 18 0-172.5 mins
Subjective sleep
impression PSQI - Component 1 score <2 1 (median) 0 0-2
Associated  daytime
effects PSQI - Component 7 score <2 1 (median) 1 0-3
E:ﬁ?ﬁg Habitual bed times PSQI -a 22:00 - 01:00 00:57+91 mins 13 23:00 - 06:00
Habitual rise times PSQI - ¢ 06:00 - 09:00 09:35+114 mins 21 07:00 - 17:00
Stability of sleep  Onanormal week, how many days would your (a) bedtime and
timing (bedtime) (b) wake time deviate from your average by more than 1hr total <3 2.38+0.95 5 0-45
Stability of sleep  Onanormal week, how many days would your (a) bedtime and
timing (wake) (b) wake time deviate from your average by more than 1hr total <3 2.23+1.32 7 0-5
Associated  daytime
effects PSQI - component 7 score <2 1 (median) 1 0-3
Eve <41
42 < Int> 58
Diurnal Preference Horne-Ostberg Morningness-Eveningness Questionnaire Morn > 59 45.58+7.40 NA 29 Intermediate, 11 Evening
Sleep Insomnia disorder HSDQ - 1,7, 10, 12, 13, 14, 15 & 21 <368 2.02+0.63 1 1-388
disorders A
Circadian rhythm sleep
disorder HSQD - 5, 10, 13, 26, 27, 30 <3.4l 2.11+0.68 2 1-4
Sleep apnea HSDQ 3, 17, 18, 19 <287 1.57+0.43 0 1-2.75
PLMS/RLS HSDQ <2.70 1.80+0.59 2 1-42
Narcolepsy SNS ((6*Q1 + 9*Q2 - 5*Q3 - 11*Q4 - 13*Q5) + 20) >0 21.63+14.50 2 -3-60
Parasomnia HSDQ - 4, 16, 20, 22, 24, 31 <242 1.21+0.30 0 1-2.33
General Diagnosed  with an  ongoing  physical/neurological
health Physical health disorder/problem? No NA 0
Mental health Diagnosed with an ongoing psychological disorder/problem? No NA 0
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Medication use

Substance abuse:
>400mg caffiene per
day

No habitual nicotine or
recreational drug use

no alcohol dependency

Current medication use (besides hormonal contraceptives)?

Do you habitually (i.e. most days) consume more than 400mg
of caffeine (i.e. >4 coffees or >3 large energy drinks)

Do you habitually (i.e. most days) consume tobacco/nicotine or
any other recreational drugs (other than alcohol)?

FAST/ AUDIT

No

No

No

> AUDIT
SCORE 15

NA

NA

NA
For those with an AUDIT
score (N = 11); 8.64+2.11

1
4 (all tobacco)

0

3:  antihistamines, 1: asthma
medication, 1:indigestion medication

NA
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Critically, participants were required to be players of the video game Rocket League.
Participants were required to provide their in-game ranking using the rank tracking
website https://rocketleague.tracker.network. This website provides a constantly updated

record of a given player’s in-game rank and matchmaking ranking (MMR). A players
MMR is measured on a continuous scale and is indicative of expertise within the 1v1
game mode of Rocket League (Smithies, Campbell, et al., 2021) & Chapter 5. Through

https://rocketleague.tracker.network, we obtained each participant’s highest and lowest

1vl MMR over the most recent three months and calculated the mean of these two values
to represent the participants current expertise level. Additionally, the rank tracking
website provides the participants current rank percentile (i.e., the percentile of the current
playing population in which the participant’s rank resides in). Lastly, we also obtained an
estimate of the total number of hours that the participant had accumulated playing Rocket
League. A description of the method used to obtain this estimate is provided as appendix
7.2.

Where the MMR of two participants differed by less than 150 (equivalent of 15-21 total
win vs. loss disparity), they were paired with one another. Paired individuals would
complete aspects of the study at the same time, and play against one another in Rocket
League matches during the two test sessions. We note that individuals who habitually use
tobacco (N = 4) were paired with one another. For each pair, one member was randomly
selected to partake in the overnight sleep deprivation protocol (TSD), while the other
individual was assigned as control (CON) (described below), using an automated web-

based randomisation service (Haahr, 2021).
7.3.2. Materials

7.3.2.1. Eligibility Questionnaires & Participant Demographics

The eligibility questionnaire provided to each participant included the Pittsburgh Sleep
Quality Index (PSQI), Holland Sleep Disorder Questionnaire (HSDQ), Swiss Narcolepsy
Scale (SNS), Horne-Ostberg Morningness Eveningness Questionnaire (MEQ), and the
Fast Alcohol Screening Test (FAST) & Alcohol Use Disorders Identification Test
(AUDIT).
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7.3.2.1.1. Pittsburgh Sleep Quality Index (PSQI):
The ten-item PSQI is the most commonly used and gold standard self-report measurement
of sleep quality (Buysse et al., 1989). The PSQI shows strong reliability and validity and

is appropriate for use in clinical and non-clinical populations (Mollayeva et al., 2016).

7.3.2.1.2. Holland Sleep Disorder Questionnaire (HSDQ):

The HSDQ is a 32-item questionnaire designed to screen for multiple sleep disorders as
defined by the International Classification of Sleep Disorders (ICSD-2, 2005) (Kerkhof
et al., 2013). We used the HSDQ (cut-off: sensitivity, specificity) to screen for; insomnia
(2.02: 0.82, 0.51), circadian rhythm sleep disorder (CRSD) (3.41: 0.81, 0.75), sleep
disordered breathing (2.87: 0.86, 0.81), periodic limb movement disorder (PLMS)/
restless leg syndrome (RLS) (2.70: 0.82, 0.77), and parasomnia (2.42: 0.90, 0.90), as per
Beattie et al. (2015). The HSQD has been found to be one of only two comprehensive

questionnaires which screens for multiple sleep disorders (Klingman et al., 2017).

7.3.2.1.3. Swiss Narcolepsy Scale:
The SNS is a five-item questionnaire designed to screen for narcolepsy (Sturzenegger &
Bassetti, 2004). The SNS exhibits superior performance (sensitivity = 0.93, specificity =

0.88) to other self-report screening tools for narcolepsy (Sturzenegger et al., 2018).

7.3.2.1.4. Horne-Ostberg Morningness Eveningness Questionnaire (MEQ):

The MEQ is a 19-item questionnaire used to assess diurnal preference (Horne & Ostberg,
1976). The MEQ shows agreement with actigraphy-derived measures around sleep timing
(Thun et al., 2012), and its validity has been demonstrated against many other subjective
and objective measures of human circadian rhythm (see Panjeh et al. (2021), p. 235, for

a summary).

7.3.2.1.5. Fast Alcohol Screening Test (FAST) & Alcohol Use Disorders
Identification Test (AUDIT):
The FAST was used to identify participants who may be at risk of alcohol use disorder
(Hodgson et al., 2002). If participants were FAST positive (total > 3; N = 11), the
remaining questions of the AUDIT were administered. The AUDIT is the gold-standard
self-report measure for alcohol use disorder screening (Reinert & Allen, 2007; Saunders
et al., 1993). We used cut-off values recommended by the World Health Organisation
(Babor et al., 2001) (0 — 7: Zone I/ low risk, 8 — 15: Zone 11/ hazardous drinking, 16 — 19:

Zone 11/ harmful drinking, >20: Zone 111/ possible dependence).
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7.3.2.2. Subjective Sleep Measurement

7.3.2.2.1. Consensus Sleep Diary

The Consensus Sleep Diary (Core) was used to obtain subjective sleep measures
throughout the protocol (Carney et al., 2012). The Consensus Sleep Diary was created
through collaboration of a large number of field experts (Carney et al., 2012), and is the

research gold-standard for subjective sleep measurement.
7.3.2.3. Objective Sleep Measurement

7.3.2.3.1. Actigraphy

Sleep variables were objectively measured using the Readiband™ (v5) wrist-worn
activity monitor (Fatigue Science, Canada). This device uses tri-axial accelerometery
(sampling frequency = 16Hz) to record wrist acceleration data, which are used to calculate
sleep and wake events through a proprietary algorithm. The Readiband has demonstrated
superior performance (most notably, less bias on sleep summary measures and greater
sleep/ wake specificity) than the research standard Actiwatch 2, both at-home and in lab
(when compared to the gold-standard polysomnography (PSG)) (Chinoy et al., 2021;
Chinoy et al., 2022). It has also been independently found to be suitable when recording
measures of total sleep time (TST), time at sleep onset (TASO) and time at wake (TAW)
(Dunican, Murray, et al., 2018). Finally, the Readiband has high (ICC > 0.8) inter-device
reliability (including ICC = 0.99 for total sleep time; Driller et al. (2016)), and has been
used in sleep research for a variety of populations, including traditional and esport athletes
(Bonnar et al., 2022; Dunican et al., 2023; S. Lee et al., 2021; Power et al., 2023; Smithies,
Eastwood, et al., 2021), medical personnel (James et al., 2019; Min et al., 2023), pilots
(Rocha & Silva, 2019), and military personnel (Edgar et al., 2023).

A single trained researcher downloaded and processed the Readiband data. Outcome
measures considered were TST, TASO, and TAW. Daytime naps were included in TST,
with naps occurring before 12:00 added to TST for the previous night, and naps occurring
after 12:00 added to the TST for the upcoming night, as per Smithies, Eastwood, et al.
(2021).

7.3.2.4. Subjective Sleepiness, Alertness & Motivation

To capture subjective sleepiness, alertness, and motivation of participants throughout the
experimental protocol, participants completed The Karolinska Sleepiness Scale (KSS) as

well as Alertness & Motivation Visual Analog Scales (VAS). The KSS is a widely used
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single-item measure of individual subjective sleepiness at a given time-point (i.e.,
situational sleepiness). The KSS is answered on a nine-point Likert scale, with 1 denoting
extremely alert, and 9 denoting very sleepy, great effort to keep awake, fighting sleep.
Levels of subjective alertness and motivation were assessed using slider scales, with
values (between 0 and 100) hidden. The alertness VAS ranged from sleepy (0) to alert
(100), and the motivation VAS ranges from motivated (0) to unmotivated (100), as per
Mathew et al. (2021). Motivation VAS scores were subsequently reverse scored for

analysis, such that higher scores resembled greater motivation.
7.3.2.5. Cognitive Performance

Cognitive performance during the experimental protocol was assessed using the
psychomotor vigilance task (PVT) and Category Switch Task (CST).

The 10 minute PVT was used to assess each participant’s vigilance and reaction time.
Participants were required to respond as fast as possible to the appearance of a red
stopwatch in the centre of their screen by pressing the space bar on their keyboard. The
inter-stimulus interval was set at random between 2,000-10,000ms for each trial.
Participants were provided with feedback on their response time following each response,
as well as their mean response time at the end of the testing session. If a response was
made without the presence of the red stopwatch, a visual error message was displayed on
the screen before the next trial commenced. The 10-minute PVT is the gold-standard
performance test for vigilance, and exhibits stable performance over repeated measures
testing (Balkin et al., 2004; Basner & Dinges, 2011; Basner et al., 2017). A one-minute
practice block is undertaken prior to the ten-minute testing block. The test block is
executed straight after the practice block with no break or indication it has changed, as
per Thomann et al. (2014). False starts were removed from the data prior to analysis, as
were trials responded to in <100ms (as per Basner and Dinges (2011)). Dependent
variables considered were response speed (equivalent to 1000 / reaction timemsec), and
hereafter denoted as RS), and lapses, defined as trials where reaction time > 500ms
(alternatively, RS < 2), as these two measures have shown to display the best conceptual
and statistical properties (including robustness to extreme values) and sensitivity to sleep
loss for the PVT (Basner & Dinges, 2011).

The CST assesses task-switching ability, a component of executive functioning requiring
cognitive flexibility. A detailed description of the CST used in this study can be found in
Chapter 3. In short, participants were required to categorise words that appeared on a
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screen according to a categorisation rule denoted by a cue. In some test blocks (single
task), the cue was constant, while in others (mixed task), the cue (and categorisation rule)
switched between one of two cues at random, and participants had to adapt to the
corresponding change in categorisation rule. Stimulus-response mapping (SRM) changed
from the first to second test sessions in a consistent manner between all participants (for
the living cue but not size cue). We did not consider Switch Cost (SC) or Mixing Cost
(MC) error rate, as per Chapter 3.

7.3.2.6. In-Game Rocket League Performance

The primary aim of the current study was to assess if an acute sleep deprivation
intervention influenced in-game performance on the esport Rocket League. In Rocket
League, players use a rocket-powered vehicle to hit a large ball into an opposing goal,
while simultaneously defending one’s own goal (as per soccer or hockey). Rocket League
is played competitively in teams of 1, 2, or 3 players; in this study, we solely investigated

1v1 matches of Rocket League.

Paired participants played against one another on a local area network (LAN) connection.
Participants were able to use their own input device for gameplay, however a DualShock
4 and Xbox Elite Controller (series 2), as well as a gaming mouse, keyboard, and
headphones were provided if necessary. All input devices were used with a wired

connection.

Participants were asked to log into their own Rocket League account on Steam or Epic,
however were provided an account if they were unable. Participants were free to use
headphones for game sound and/ or play music through the duration of the Rocket League
matches. Participants were free to use in-game settings of their choosing (i.e., controller
settings, camera settings etc.). Once both participants within the pair were ready, they
were afforded five minutes for a warm-up. Participants were free to warm up however
they chose (i.e., free-play training, training packs, workshop maps), with the exception of
playing an online match. Once the five minutes have elapsed, participants joined a LAN
(local area network) match, which was created by the researcher. Prior to the gameplay
commencing, participants were (a) asked to save replays of the matches (a feature allowed
at the end of any match by all users), and (b) asked to perform to the best of their ability
for the entirety of each match, aiming to score as many goals as possible while
simultaneously preventing their opponent from scoring, regardless of the match score.
Participants then played seven consecutive matches against their paired opponent (for one
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pair on one week, only six matches were played due to a participant needing to leave

early). Short breaks (< 5 minutes) in between matches were afforded ad libitum.

Outcome measures were obtained via. use of the ballchasing.com application
programming interface (API) on saved match replays and processed as outlined by
Smithies, Campbell, et al. (2021) and in Chapter 5.

7.3.3. Procedure

Figure 7-1 provides a visual outline of the study protocol. The study protocol lasted a
minimum of 15-days per participant pair. On the first day (D1), participants were briefed
on the study protocol, and provided their actigraphy device and consensus sleep diary.
Participants determined a target bed (between 22:00 — 01:00+1) and wake time (between
06:00 —09:00, to correspond with Beattie et al. (2015)). Participants were asked to adhere
to their set target bed and wake times (x 1hr), particularly within the three days prior to
each test session. Participants also agreed upon a target gameplay amount (hours) within
the following week, of which they were asked to remain within £20% of (i.e., 80-120%
of target hrs). Target bed and wake times and target gameplay amount remained
consistent for individuals, but did not need to be consistent between participants within a

given pair.

Participants were asked to synchronise their Readiband with their smartphone device
upon waking to provide researchers access to their sleep data. Participants were reminded
via text message to complete their sleep diary and synchronise their Readiband if they

had not synchronised their Readiband by midday for all days in the protocol.
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Figure 7-1. A timeline of the 15-day protocol for all participants within the protocol. The

icons within this figure depict the following. Wristband = Readiband; book = Consensus
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Sleep Diary; coffee mug and beer = caffeine and alcohol; clipboard = subjective

measures. Computer with keyboard = computerised cognitive tests. Computer with
controller = Rocket League gameplay; bed = sleeping; man running = strenuous activity;
light and thermometer = light and temperature-controlled environment. TSD =

participants within the sleep deprivation group; CON = participants within the control

group.

7.3.3.1. Test Session Protocol

Following 12:00 on day seven (D7) and up until the upcoming test session (D8),
participants were asked to refrain from consuming caffeine, alcohol, non-essential
medication or any other drugs, as well as napping. Participants were also instructed to
obtain a minimum of six hours of sleep in the upcoming night. On the eighth day of the
protocol and between the hours of 11:30 to 15:00, participants attended the laboratory for
test session 1. Sleep diary information were collected from each participant, and a new
sleep diary was provided. Participants self-reported the amount of Rocket League
gameplay undertaken in the previous seven days, and indicated their adherence to the

abovementioned procedures.

Following this, the participants completed (in order) the PVT, CST, KSS, alertness &
motivation VAS, and played their set of Rocket League matches against one another.
Following completion of the Rocket League matches, participants again completed the
KSS and alertness & motivation VAS. All procedures described were collected using
gaming computers, comprising of a 27-inch monitor with a 144Hz refresh rate. All
measures except for those in the Rocket League performance section were taken using
identical input devices (Logitech Pro mouse, keyboard, and headphones). Following the
set of Rocket League matches, both participants were asked “on a scale from 0 [not at all]
to 10 [extremely], how much do you feel like fatigue affected your in-game
performance?”, and “do you think the other participant had completed the overnight sleep

deprivation protocol?”.

Following test session 1; the protocol was repeated, such that participants wore their
Readiband and completed the sleep diary daily, played the agreed upon amount of Rocket
League, adhered to the target bed and wake times within three days of the upcoming test
session, and avoided consuming caffeine or alcohol, taking medication or drugs, or

napping, within 24hrs of the upcoming test session 2. For 80% of pairs, the second test
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session was exactly seven days following the test session. However due to participant
availability, the timespan between tests was 14 days for three pairs, and 37 days for one

pair.
7.3.3.2. Total Sleep Deprivation Protocol

Within each pair, the protocol for the participant assigned to the control condition (CON)
was exactly as described above. For the participant assigned to the TSD condition, one of
the two test sessions (and the week prior) was exactly as described, however for the other
test session, the participant completed the total sleep deprivation protocol prior. The test
session for which the prior sleep deprivation was administered was counterbalanced (i.e.,
ten participants were sleep deprived prior to first and second test session respectively).
Participants were (a) aware that they may be asked to complete the total sleep deprivation
protocol prior to either of the test sessions, (b) unaware if they or their paired opponent
were in the CON or TSD group, and (c) told at least three days in advance whether they
were required to complete the total sleep deprivation protocol prior to the upcoming test

session.

For the total sleep deprivation protocol, the participant arrived to the laboratory at 21:00
the night before the test session. The following day, the participant would remain in the
laboratory until 30 minutes before the start of the test session. Participants were free to
engage in activities of their choosing, except for strenuous exercise, or playing video
games using the same input modality (i.e., keyboard or controller) they used to play
Rocket League with. From 22:00 onwards, participants completed a 5-minute PVT and
the SynWin multitask (Elsmore, 1994) on the hour each hour. The results of these tests

are not within the scope of this article.

The light (~425 lux) and temperature (21+2°c) in the laboratory environment remained
constant throughout this time and during all laboratory sessions. Each participant was
supervised throughout the duration of the sleep deprivation protocol to ensure
wakefulness. Water, fruit, low-sugar snacks, and caffeine-free hot beverages (i.e.,
peppermint tea) were available to participants ad libitum throughout the sleep deprivation
protocol. Another standardised meal (toast with peanut butter and honey, fruit, and fruit
juice) was provided at 08:00 the following morning. In the 30 minutes prior to the test
session, participants left the laboratory, and were supervised on a walk; this was to

simulate a walk to the laboratory, as would occur if they were the CON participant. This
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protocol resulted in an average of 28.78+1.22 hours between last wake time and the start

of Rocket League gameplay.
7.3.4. Statistical Analysis

Statistical analyses were performed using R: A language and Environment for Statistical
Computing (Vienna, Austria) and/ or IBM SPSS Statistics v26 (Armonk, N.Y.) software.
Alpha was set to p < 0.05 (two-tailed) for all analyses. Variance measures (£) are

presented as standard error unless explicitly specified.
7.3.4.1. Participant Pairs & Rank

Means and standard deviations are provided for participant MMR. The relationship
between time spent playing Rocket League (hours) and in-game expertise (MMR) was
assessed through a simple linear regression, which was subsequently used to impute
missing hours played for individuals from whom we could not obtain a confident

estimate.
7.3.4.2. Protocol Adherence

Means and standard deviations are provided for each individual’s TASO and TAW within
the three days preceding either test session. Additionally, means and standard deviations
are provided for TST, both for the night before each test session (TST[1]) and the two
nights (combined) prior to TST[1] (TST[2-3]), within each group x session combination.
Independent-sample t-tests and paired-sample t-tests were used to assess by-group and
by-session group differences, respectively. Nonparametric equivalents (Mann-Whitney U
and Wilcoxon Signed-Rank Test) were used when values within one or more groups were

significantly non-normal (Shapiro-Wilk test, p < 0.05).

Rate of adherence to target Rocket League gameplay was expressed as a percentage,
Additionally, the mean and standard deviation for the proportion of target gameplay
achieved was calculated for the entire sample, and for each group x session combination.
By-group and by-session differences in target RL gameplay achieved were assessed
identically to that described for TST above.

7.3.4.3. Cognitive Performance

Cognitive Performance Measures (PVT & CST) were assessed using Mixed Effect
Models (MEMs). All MEMs were created using the Ime4 package in R (1.1-31; Bates et
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al. (2015)). Random effect structures were determined using a backward-selection
approach as outlined by Matuschek et al. (2017) and described in chapter 6.3, deviating
only to avoid selection of singular models or models which did not converge. If a selected
model was singular, then the next most complex model which was not singular was
selected, and if all models prior were singular, random effect simplification continued
until the next most complex model that was not singular was identified, and this model
was subsequently selected. Within the selection process, random slopes were considered
for each fixed effect (and their interaction) that vary within a given random effect (Barr,
2013). Once the most appropriate random effects structure was identified, mixed-model
assumptions (see Chapter 6.3) were visually examined using the performance package
(0.10.4; Ludecke et al. (2021)), and DHARMa package (0.4.6; Hartig (2022)). For fixed
effects, degrees of freedom were estimated using the Satterthwaite method to allow for
significance testing of fixed effects, while the Wald method was used for confidence
interval estimation. Additionally, Wald tests were used to determine fixed effect
significance for any MEMs created with categorical outcomes (binomial generalised
linear mixed effects models; i.e., for PVT lapses). We used treatment coding for all
categorical fixed effects. Treatment coding refers to the coding of the two-levels of a
dichotomous variable as 0 and 1 respectively (Brehm & Alday, 2022). Treatment coding
was considered the intuitive option as there are sensible baseline levels (always coded as
0) within each fixed effect considered. Details regarding both model selection (including
specific model selection decisions made) and the details of the final model selected are
provided within table layouts based on a best practice guideline (Meteyard & Davies,
2020) and are provided as appendix 6.5.

For PVT measures, MEMs were created for RS and lapses, respectively. We note a
deviation from normality observed at low RS values, however given that (a) this is
representative of an expected phenomenon (lapses), (b) RS is an already transformed
outcome measure which satisfies MEM assumptions substantially better than raw RT,
and (c) RS is considered alongside lapses to be the best outcome variable to use for the
PVT (Basner & Dinges, 2011), RS was retained as the outcome measure within the model
created. The models created for RS and lapses included the between-participant fixed
effect group (CON vs. TSD) and the within-participant fixed effect session (baseline vs.

experimental), as well as their interaction, with participant considered as a random effect.

For CST, we planned on using RTmsec) as an outcome measure for Single Task, SC and

MC, however MEM assumptions were not met using this outcome measure. When RTs
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were converted to RS using the same transformation used for PVT (RS = 1000 / reaction
time(msec)), MEM assumptions were satisfied. Hence, MEMs were created for Single Task
RS and error rate, Switch Cost RS, and Mixing Cost RS. For Single Task models, they
included the between-participant fixed effect group (CON vs. TSD) and the within-
participant fixed effect session (baseline vs. experimental), as well as their interaction,
while for the SC and MC models, group, session, and trial type (for SC, this was switch
vs. repeat; for MC, this was repeat vs. single task), as well as their interactions (i.e., full
factorial), were included as fixed effects. For all of these models, participants, word (i.e.,
the specific word displayed), cue (living or size), and a cue by word interaction, were

considered as random effects.
7.3.4.4. Subjective Measures

By-group and by-session differences in KSS, Alertness VAS and Motivation VAS were
analysed using independent/ paired sample t-tests or nonparametric equivalents, as per
protocol adherence measures. We note that data from one pair are missing due to a
technical error (N pairs = 19). Participant’s self report of how much fatigue affected their

in-game performance was also analysed in an identical manner.
7.3.4.5. Rocket League Performance

The primary aim of the study was to test the null hypothesis that TSD would not affect
our in-game outcome variable, GD. To test this, we created a MEM with session (baseline

vs. experimental) as a fixed effect, and pair as a random effect.

Irrespective of the result of the above analysis, we sought to conduct exploratory analysis
on whether TSD impacted any performance indicators in Rocket League. We built five
separate MEMs with identical fixed and random effects to that above, to predict the
following outcome measures: Shots Taken Difference, Time Spent Goalside of the Ball
Difference, Saves Made Difference, Time Spent High in the Air Difference, and Demos
Inflicted Difference. These five Pls were chosen as they were the five Pls shown to predict
game performance in 1vl Rocket League when all in-game ranks are considered
(Smithies, Campbell, et al., 2021), see Chapter 5. All metrics were calculated as the value
of the TSD participant minus the value of the CON participant within each pair. As this
analysis is exploratory, we did not conduct any familywise error rate adjustment;

however, we do not make claims based on the results of these analyses, instead using
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them as ways to highlight potential effects of TSD on in-game strategy to be explored in

future research.
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7.4. Results:

7.4.1. Participant Pairs & Rank

The mean MMR for participants in the study was 874.01 (SD = 203.59), corresponding
to the top 20.62% of the overall playerbase. A simple linear regression was conducted to
examine the relationship between hours played (from participants where a reliable value
estimate could be obtained, N = 37) and MMR. This model was significant, F(1,35) =
93.48, p < 0.001, R? = 0.73, with hours played explaining 73% of the variance of
participant 1v1l Rocket League Expertise. The equation for the regression model can be
found below

MMR = 0.08853 X Hours Played + 696.8

This equation was used to predict missing values for hours played, however for two of
the three participants it predicted a negative value. Hence for these participants, hours
played was conservatively estimated as zero. After including these participants, mean
hours played among the sample was 2014.15hrs (SD = 1881.30hrs), or ~85 days. Figure
7-2A shows the rank distribution of the participants and their paired opponent, and Figure

7-2B shows the abovementioned relationship between Hours Played and MMR.
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Figure 7-2 A Rank distribution and pairing of included players. Clear diamonds resemble
CON nparticipants, and red diamonds resemble TSD participants. Pairs are denoted by
lines joining participants. The x-axis denotes the participants in-game MMR (a proxy for
expertise) relative to the esports overall player base at the time of recruitment, such that
lower values resemble a lower-ranked player and vice versa (i.e., 99% denotes a player
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in the top 1% of players). To better visualize pairs in the top 3% of ranked 1v1 Rocket
League players, a magnified display is depicted above the main graph. B Relationship
between estimated total hours of Rocket League played (x-axis) and player expertise (y-
axis). Dashed lines represent 95% CI for line fitted using the linear regression equation.
For both A and B, colours represent the in-game rank of the participants (in order from
bottom to top; bronze, silver, gold, platinum, diamond, champion, grand champion,

supersonic legend).

7.4.2. Protocol Adherence

7.4.2.1. Subjective & Objective Sleep Data

For sleep data within 3 nights of each test session, 3.64% of days of actigraphy derived
sleep data were missing or unusable, while 4.55% of days of Consensus Sleep Diary
(CSD) data were missing or unusable. A missing value analysis using Little’s MCAR test
(Little, 1988) was not significant (x* = 7.32, p = 0.50), suggesting the data can be treated
as MCAR and as such, missing actigraphy-derived sleep data were imputed using a

simple imputation method described in Chapter 6.2.

Actigraphy-derived TASO and TAW, in comparison to participant-defined target bed and
wake times, are shown for each participant (and pair) in Figure 7-3. 48.2% of nights
within three days of a test session had a TASO within one hour of the individuals target
bedtime (mean difference = 1.09hrs (SD = 1.39)), while 54.84% of TAW values were
within one hour of the individuals target wake time (mean difference = 0.55hrs (SD =
1.62).

Mean TST (including naps) the night before each test session (TST[1], 7-4A), as well as
the mean TST for two nights prior (TST[2-3], 7-4B), are shown for each condition in
Figure 7-4. All between- and within-participant comparisons for TST[1] and TST[2,3]
were not significant (p< 0.05) with the exception of those involving TST[1] values for
TSD on the experimental session. In other words, for the three nights preceding test
sessions, the only observable difference in TST was as a direct result of the sleep

deprivation protocol.
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Figure 7-3 Mean (£SD) discrepancy between A target bedtime and TASO, and B target
wake-time and TAW, for each participant within each pair. Participants in CON are
denoted by clear diamonds, while TSD participants are denoted by the red diamonds. The
green band denotes TASO or TAW within 1hr of the target bed/ wake time, while the red
area denotes TASO or TAW outside of that range.
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Figure 7-4 Box and whisker (min - max) plots showing the group mean TSTs for CON
and TSD A the night before test sessions, and B the mean of the two nights prior to that

shown in A.
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7.4.2.2. Caffeine, Alcohol, Napping

No participants reported caffeine or alcohol use within 24-hours of any test session. One
participant (CON) reported medication use within 24-hours of test sessions; a daily
asthma medication on the morning of both test sessions, and one dosage of cough
medication the night before the experimental test session. Two participants (one CON,
one TSD) napped (45-60mins) within 24-hours of the baseline test session, as both self-

reported and corroborated through actigraphy.
7.4.2.3. Weekly Rocket League Play

Participants remained within £20% of their target gameplay prior to testing for 56.25%
of test sessions (M = 89.44% of target hours, SD = 38.02%). No significant differences
were found between % target gameplay achieved prior to baseline and experimental test

sessions for either group (p< 0.05).
7.4.3. Cognitive Performance

Model selection process and details of the final MEMSs (as per Meteyard and Davies
(2020)) can be found as appendix 6.5.

7.4.3.1. Psychomotor Vigilance Task
Distributions of PVT Response time across groups and sessions are shown in Figure 7-5.

For PVT response time, neither group nor session alone significantly contributed to the
model (p > .05), however a significant condition by session interaction was present (b =
-0.72+0.11, 95% CI [-0.94, -0.51], t(1, 37.38) = -6.58, p < .001), such that being in the
TSD group on the experimental day resulted in a mean reaction time worsening of
48.61msec.

For PVT lapses, neither group nor session alone significantly contributed to the model (p
> 0.05), however a significant condition by session interaction was present (b =
2.38+0.40, 95%CI [1.56, 3.16], z =5.91, p < 0.001), such that being in the TSD group on

the experimental day resulted in 4.91 times more lapses occurring.
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Figure 7-5 Frequency distribution of RS (1000/RT msec)) for participants in the A CON
group and B TSD group. | direct the reader to B, and note both a leftward shift and
leftward skew of the response distribution in the experimental test session for the TSD
participants, consistent with previous literature (i.e., Figure 4, Grant et al. (2017)) and
demonstrative of both the broadband decrease in RS and increase in lapses observed
(trials to the left of the dotted line).

7.4.3.2. Category Switch Task

For performance on the Single Task component of the CST, both RT (msec) and error
rate were examined. RT was transformed to RS (1000/ RT (msec), s per PVT analysis) to
fulfil MEM assumptions. For RS, neither group nor session alone significantly
contributed to the model (p > .05), however a significant condition by session interaction
was present (b = 0.10+0.40, 95%CI [-0.19, -0.01], t(1, 37.90) = -2.27, p = .029), such that
being in the TSD group on the experimental day resulted in a 42.19msec increase in mean
reaction time. No fixed effect, nor interaction were significant within the model predicting

errors in the Single Task component of the CST (p > 0.05).

For SC RS, only trial type significantly contributed to the model (b = 0.24+0.40, 95%ClI
[-0.30, -0.19], t(1, 37.83) = -8.40, p < 0.001), corresponding to a switch cost of
102.19msec. No other main effects or interactions were significant (p < 0.05). For MC
RS, there was a simple main effect for trial type (b =-0.27+0.05, 95% CI [-0.36, -0.18],
t(1, 52.78) = -5.79, p < 0.001), corresponding to a mixing cost of 83.45msec. There was
also a significant condition by session interaction present (b =-0.10+0.04, 95% CI [-0.19,
-0.01], t(1, 37.88) = -2.27, p = 0.029), such that according to the model, being in the TSD

group on the experimental day resulted in a 42.21 msec increase in mean reaction time
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for single task trials (identical to that in the single task only model). No other main effects

or interactions were significant (p < 0.05).
7.4.4. Subjective Sleepiness, Alertness and Motivation

KSS, alertness VAS and motivation VAS scores for CON and TSD within both the

baseline and experimental test sessions are shown in Figure 7-6.

KSS scores for CON participants did not differ between baseline (3.53+0.37) and
experimental (3.79+0.33) sessions (p = 0.367). Additionally, KSS scores obtained in the
baseline test session did not differ between CON and TSD participants (p = 0.191).
However, significant differences were found between the KSS scores of TSD participants
at baseline (2.84+0.24) vs. experimental (6.47+0.49) sessions (Z = -3.74, p < 0.001) and
between CON and TSD participants on the experimental session (Z = -3.66, p < 0.001).

Alertness VAS scores for CON participants did not change between baseline (79.26 +
3.32) and experimental (73.53+3.64) sessions (p = 0.184). Additionally, alertness VAS
scores obtained in the baseline test session did not differ between CON and TSD
participants (p = 0.130). However, significant differences were found between the
alertness VAS scores of TSD participants at baseline (84.74+3.56) vs. experimental
(39.21+6.30) sessions (Z = -3.82, p < 0.001) and between CON and TSD participants on
the experimental session (t(36) = 4.72, p < 0.001, Hedges g = 1.50).

Motivation VAS scores for CON participants did not change between baseline
(83.32+2.25) and experimental (82.26+3.76) sessions (p = 0.948). Additionally, alertness
VAS scores obtained in the baseline test session did not differ between CON and TSD
participants (p = 0.094). However, significant differences were found between the
alertness VAS scores of TSD participants at baseline (88.21+1.75) vs. experimental
(48.63+6.76) sessions (t(18) = 6.75, p < 0.001, Hedges g = 1.48) and between CON and
TSD participants on the experimental session (Z = -3.29, p < 0.001).

In summary, KSS, alertness VAS, or motivation VAS scores did not change except as a
direct result of the sleep deprivation protocol. Within 10 minutes of the Rocket League
matches commencing, participants who had undertaken the sleep deprivation protocol

reported higher subjective sleepiness, and lower subjective alertness and motivation.
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Figure 7-6 Box and whisker (min = max) plots showing A KSS scores, B Alertness VAS
scores, and C Motivation VAS scores (reverse scored) for CON and TSD participants in

the baseline and experimental sessions.
7.4.5. In-Game Performance

To assess the effect of the TSD protocol on overall in-game performance, a model was
created with GD as the outcome variable, session (baseline vs. experimental) as a fixed

effect, and with a by-pair random intercept.

By-pair random intercept standard deviation was 2.61, and residual standard deviation
was 2.83. The model intercept (corresponding to GD for the baseline session) was -
1.01+0.63, which was not significantly different to 0 (t(1, 22.05) = -1.61, p = 0.12),
suggesting that neither group of participants were significantly better than the other at
baseline. The effect of day (i.e., change from baseline to experimental) was not significant
(AGD = 0.23+0.34, t(1, 258.02) = 0.68, p = 0.498), suggesting that the sleep deprivation
protocol did not significantly impact GD. Figure 7-7A shows the distribution of GD for
baseline and experimental sessions.
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Similar models were created to assess whether the TSD protocol impacted any of the top
five PlIs within 1v1 Rocket League. The only PI to significantly change from baseline to
test session was Time Spent High in the Air Difference (p = 0.013) (Figure 7-7E), such
that (compared to their opponent) the TSD individual spent 0.48+0.19% less time in the

air in the experimental session, compared to the control session.

Lastly, participant’s self-reported ratings for how much fatigue affected their in-game
performance did not change between baseline (1.85+0.39) and experimental (2.40+0.46)
sessions (p = 0.251). Additionally, ratings obtained in the baseline test session did not
differ between CON and TSD participants (p = 0.779). However, significant differences
were found for TSD participants at baseline (1.70+0.44) vs. experimental (4.75+£0.50)
sessions (Z = -3.33, p < 0.001) and between CON and TSD participants on the
experimental session (Z = --2.96, p = 0.003). Participants in the CON group correctly
guessed when their TSD group opponents were rested (baseline) 80% of the time, and
when TSD group opponents were sleep deprived (experimental) 95% of the time.
Participants in the TSD group correctly guessed that their CON group opponents were
rested 85% of the time.
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Figure 7-7 Violin plots displaying the distribution of A GD and B-F exploratory Pls for
baseline and experimental sessions, across all 279 matches. Box and whisker (min -
max) plots inside the violin plots resemble the distribution of mean outcome variables
across a test session for a given pair (N = 20 for each box and whisker plot). Diamonds
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represent pair means for each session, with pair means connected via the dotted lines. The

solid red line represents the estimated mean+SE from each model used for analysis.
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7.5. Discussion:

The current study aimed to establish whether an acute bout of total sleep deprivation
(TSD) decreased in-game performance in the popular esport Rocket League. We recruited
40 Rocket League players, pairing them based on expertise level, with half of the
participants completing two test sessions while rested (CON) and the other half (TSD)
completing one test session while rested (baseline), and the other test session following
~29 hours of TSD (experimental). Following this bout of TSD, we found these individuals
to respond ~50msec slower and lapse (responses >500msec after stimulus onset) almost
five times more often on the Psychomotor Vigilance Task (PVT). They also responded
slower on the two-choice component of the Category Switch Task (CST), however, error
rate on this component of the CST as well as Switch Cost and Mixing Cost (SC and MC
respectively; measures of task-switching ability) response speeds were unchanged.
Additionally, immediately (~10min) before Rocket League play, participants reported
higher subjective sleepiness and lower subjective alertness and motivation when sleep
deprived, when compared both to their own scores when well rested and compared to
their paired opponents for Rocket League gameplay. Despite the cognitive impairments
observed as a result of TSD, as well as the fact that participants felt that fatigue affected
their in-game performance more following TSD, we did not find evidence that TSD
impacted game outcome in Rocket League matches. The implications of our findings are

discussed.

While we hypothesised that TSD would negatively impact our in-game esports outcome
measure (GD), in line with the sentiment of previous articles (Bonnar, Castine, et al.,
2019; Bonnar, Lee, et al., 2019; Bonnar et al., 2022; S. Lee et al., 2021; Sanz-Milone et
al., 2021) and some esports athletes themselves (i.e., Baumann et al., 2022; Rudolf et al.,
2020), we can identify (at least) four rational arguments for why such an effect was not
found in the current study. Firstly, we note that not all aspects of cognitive performance
are equally affected by sleep loss (Lim & Dinges, 2010; Lowe et al., 2017; Smithies, Toth,
et al., 2021; Wickens et al., 2015), with the general trend being that as task complexity
increases (for which, esports would be considered particularly complex), the magnitude
of measurable adverse effect of sleep loss decreases (Harrison & Horne, 2000). Secondly
(however relatedly), motivation (both intrinsic and extrinsic) appears to play an important
role in the maintenance of performance (top-down mechanisms) in spite of sleep loss
(Massar, Lim, & Huettel, 2019). As stated by Massar and Colleagues (p. 2), “In conditions

in which incentives are high to perform, e.g., in military emergency situations, people
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may be able to maintain performance. However, situations that do not contain significant
extrinsic incentives may fail to generate sufficient motivation—and thus lead to reduced
performance.” Our study involved the play of an esport highly familiar (and judging by
total hours played, highly enjoyed) by participants in a highly competitive (and hence,
motivating) environment. It is understood that task-specific factors can influence the
degree to which performance occurs, specifically through promoting/ dissuading
motivation. Regarding task complexity for example, Harrison and Horne (2000) (p.g.
236) state “the prevailing view in SD [sleep deprivation] research is that high-level
complex skills are relatively unaffected by SD because of the interest they generate and
the implicit encouragement for participants to apply compensatory effort to overcome
their sleepiness”. Not only is Rocket League a highly cognitively complex activity, the
play of Rocket League in the current study was undertaken in a set of circumstances which
lends itself to compensatory mechanisms being activated. Thirdly, very repetitive tasks
(often labelled monotonous) may experience greater performance loss due to persistent
use of a very specific brain circuitry (Hudson et al., 2020), while tasks with greater
stimulus/ response diversity (for which Rocket League very much fits) may not
experience this effect. Fourthly (and again, relatedly), we note that the time-on-task effect
(or vigilance decrement), which is accelerated and exaggerated by sleep loss (Doran et
al., 2001), may not have been a factor within Rocket League gameplay. Rocket League
matches are only ~6-7 minutes in length, and allow ~10 second breaks between each goal
(occurring every ~40 seconds in the current study), allowing for frequent brief rest
opportunities. This is not consistent among all esports. For example, major multiplayer
online battle arena (MOBA) esports such as DOTAZ2 and LoL (the first and fourth largest
esports by prize money earned; Esports Earnings (2023b), have average match lengths of
~20-30minutes (but can extend to >90 minutes) with very limited and unpredictable rest
break opportunities. Lastly, while esports performance appears to be largely predicated
on cognitive performance, there are a myriad of other factors involved, such as mood,
biomechanics related factors, playstyle (individual differences in in-game abilities and
strategy preferences) and interactions between competitor’s playstyles. Such factors

could increase performance variation, confounding any expected effects of sleep loss.

With regards to the last argument, the authors argue that even if there are many extraneous
factors in play, it is very unlikely that these factors would have completely nullified the
effects of TSD on GD in the current study. A power analysis conducted a priori provided

an estimated power of 0.829 for our analysis on GD, using estimated effect size and
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variance measures, and an estimated MEM design. We observed variance that was larger
than predicted (random intercept SD = 2.61 [predicted = 1.94], residual SD = 2.83
[predicted = 1.83]), however also found that our data did not (according to the procedure
outlined by Matuschek et al. (2017)) warrant a model including a session by participant
random slope. Retaining the estimated mean effect of TSD as a GD change of 1.218 from
the a priori power analysis and including the variance measures and model structure from
the results, an updated power analysis suggested that if the predicted mean effect
magnitude was accurate, the power to detect it would have been 0.958 (the R script for
this reanalysis can be found as appendix 7.3). Hence, we argue that our underestimation
of variance is highly unlikely to be the root cause of the inability to reject the null
hypothesis that TSD has no impact on in-game Rocket League performance, and that if
an effect of ~29hrs of TSD on GD exists, the magnitude of this effect is most likely

substantially smaller than anticipated.

It should be explicitly stated that our results do not suggest that sleep is a human factor
to be disregarded within the world of esports. Sufficient sleep health is imperative for
physical and mental wellbeing (Itani et al., 2017), and plays an instrumental role in
memory consolidation (Stickgold, 2005; Walker & Stickgold, 2004); these are all critical
factors when considering the everyday life of esport athletes and the downstream effects
of sleep on competition performance. Furthermore, we certainly do not suggest that an
acute bout of sleep deprivation does not impact alertness or cognitive performance, as our
measures for such (as well as many decades of research; see Lim and Dinges (2010) for
meta-analyses) are mostly in direct conflict with such a notion. What our results do
suggest however, is that an acute bout of ~29 hours of sleep deprivation is unlikely to
impact in-game esports performance to any measurable degree. This perhaps provides a
positive message to esports players and coaches; that a night of poor sleep immediately
prior competition is unlikely to adversely impact in-game performance. This message has
high importance given some traditional athletes often experience sleep disturbances the
night prior to competition (Juliff et al., 2015), with scholars suggesting that these

disturbances are equally likely for esport athletes (Bonnar, Castine, et al., 2019).

In addition to the in-game outcome measure (GD), we gathered in-game data pertaining
to a myriad of game-specific factors (i.e., offense/ defense, boost, movement &
positioning; see Smithies, Campbell, et al. (2021) & Chapter 5) and explored whether
established performance indicators (PIs) in 1v1 Rocket League (Smithies, Campbell, et

al., 2021) varied as a function of sleep deprivation. Through this exploratory analysis, we
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identified the PI time spent high in the air difference (TSD minus CON) to lower quite
substantially (0.48%; average time spent high in the air across all matches in our sample
= 3.13%) between baseline and experimental sessions. We also noted numerical increases
in the time spent goalside of the ball difference, though with greater overall uncertainty
as indicated by p = 0.059. These two PI’s were specifically discussed by Smithies,
Campbell, et al. (2021) as potentially indicating safer or riskier playstyles, with greater
time goalside of the ball and less time high in the air resembling a safer overall playstyle.
However, changes in these specific Pls could alternatively be argued to resemble an
individual adopting an easier in-game strategy, as voyages high in the air typically
involve much more difficult and precise movements, while staying grounded and goalside
of the ball and relying primarily on counterattacking may present as a strategy requiring
comparatively less effort than complicated attacking approaches. Sleep deprivation
resulting in either (or both) safer or simpler decision making have theoretical support.
While sleep loss is generally considered to result in riskier decision making (Satterfield
& Killgore, 2019; Womack et al., 2013), decision making tasks (i.e., the Balloon Analog
Risk Task or BART) typically show safer strategy employment following sleep
deprivation (when 48hrs or less) (Killgore, 2007; Killgore et al., 2008), a trend mimicked
by subjective risk-taking propensity following sleep deprivation of 48hrs or less
(Chaumet et al., 2009; Killgore, 2007; Killgore et al., 2008). Interestingly, when
discussing why sleep deprivation leads to a safer strategy on the BART but not other
decision making tasks (i.e., lowa Gambling Task), Satterfield and Killgore (2019) note
that riskier decisions on the BART are also more effortful, and that “sleep deprived
individuals appear to be less willing to expend effort to engage in risky activities.” (p.
353). Work by Engle-Friedman and colleagues (Engle-Friedman et al., 2010; Engle-
Friedman et al., 2003) can be looked to for additional support for the notion that TSD
evoked a simpler strategy among our participants. Despite these hypotheses regarding our
observed PI differences, we emphasise the exploratory nature of this analysis and
emphasise the need for more formal testing before claims can be substantiated.
Nonetheless, we note this as an interesting line of future enquiry, especially given
participants tended to feel (self-report) that fatigue affected their in-game performance
following TSD.

Along with in-game performance, we also examined how sleep loss impacted the
cognitive performance of esport players using the PVT and CST. As expected, overall

response speed worsened, and the likelihood of lapses increased substantially (~5 times)
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following TSD, indicating that players’ vigilance was impaired. In the single task
component of the CST, response speed slowing was similar in magnitude to that observed
in the PVT, which was somewhat surprising given previous research (i.e., Smithies, Toth,
et al., 2021) suggested the level of impairment decreases as task complexity increases so
long as cognitive flexibility is not introduced as a task requirement. Even more
surprisingly, we found no evidence for decreases in task-switching ability (measured both
by SC and MC response time), contrasting findings by Couyoumdjian et al. (2010).
However, these findings were consistent with Nakashima et al. (2018), who noted no
change in SC reaction time following TSD, and somewhat in agreement with Slama et al.
(2018) who noted a change in SC accuracy but not SC reaction time following TSD.
Overall, these contrasting findings may be a result of subtle task-characteristics (i.e., types
of stimuli, stimulus-response mappings, interstimulus intervals, frequency of task-
switches) which warrant further investigation. The ability to rapidly switch ones’
attention between multiple information sources appears integral to esports performance
(in the context of Rocket League, this could be the switching of visual attention between
the ball, the opponent, the players vehicle and the players boost meter), as demonstrated
by improvements in task-switching ability coinciding with the play of action video games
(Nuyens et al., 2019; Toth et al., 2020). Although the results of our study suggest that this
ability may be unaffected by acute sleep loss for esport athletes, we interpret with caution

given mixed findings in the literature.
7.5.1. Limitations

We outline several limitations regarding the presented experimental study. Firstly, despite
our best efforts, we had only one female participant in our final sample of 40, resulting in
a clear sex imbalance. Similar difficulties recruiting female esport players have been
previously noted (Bonnar et al., 2022; Ratan et al., 2015). We also note that this large
gender imbalance is (regrettably) reflective of elite esport demographics (with estimates
of only 5% of professional esport athletes being female; Hilbert (2019)), a disparity
actively highlighted in many articles (Darvin et al., 2021; Taylor & Stout, 2020).
Secondly, we note a lesser degree of control over factors such as participant
demographics, sleep, and weekly gameplay than desirable. We note the extreme difficulty
in recruiting participants sufficiently experienced with Rocket League while also
fulfilling the somewhat strict criteria for healthy sleeping participants outlined by Beattie
et al. (2015). Due to this, affordances were made to the inclusion criteria and as such, our

participant pool included some individuals screening at risk for sleep disorders, and one
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participant with habitual caffeine use >400mg. We found that many participants reported
great difficulty maintaining a regular sleep and wake time in particular, as resulting in
some participants experiencing less than desired TST (i.e. ~3hrs) in the 1-3 nights prior
to testing, even when meant to be well rested (see Figure 7-4). This is noteworthy and we
would encourage future research to explore sleep/ wake variability within habitual esport
playing populations, potentially through use of the sleep regularity index (SRI; Phillips
et al. (2017)), as done recently in elite team sport athletes by Halson et al. (2022).
Continuing the topic of sleep and wake times, implementing somewhat standardised
target bed (22:00 — 01:00) and wake times (06:00 — 09:00) that were outside of those
habitually experienced by some participants may have affected the sleep experienced by
some participants within the three nights prior to test sessions, potentially leading to the
higher-than-desired variability in TST on these days within control conditions. However,
we note that this research design decision was made to better comply with the RRDC
criteria (Beattie et al., 2015) and for logistical reasons (i.e. some participants habitual
wake times could interfere with test session availability. We also caution that the results
of the current study may have limited applicability to other esports besides Rocket
League. Although most major esports share a lot of similarities (fast and accurate
responses to rapidly changing stimuli executed through fast and precise fine motor
movements, complex interactions with other individuals, use of computer peripheries,
seated environment etc.), their diversity has resulted in some observed differences in the
relevant importance of specific cognitive abilities (Dobrowolski et al., 2015; Toth,
Conroy, et al., 2021), and hence potentially, diversity in the impact of acute sleep loss.
Also as previously mentioned, Rocket League has short match lengths with frequent break
opportunities when compared to other esports, which may lend to a lesser ability of the
time-on-task effect (which sleep loss accelerates and exaggerates) to negatively impact
performance. We note however that the short and predictable match lengths within Rocket
League are also one of the key characteristics which make it a feasible esport to conduct
experimental research on (as it allows for multiple and consistent amounts of trials per
test session (Smithies, Campbell, et al., 2021; see Chapter 5)). Nonetheless, generalising
the results of the current study to other esports should be done with caution. Lastly, we
note that our subjective measure of motivation (motivation VAS; as per Mathew et al.
(2021)) was not suitably timed or worded to appropriately capture participants motivation
to perform within the Rocket League gameplay. Had this item been implemented

immediately following either the warm-up provided or in between the matches played, it
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may have been able to shed light on whether this mechanism may have played a role in

performance preservation in spite of sleep loss.
7.5.2. Conclusion

Overall, the results of our study suggest that an acute bout of sleep loss (~29hrs TSD)
does not adversely impact in-game Rocket League performance, despite degrading
vigilance and attentional capabilities as measured by both subjective and objective
instruments. Our findings suggest that efforts may be better placed optimising day-to-day
sleep health, as opposed to austere avoidance of sleep loss immediately prior to

competition.
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Chapter 8. The BART effect: Rocket League players

appear to play both simpler and safer when sleep deprived

“There’s a 4:30 in the morning now?” — Bart Simpson (The Simpsons; S6, E1)
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8.1. Introduction:

In the previous chapter, | examined the effects of ~29hours of total sleep deprivation
(TSD) on in-game performance, in the esport Rocket League. While I did not observe an
effect of the TSD protocol on match outcome, | performed exploratory analysis to see
whether any in-game performance indicators (Pls; as identified by Smithies, Campbell,
et al. (2021) and in Chapter 5) differed as a result of TSD.

Through this analysis, | observed a 15.34% decrease in the Pl Time Spent High in the Air
Difference (from 3.13% of match to 2.64% of match), and (a less certain, p = 0.059)
1.89% increase in the Pl Time Spent Goalside of the Ball Difference. In the discussion of
this chapter, | stated that these changes in Pl values could be reminiscent of a shift toward
a safer (vs. riskier) in-game strategy, or alternatively a simpler (vs. more complex)
strategy (though I was careful to avoid making strong claims about this evidence given
the exploratory nature of the analyses). Evidence from previous literature suggesting

either (or both) of these changes to be feasible due to sleep loss is discussed below.

Regarding a simpler playstyle, there is a substantial body of literature suggesting that
under conditions of sleep deprivation, tasks with high cognitive demands are perceived
as more effortful (see Massar, Lim and Huettel (2019) for an overview). A 2003 article
outlines multiple experiments in which sleep deprived university students, when provided
a choice between easier and more difficult math questions, tended to choose easier
questions than when well rested or when vs. well rested counterparts, with the authors
concluding that “These studies demonstrate that sleep loss results in the choice of low-
effort behaviour that helps maintain accurate responding.” (p. 113, Engle-Friedman et al.
(2003)). Another study with competitive adolescent ice-skaters found that those who slept
less perceived relevant skating-specific manoeuvres as more difficult, while those with
greater sleep disturbances (awakening count & wake after sleep onset) were more likely
to choose easier manoeuvres to perform (Engle-Friedman et al., 2010). These are two nice
examples suggesting that when given options between easier and more difficult
alternatives, sleep loss drives individuals toward the easier alternative, likely due to an
increase in perceived task effort demands when sleep deprived (Massar, Lim, & Huettel,
2019).

Regarding a safer playstyle, the evidence base is substantially more conflicting. While
sleep deprivation of 48hrs or less has been demonstrated to result in self-reported
reductions in risk-taking (Chaumet et al., 2009; Killgore, 2007; Killgore et al., 2008), the
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current body of experimental work suggests that sleep deprivation tends to lead to riskier
decision making in practice (for reviews, see Satterfield and Killgore (2019) and Womack
etal. (2013)). However, there is one decision making paradigm called the Balloon Analog
Risk Task (BART) which typically shows sleep deprived individuals adopting safer
strategies compared to well rested counterparts (Killgore, 2007; Killgore et al., 2008). In
discussing why sleep deprived individuals adopt safer strategies on the BART but riskier
strategies on other decision making paradigms (like the lowa Gambling Task or IGT),
Satterfield and Killgore (2019) propose that while riskier decisions require no more effort
on the IGT, they do on the BART. This suggests that a safe strategy and less effortful
strategy are equivalent on the BART. In a similar vein, | proposed in Chapter 7 that
spending less time high in the air (and to a lesser extent, more time goalside of the ball)

is both safer and simpler in 1v1 Rocket League.

However, I note that the link between the mentioned Pls and both safe vs. risky and simple
vs. complex was established by one author (TDS), albeit with extensive familiarity with
the esport (~2,800 hours played) and in-game metrics. In order to instil more confidence
in the interpretation of Pls and their relationship with in-game strategy, | see great value
in gaining the opinion of field experts within the given esport; that is, former professional
players, coaches, analysts, and/ or casters who possess significant knowledge and
experience of Rocket League and its in-game metrics.

Hence, the current study aimed to establish a stronger understanding of which Rocket
League in-game metrics best differentiate both safe vs. risky and simple vs. complex
playstyles. Using this understanding, | then aimed to explore whether ~29 hours of TSD
resulted in a playstyle perceived to be more safe, more simple, or both. | hypothesised
that there would be a large amount of overlap between in-game metrics that distinguish
playstyle risk and playstyle complexity, and as such, the TSD protocol would lead to

changes in playstyle perceived as safe and simple.
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8.2. Methods

All procedures and data collection was approved by the Education and Health Sciences
Research Ethics Committee (2021 06 13 EHS) and conducted in accordance with The

Declaration of Helsinki.
8.2.1. Participants

Eleven individuals were contacted to participate in the current study, to which nine
responded, and seven provided informed consent and participated. Participants were
sought on the basis of their prior playing/ coaching/ casting/ analyst experience, and were
contacted through email or through social media (i.e., Twitter, Discord). Each participant
had significant experience playing, coaching, analysing or casting Rocket League, and
expressed familiarity with the in-game metrics provided through ballchasing.com, and
hence could be considered field experts. The expertise of each participating individual is

given below:

Participant 1: Two-years of experience casting professional level Rocket League

(predominantly 1v1; >500 matches casted). Top <~2% (of total player base) player.

Participant 2: Two-years of coaching Rocket League (predominantly 3v3) focussing on
individuals between the top ~0.33-5% of total playerbase. Has achieved top 0.2% of

playerbase in 1v1 Rocket League.

Participant 3: Retired professional Rocket League player (7 years, >$80,000USD

winnings). Current professional coach.

Participant 4: Former coach of world championship winning Rocket League team, current

analyst.

Participant 5: Retired professional Rocket League player (3 years, >$10,000USD
winnings). Four-years of casting professional level Rocket League (including 1v1).

Participant 6: Current professional Rocket League player (3 years, ~$200,000USD
winnings), international tournament winner. One year of coaching experience at all levels.

Frequently ranked number 1 in 1v1 Rocket League.

Participant 7: Seven years of high-level Rocket League gameplay, including being top

0.2% of playerbase in 1v1 Rocket League since 2021, scrimmaging at a semi-professional

172



level, and substituting professionally. Experience coaching at international collegiate

level, and casting/ analyst roles at a national level.

8.2.2. Instruments & Procedure

Participants completed a survey instrument via. Qualtrics. A copy of this survey can be

found as appendix 8.1.

The survey instrument included two questions. For each question, participants were
provided all 26 in-game Rocket League metrics provided by ballchasing.com (see
appendix 4.2, and note the removal of Shots Conceded and Demos Taken as difference
scores were to be used within the analysis), along with the capacity to rank-order them
according to the question. The two questions requested were worded in the following

manner:

The following question is with regards to Rocket League player(s) within a 1v1 match,
who are between 500MMR (i.e. gold) to 1300MMR (i.e. high GC3/ low SSL
[supersonic legend, the highest rank in Rocket League as of 22/09/2020]).

From the options below, please rank the in-game metrics that you feel would best
discriminate between a player playing a strategy which is [question 1; 'safer' or
‘riskier’, question 2; ‘more simple’ or ‘more complex’]. Note that we only require
the top 10, with 1 being the metric that best discriminates. Feel free to ignore the
ordering below 10

8.2.3. Data Processing and Statistical Analysis

For each question (called playstyle risk and playstyle complexity from here onwards),
metrics chosen by each individual were assigned points according to their ranking, in a
reverse scored manner (such that a metric ranked number 1 was given 10 points, and a
metric ranked 10 was assigned 1 point). The five metrics which received the most points
(per question) were considered the metrics that best distinguish (a) playstyle risk and (b)

playstyle complexity.
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The mean difference scores (TSD participant — CON participant, see Chapter 5&7)
obtained per pair and per test session for (a) playstyle risk and (b) playstyle complexity
metrics, were subsequently inputted into two separate repeated-measures multivariate
analyses of variance (MANOVAS), with session (baseline vs. experimental) as the
independent variable. This analysis was performed using the MANOVA function in IBM
SPSS Statistics v28 (Armonk, N.Y.) software. MANOVA uses all inputted dependent
variables to create a canonically derived dependent variable (called playstyle variable
hereafter) which maximally discriminates between groups in the independent variable (in
my case, baseline and experimental test sessions). It is an appropriate analytical technique
to analyses conceptually interrelated variables together (as opposed to conceptually
unrelated variables; Huberty and Morris (1992)), as is present in the current study. I
provided descriptive information and performed a follow-up analysis on these playstyle
variables (a process called descriptive discriminant analysis or DDA) to examine
differences between sessions, using paired-samples t-tests (as per Enders, 2003). Data
and syntax used in this analysis can be found at https://osf.io/z2fjg/. Alpha was set as p <

0.05 unless otherwise specified.
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8.3. Results

8.3.1. Metrics Relevant to Playstyles

The metrics that best distinguish playstyle safety and playstyle complexity in 1v1 Rocket
League according to field experts are shown in Figure 8-1. | note a considerable overlap
between metrics considered to best distinguish between the two playstyles, consistent
with the notion that a simple playstyle is analogous to a safe playstyle in 1vl Rocket

League.

O Playstyle Risk [ Playstyle Complexity

Time Spent High in the Air

Time Spent on the Ground ]

Time Spent Behind (Goalside) of the Ball

Saves Made— ]

| Average Speedl- ]

| Time Spent High in the AirH ]

Boost used— |
| Time Spent on the Groundl- ]
Number of Powerslides= |
Amount of Overfill Stolen= |

0 10 20 30 40 50 60
Points

Figure 8-1. The five in-game metrics that received the most points, corresponding to field
expert determined ability to distinguish playstyle risk and playstyle complexity in 1v1
Rocket League. Metrics labels highlighted in blue or orange are metrics that are also a
top five distinguisher of the other playstyle, which metrics labels highlighted in grey are

metrics that are also a top ten distinguisher of the other playstyle
8.3.2. MANOVA Analysis

For playstyle risk metrics, a statistically significant MANOVA effect for session (baseline
vs. experimental) was found (Hotelling’s T?=1.15, F(5, 15) =3.46, p = 0.028, np> = 0.54),
such that 54% of the variance in the playstyle variable could be accounted for by session
(baseline vs. experimental). For playstyle complexity metrics, a statistically significant

MANOVA effect for session (baseline vs. experimental) was found (Hotelling’s T? =
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1.03, F(5, 15)=3.09, p = 0.041, n,?> = 0.51), such that 51% of the variance in the playstyle
variable could be accounted for by session (baseline vs. experimental). Exploratory
univariate post-hoc t-tests of Pls included in each MANOVA found only the Pl Time
Spent High in the Air Difference to significantly change from baseline to experimental
sessions (A value = -0.47+0.18, F(1, 19) = 6.99, p = 0.016, 95% CI [-0.84, -0.10], np? =
0.27), corroborating findings in Chapter 7 and suggesting that session alone (i.e., ~29hrs
TSD) accounts for 27% of variance within this PI.

The eigenvalue, standardised discrimination function coefficients (SDFC), and
correlation between these coefficients and the playstyle variable (structure coefficient)
can be found in Table 8-1. The former gives a measure of the relative contribution from
each metric to the linear equation which creates the playstyle variable, while the latter
gives a measure of the actual relationship between the metrics and the playstyle variable
(K. N. Smith et al., 2019). Metrics with a large |SDFC| but a small structure coefficient
(i.e., Time Spent On the Ground Difference in both models, and Overfill Stolen Difference
in the playstyle complexity model) are suppressor variables, meaning that while they have
little to no relationship with the playstyle variable alone, they function to strengthen the

relationship between other metrics and the playstyle variable.

Paired-sample t-tests were performed to test the magnitude of effect of session (baseline
vs. experimental) on each playstyle variable, as per Enders (2003). A conservative alpha
of p < 0.001 was used for these analyses, due to differences in sampling distribution
between univariate variables and canonically derived variables (Neufeld & Gardner,
1990). Nonetheless, | found significant between session (baseline = experimental)
effects on both the risk playstyle variable (A value = 1.48+0.32, t(1, 19) = 4.68, p
0.0002, 95% CI [0.82, 2.14], g = 1.03) and complexity playstyle variable (A value
1.4040.32, t(1, 19) = 4.42, p = 0.0003, 95% CI [0.74, 2.06], g = 0.97).
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Table 8-1 Eigenvalues, canonical correlation, standard discrimination function
coefficients (SDFC) and structure coefficients, for metrics (note that all are considered as
difference scores) that distinguish playstyle risk and playstyle complexity in 1v1l Rocket
League. The linear equation for the playstyle variables is given at the bottom of the table

using raw discrimination function coefficients.

Playstyle Risk Playstyle Complexity
Canonical Canonical
Eigenvalue Correlation Eigenvalue Correlation
1.15 0.73 1.03 0.71
Structure Structure
In-Game Metrics SDFC Coefficient | In-Game Metrics SDFC Coefficient
A. Time Spent A. Time Spent
High in the Air 1.10 0.56 High in the Air 0.74 0.60
B. Time Spent
On the Ground 0.56 -0.04 B. Boost Used 1.40 0.43
C. Time Goalside C. Time Spent
of the Ball -0.87 -0.39 On the Ground 0.49 -0.04
D. Number of
D. Saves -0.24 -0.26 Powerslides -0.26 -0.12
E. Overfill
E. Average Speed 0.01 0.22 Stolen -0.94 0.06
Playstyle Variable = 1.95A + 0.32B - 0.36C - Playstyle Variable = 1.31A + 0.05B + 0.28C -
0.19D - 0.0003E 0.03D - 0.02E
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8.4. Discussion

The aim of the further analysis undertaken in this chapter was to follow-up on exploratory
analysis undertaken in Chapter 7, which indicated that TSD may have led Rocket League
players to employ a safer or simpler (or both) playstyle. Specifically, | sought the opinions
of field experts to uncover the metrics perceived to best distinguish playstyle risk and
playstyle complexity for 1v1 Rocket League players within the bounds of those studied in
Chapter 7. Using these metrics in a multivariate approach, I found that ~29hr TSD could
account for ~54% of variance in the canonically derived risk playstyle variable and ~51%
of variance in the canonically derived complexity playstyle variable, with follow-up

analyses showing both of these variables to be highly sensitive to sleep loss.

The first standout observation is that many of the metrics which the field experts felt best
distinguished playstyle risk were the same that distinguished playstyle complexity. Of the
five metrics determined to best distinguish between each playstyle, two were present in
both; Time Spent on the Ground, and Time Spent High in the Air. This is notable when
considering that (a) Time Spent High in the Air Difference was rated the best metric to
distinguish both playstyle risk and playstyle complexity, Time Spent High in the Air
Difference is a PI, with higher values being generally associated with better match
outcome (Chapter 5), and that Time Spent High in the Air Difference was the only PI that
changed as a result of ~29hrs of TSD, within the univariate exploratory analysis outlined
in Chapter 7. | also note that two of the five (and six of the top ten) metrics that best
distinguish playstyle risk were present in the top ten metrics that distinguish playstyle
complexity. This provides weight to the argument that within the context of 1v1 Rocket
League, a subjectively defined safe playstyle is (at least to a moderate degree) analogous
to a subjectively defined simple playstyle, and is best demarked (if only considering a

single metric) by Time Spent High in the Air Difference.

Additionally, MANOVAs produced by the five most agreed-upon distinguishing metrics
for playstyle risk and complexity both produced playstyle variables that varied by a
similar amount as a function of ~29hr TSD (~29% and ~26% respectively), and for which,
values obtained for baseline and experimental sessions were highly significantly
different. It appears that the slightly larger variance value for the risk playstyle variable
was driven primarily by the inclusion of the Time Goalside of the Ball Difference metric
(having the second largest structure coefficient), which was the equal sixth best

discriminator of playstyle complexity according to the field experts, and was highlighted
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in Chapter 7 as a metric that likely resembles both a safer and simple playstyle.
Conversely, the second largest contributor to the complexity playstyle variable was Boost
Used Difference; a metric which only received five points from field experts and was
rated 18 out of 26 in-game metrics for determining playstyle risk. This could suggest that
~29hrs TSD leads to a simpler playstyle employed, which mostly (but not completely)
equates to a safer playstyle within the context of 1v1 Rocket League. However, | stress
the tentative nature of this interpretation given the non-significant univariate post-hoc t-
test on this metric (p = 0.071).

My analysis presented here appears to support the idea that ~29hr TSD led players to
employ a safer playstyle in 1vl Rocket League, however with the caveat that this safer
playstyle was also a simpler playstyle. Drawing an analogy between playstyle complexity
and effort required, my results are in line with studies by Killgore (2007) and Killgore et
al. (2008) using the Balloon Analog Risk Task (BART), and observations from Satterfield
and Killgore (2019) that risk-taking (while appearing to generally increase following
acute sleep loss) actually decreases when greater risk is also associated with greater effort/
complexity. Riskier plays in 1v1 Rocket League (best exemplified by taking the ball high
in the air on attack) appear to be inherently more complex/ difficult, as shown by field
expert opinion and supported by similar discriminability of the derived playstyle

variables.
8.4.1. Limitations & Future Research

| stress that the analysis presented in this chapter is based on data discussed in Chapter
7 and not new data, and as such, the analysis remains exploratory rather than
confirmatory. Furthermore, | note that playstyle variables are not variables derived from
a shared variance/ correlation (such as the output of a factor analysis for example), but
rather are a variable that, taking five field expert chosen metrics, weight the metrics in
such a way to maximise discrimination between rested and sleep deprived gameplay. This
approach was chosen due to understanding that safe or simple playstyles may manifest in
multiple different (and potentially uncorrelated) ways. In other words, there may be
multiple ways to play safely or more simple, and these ways may not be correlated with
one another. An alternative data-driven approach could have been to use factor analysis
to determine playstyle variables derived from highly correlated variables, and performing
paired-samples t-tests on the differences between sessions on these variables. However,

sensible interpretation of derived variables from such an approach may prove difficult.
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Here, this problem of interpretability is circumvented by directly asking field experts

which metrics best distinguish safe vs. risky and simple vs. complex playstyles.

The analysis provided showcases that the differences observed following ~29hr TSD
appear to not be based on random fluctuation in an individual in-game metric, but instead
are more representative of a fundamental change in the way that Rocket League players
played the game while sleep deprived. In other words, should differences found be
actually attributable to chance, it would be that players just happened to play safer and
simpler Rocket League when they were sleep deprived, rather than just happening to go
high in the air less. This potential safer and simpler approach when sleep deprived idea
(to which I coin ‘the BART Effect”) presents as an interesting line of enquiry for future
research within Rocket League but also within other esports, perhaps considering varying

levels of in-game expertise as well.
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Chapter 9. Discussion
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The ultimate aim of the work presented in this thesis was to illuminate how sleep loss impacts
the in-game ability of esport athletes. This avenue of enquiry was explored for three key
reasons. Firstly, the negative effects of sleep loss on performance within traditional sports has
been a burgeoning research field since the 1980s, as athletes, coaches, and stakeholders seek
to examine and understand the human factors which may contribute to success in their given
sport. However, esports performance is more predicated on cognitive performance than
virtually all traditional sports (Campbell et al., 2018), and sleep loss tends to cause larger and
more robust deficits in cognitive rather than physical performance. Secondly, much of the
seminal research regarding sleep and esports has discussed sleep loss with respect to its
hypothesised detrimental effect on performance, due to the abovementioned assumptions
(Bonnar, Castine, et al., 2019; Bonnar, Lee, et al., 2019; Bonnar et al., 2022; S. Lee et al., 2021,
Sanz-Milone et al., 2021). Lastly and most importantly, the relationship between sleep loss and
esports performance has not been studied within any capacityf beyond exploring associations
between habitual sleep and in-game outcome measures in an uncontrolled setting and against

unknown opponents (i.e., online ranked matches; Moen et al. (2022)).

A total sleep deprivation (TSD) study, detailed in Chapter 7, primarily addressed the aim of
illuminating how sleep loss impacts the in-game ability of esport athletes. Within this study, |
subjected twenty individuals to ~29hrs of experimentally controlled TSD, before playing seven
matches of the esport Rocket League against well-rested peers of a similar in-game expertise
level. Seven matches were also played between both players while well rested, allowing
comparison of performance under such circumstances. Immediately prior to Rocket League
matches taking place, participants (compared to when well-rested) reported increased
subjective sleepiness, decreased subjective alertness and motivation, and decreased
performance both on a low-salience vigilance taxing task (PVT) and a high-salience-stable
single-cued component of the Category Switch Task (CST); all as a direct result of the TSD
protocol. Despite this, | found no evidence of in-game Rocket League performance degrading
as a function of the TSD bout which caused clear subjective and objective impairment on other

measures.

+ This statement could be argued as technically untrue if one was to consider the use of Tetris
score as measure of esport performance; for which I note one study (Kariv et al., 2007) that
used it as a general measure of the cognitive performance of physicians before and after a night
shift.
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9.1. Assessing Performance In-Situ

A feature which presents as a major strength of the work in this thesis is the unique approach |
used to directly measure in-game performance. In my experimental protocol, I measured
performance during a live competition, matching the environment and context experienced in
actual esports competition (i.e., in-situ). Such an approach is largely (but not completely; see
Fox et al. (2021) and Staunton et al. (2017) as sleep-related examples) avoided in studies of
human factors contributing to team-based traditional sport performance, in favour of
performance measurement within proxies. Such performance proxies are examined in
environments/ with procedures including affordances, in an effort to reduce extraneous
variables inducing high amounts of uncontrollable variance (see Aratjo and Davids (2015) for
further discussion). However, such affordances can result in task environments/ stimuli with
varied (and often unclear) correspondence to environments/ stimuli experienced within esport
competition. In simple terms, performance changes within proxies may not reflect performance
changes during actual esport competition (in-situ). The esports performance assessment used
in this thesis avoided this issue altogether, as performance was explicitly measured in-
competition. Additionally, participants were unconstrained regarding preferences such as their
in-game settings, input modalities, and even their ability to play music in the background
during gameplay (a common practice for esport athletes). Essentially, efforts were made to
assess performance within a testing environment and set of circumstances that bore a level of
ecological validity+ surpassing that which is generally present in traditional sport performance

research.

Such environmental/ circumstantial factors bare additional relevance within sleep loss
literature. How engaging the particular task is, or how motivated participants are to perform
optimally, are known to play a non-trivial role in whether (or to what extent) sleep loss actually
impacts performance. By measuring performance in a live competition environment, | avoided
the potential of finding an effect that does not translate to live competition, where high levels
of task engagement/ motivation (and hence, propensity for compensatory mechanisms) is

inherently present.

1 When ecological validity is mentioned throughout the discussion, it is with reference to
Orne’s definition of ecological validity; the generalisability of experimentally obtained
findings to a real-world context, or to the context for which the results directly apply to. This
is sometimes called representative design (Aradjo and Davids, 2015), and is as opposed to
Brunswik’s original definition of ecological validity, being very specifically the correlation
between a proximal cue and a distal object. Discussion around the distinction between these
two definitions is provided by Kihlstrom (2021).
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Not only did my esports performance analysis bare high levels of ecological validity, but by
using an outcome variable which was practically analogous¥ to victory, the practical relevance
of findings was maximised. After all, consideration of human factors within esports (from a
performance perspective) stems from whether it influences match outcome. It can be argued
that acute sleep loss immediately before competition is not a factor worth considering in
practice (despite its demonstrated adverse effects on some tasks, and even if it changes the way

esport athletes play) if ultimately, the end result does not change.
9.2. Why didn’t sleep deprivation lead to worsened performance?

That | was not able to statistically detect a performance difference following ~29hrs TSD was
surprising and contrary to my hypothesis. It also runs contrary to the expectations outlined in
much of the previous sleep and esports literature (Bonnar, Castine, et al., 2019; Bonnar, Lee,
et al., 2019; Bonnar et al., 2022; S. Lee et al., 2021; Sanz-Milone et al., 2021), as well as the

assumptions of some esport athletes themselves (Baumann et al., 2022; Rudolf et al., 2020).

While the measurement of performance in live competition clearly presents with many benefits
from an ecological validity perspective, there are valid reasons for its infrequent use in
traditional sport research. Such concerns are outlined by Aradjo and Davids, who note that the
study of motor behaviours strictly within competitive performance environments is “clearly
not possible, nor desirable, due to the presence of irrelevant idiosyncrasies of specific
competitive events which might contaminate data” (Aradjo & Davids, 2015, p. 269). Indeed, a
similar sentiment was raised by a reviewer for an article | was also peer-reviewing, which, like
| did, used in-game esports performance as their primary outcome metric. This reviewer raised
the point that variability increases by using a design in which players play against other players,
and raised the question to authors of whether they can be confident that effects are attributable

to their given intervention and not random fluctuation.

A major strength of the analytical approach taken is that this very same question could be
directly addressed. Using the observed levels of between-pair and residual variance, the
appropriate level of random effect complexity (or variance components) that was justified by
the data (according to procedures outlined by Matuschek et al. (2017)), and the estimated

+ While win vs. loss can be argued to be the ultimate game objective within Rocket League,
the sign of GD always matches with win vs. loss except when a player forfeits while ahead,
which was not allowed within the experimental work. This, combined with specific instructions
provided to participants to maximise effort in scoring goals and preventing opponents score
irrespective of current score within a given game, resulted in GD being analogous to victory
while providing additional information on the closeness of the game.
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magnitude of effect from my initial power analysis (a mean difference of 1.218 goals per match
attributable to the ~29hrs of TSD), a power of 0.96 was observed. According to this power re-
estimation, if the true effect of ~29hrs of TSD was in fact a mean decrease in GS of 1.218, it
should be observed as a significant (p < 0.05) effect ~96% of the time. This presents as quite
convincing evidence that the null finding of sleep deprivation on in-game esports performance
was not simply due to too much noise, and that the true effect of ~29hr TSD on performance,

if present at all, is much smaller than anticipated.

If esports performance is predicated on cognitive factors which are consistently shown to be
impacted by sleep loss, why didn 't sleep loss cause performance deficits in my study? Although
potential answers to this question are discussed somewhat in Chapter 7, it is interesting to
revisit this question specifically with respect to mechanisms of sleep loss performance deficits,
outlined in the Section 1.6; starting with the effects of sleep loss on the time-on-task effect.

The time-on-task effect refers to the increase in response time (and variability in response
times) during a task requiring sustained attention (Dinges & Powell, 1988, 1989; Doran et al.,
2001). It is understood that sleep loss expedites and exacerbates the time-on-task effect. This
is pleasingly visible within the PVT data of participants who completed testing both when
rested and following ~29hrs of sleep deprivation in my research (TSD participants), when
looking at performance across the timespan of the PVT administrations. Figure 9A shows the
difference in mean reaction time (msec), average within-participant standard deviation of
reaction time (a measure of response variability), and lapse likelihood, between PVT
administrations while sleep deprived and well rested, separated into one-minute epochs across
the 11 minutes of the PVT (this included the first minute, which was excluded for analytical
purposes in Chapter 7). Firstly, participant responses were slower and more variable, with
higher lapse propensity, following sleep deprivation at all time points of the PVT, showing that
the time-on-task effect does not explain the entirety of simple attentional capacity degradation
under sleep loss alone. However, it is also extremely clear that the difference in reaction time,
reaction time variability, and lapse probability, between sleep deprived and well rested
individuals, was substantially greater during the latter half of the PVT, particularly following
5-6 minutes of test time. By isolating this comparison for a randomly chosen individual (Figure
9B), one can easily observe the increase in lapse frequency and performance variability of the

sleep deprived compared to the rested individual following 6 minutes of test time. It is curious
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to note that this particular individual actually improved in GD by 1.76 following TSD,

compared to when rested, despite clear impairment on the PVT following TSD.
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Figure 9-1 A Bar chart showing the difference in mean reaction time (black), mean within-
participant standard deviation or reaction time (i.e., green), and lapse probability (red), for TSD
participants following sleep deprivation protocol and when well rested, within each one-minute

epoch of the 10-min PVT (inclusive of the first minute of the PVT). Values above 0 resemble
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greater mean values following sleep deprivation, compared to when rested. Black and green
bars are measured on the left y-axis, and red bars are measured on the right y-axis. B Bar chart
showing the difference in mean reaction time for each trial of the PVT for a randomly-selected
TSD participant. Values above zero resemble a trial in which the reaction time was poorer
following sleep deprivation, compared to when well rested. Red bars resemble trials which
were a lapse within the session while sleep deprived, and blue bars resemble trials which were

a lapse within the session when rested.

Contrast this 10-minute PVT to the 1v1 Rocket League matches, in which my esports specific
outcome measures were obtained. The average Rocket League match within my sample
spanned 6 minutes 42 seconds, with ~1-2 minute breaks in between matches. Ironically, this
was one of the characteristics that made 1v1 Rocket League highly suitable as a target esport
for experimental research; consistently short matches allowed for multiple matches (seven in
my case), and hence multiple data points, per testing session. Moreover, goals occurred every
~40 seconds, with a ~10 second break afforded to each player in between each goal. These
small breaks in task are far from trivial, considering that the effect of sleep loss on the time-
on-task effect can be mitigated by task breaks (Ralph et al., 2017). With the average Rocket
League match length close to matching the timespan in which performance was not greatly
affected in the 10-minute PVT, and with regular breaks even within this short timespan, | posit
that the non-trivial influence of sleep loss on time-on-task effects, likely bore little (if any)
relevance to in-game performance in 1v1 Rocket League.

Although the expedition and exacerbation of the time-on-task effect due to sleep loss was a
major contributor to simple attention deficits as seen on the PVT, it was not the entire story, as
shown by the general increased lapse frequency across the entire timespan of the PVT
following TSD. Hence, it is important to consider the potential outcome of an attentional lapse
experienced during a Rocket League match. This may be best done so through the lens of
Reasons Swiss Cheese model of accident causation (Reason, 2000). Within this model, each
layer of the cheese resembles an error defence system, while each hole resembles a source of
error (human or otherwise), with holes in all layers needing to line up for an incident to occur.
Within this analogy, each layer resembles a set of circumstances, instead of a defence layer, in
a similar manner to some adaptations of this model used to describe consequences of sleep loss
in operational settings (i.e., Van Dongen et al. (2022)) and for motor vehicle accidents (Van
Dongen, 2017). In the context of 1v1 Rocket League, the first layer could resemble the given
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individual (human factors), while other layers could resemble the players vehicle (i.e., position,
speed, orientation), opponent (human factors), opponents vehicle, the location of the ball with
respect to the players, and the location of the ball with respect to the map. An attentional lapse
would certainly resemble a hole in the first layer, but unless holes in the other layers align (i.e.,
critical events occur or circumstances exist at the same time as a lapse), the lapse would not
result in a negative outcome. This model is conceptualised with respect to Rocket League in

Figure 9-2.

Figure 9-2 Reason’s Swiss Cheese Model (Reason, 2000), conceptualised to 1vl Rocket
League. A resembles a hypothetical scenario in which an attentional lapse does not lead to an
adverse match outcome, while B resembles a hypothetical scenario in which an attentional
lapse does lead to an adverse match outcome (i.e., a goal conceded). In each panel, only the
holes demonstrating the scenario also described are shown; in reality, there may be many holes

at different positions within a given layer at a given period of time.
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It is important to note that different esports may possess different likelihoods of attentional
lapses impacting in-game outcomes. Again, this can be conceptualised by the number/ nature
of layers and holes within layers. Future work using correlates of attentional lapses (as
measured using EEG for example (Armanfard et al., 2016) or eye-tracking (Mclntire et al.,
2013)) time-synchronised with match replay files may even be able to attain the likelihood of
lapses resulting in adverse in-game outcomes within Rocket League and other esports. Player
expertise may also play a factor, and could be conceptualised by the widening of holes within
the Swiss Cheese model. In summary, while lapses and broadband decreases in reaction time
are impactful by nature on a task such as the PVT (which is maximally sensitive to them by
design; Basner and Dinges (2011); Dorrian et al. (2004)), they may have only impacted in-
game Rocket League performance under a particular set of (infrequently) aligning

circumstances.

It is also worthwhile to consider the potential consequence of any in-game event affected by
an attentional lapse. Regarding lapses in a motor vehicle context for example, they almost never
will result in any adverse outcome when driving. However, they remain (rightly so) of the
upmost concern with regards to motor vehicle safety, given the potentially fatal consequences
of (infrequently occurring) fatigue-related incidents. Again contrasting this with 1vl Rocket
League, the absolute worst case scenario that could have occurred from a single event (i.e.,
lapse) in the Rocket League matches was a two-goal turnaround (a circumstance in which a
certain goal for one player turned into a goal against that player). This event is rare in the
context of Rocket League, however even then, | note that one two-goal turnaround is less than
the average goal discrepancy observed within my sample of 279 matches (~3 goal discrepancy).
In other words, the worst-case scenario for a single attentional lapse impacting in-game
performance in 1v1 Rocket League is not a very large effect. Just like the earlier point regarding
the likelihood of an adverse outcome from a lapse, | note that the potential consequence of an
attentional lapse is almost certainly not uniform among esport genres. A useful traditional sport
analogy for the differential potential impact of an attentional lapse between different esports
could be the differential scope of impact for an attentional lapse at the starting line for a sprinter

when compared to a marathon runner.

In summary regarding attentional lapses, | argue that they were extremely unlikely to play any
role in the in-game performance of the esport players under sleep deprivation. | firstly note that
the time-on-task effect, a major proponent of lapses, is extremely unlikely to be a factor within
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1v1 Rocket League due to the short match length with frequent rest breaks. Secondly, I note
that even if an attentional lapse were to occur, it would require many other factors to align to
result in a negative in-game outcome. Lastly, | note that the absolute worst-case scenario of

such an event is a notable, but not calamitous, two-goal swing in the outcome measure GD.

The above discussion regarding why the effects of sleep loss which are observable on the PVT,
were unlikely to impact in-game Rocket League performance, are undertaken under the
pretence that such effects would have translated from the dull and monotonous PV T assessment
to the stimulating and motivating context of esports competition. However, participants were
asked to play an esport (which are cognitively arousing/ engaging by design) in a competitive
context (playing against an opponent in a series of seven matches). Such a context and its
potential performance preserving properties are not seen as a limitation but instead a major
strength of my performance assessment, as it matched the normal circumstance in which
esports are played within over and above the conditions present within standard cognitive

testing (and hence attained a greater level of ecological validity).

The impact of sleep loss on cognitive performance spans beyond simple attentional capacity,
as outlined in Chapter 2 and by a plethora of prior literature. However, compensatory
mechanisms (of which task engagement and motivation are understood to encourage) function
to largely preserve performance in much of the more complex cognitive tasks under what would
be considered mild bouts (<36hrs TSD) of sleep loss (i.e., Horne & Pettitt, 1985). However, it
is theorised that these compensatory mechanisms function to maintain cognitive stability at the
expense of cognitive flexibility (Whitney et al., 2019). This appears highly relevant to an esport
context, as aspects of cognitive flexibility have been outlined as particularly important within
esports generally (Valls-Serrano et al., 2022). The specific impact of sleep loss on task-
switching performance outlined by some prior research (Couyoumdjian et al., 2010; Slama et
al., 2018), as well as the improved task-switching ability of action video game players (Nuyens
etal., 2019; Toth et al., 2020), has led some researchers to suggest that sleep may affect esports

performance through reducing task-switching ability (Toth et al., 2020).

However somewhat surprisingly, on my formal test of task-switching (the Category Switch
Task), | found no evidence of ~29hrs TSD impacting task-switching performance. This is in
contrast to Couyoumdjian et al. (2010), who found switch cost reaction time but not accuracy
following one night of TSD, somewhat in agreement with Slama et al. (2018) who found switch
cost (SC) accuracy but not SC RT to worsen following one night of TSD, and in agreement
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with Nakashima et al. (2018), who found SC RT to be unaffected by 24hrs of TSD. Could the
inability to find an effect of ~29hr TSD on task-switching ability be a feature of the esports
player population, who may be better able to preserve their task-switching ability under bouts
of sleep loss? Potential explanations for such a hypothesis could be that esport players
frequently play while sleep restricted, and as such, may have trained their ability to maintain
task-switching performance (seemingly an integral part of their gameplay) under such fatigue.
However, this is unlikely given that previous work has shown stable trait-like performance
impairment (i.e., level of performance impairment remains consistent over multiple bouts of
sleep loss) in many previous cognitive tests (see Tkachenko & Dinges, 2018, for elaboration).
Alternatively, as esports lends itself to sleep disturbances resulting in play under sleep-deprived
fatigue, naturally tolerant individuals may self-select into esports, or alternatively, naturally
vulnerable individuals may self-select out of esports; this follows a previous line of discussion
regarding military/ aviation (Caldwell et al., 2005; Caldwell et al., 2012; Van Dongen &
Belenky, 2009; Van Dongen, Caldwell, et al., 2011) and medical resident (Schlosser et al.,
2012; Veasey et al., 2002) contexts. However, this is an unlikely explanation within the context
of the presented work, as the population explored was not homogenously professional/

frequently competing esport athletes.

Instead, given the relative dearth of research exploring sleep loss and effects on task-switching,
along with the diversity of test procedures (i.e., stimulus response mappings, cue-target
intervals, nature of stimuli etc.), outcome measures, and findings, it is much more likely that
these factors may explain some of the nuances and diversity of results within this area. All of
the previously mentioned studies (Couyoumdjian et al., 2010; Nakashima et al., 2018; Slama
et al., 2018), like ours, utilised a paradigm which taxes one’s ability to switch between two or
more categorisation rules in an unpredictable manner, while simultaneously using the same
stimulus-response mappings (SRMs) between each cue, and responding to the same type of
stimuli regardless of cue. Slama et al. (2018) (18 participants undertaking TSD) used a cued
match-to-sample task with cues being colour, shape, number, or outline, Couyoumdjian et al.
(2010) (54 participants undertaking TSD) used a number-letter paradigm, Nakashima et al.
(2018) (12 participants undertaking TSD) used a value-numerosity paradigm, and | (20
participants undertaking TSD) used a living-size Category Switch Task. It is important to note
that both Slama et al. (2018) and Couyoumdjian et al. (2010) demonstrated their effects to be
distinguishable from downstream effects of arousal/ basic attentional processing. It appears

plausible that sleep loss does lead to task-switching deficits, however it is apparent that there
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are task/ procedural/ outcome measure factors which are not yet fully understood and which
may play a large role in the aforementioned mixed findings. Ideally, staunch consistency in
procedure would be extremely useful in providing a clearer picture as to the effects of TSD on
task-switching ability, and as such, replication studies (particularly for the procedure and
analyses of Slama et al. (2018) and Couyoumdjian et al. (2010) as they found significant
effects) would be incredibly useful and encouraged. However, it is simultaneously recognised
that the differences in procedures is, in part, attributed to the fact that task-switching ability
measured on the task-switching paradigm used was not the sole outcome measure of interest
in any of the four studies explored. Hence, a systematic collation of literature exploring sleep
loss and task-switching (and cognitive flexibility), which has not been performed to date, may
provide insight onto important task-specific factors, with implications both in the lab and
beyond. This review is currently being undertaken by a Masters student at the University of

Limerick, alongside supervision from Prof. Mark Campbell and I.

Irrespective of the potential reasons behind the null finding of TSD on task-switching
performance, it stands to reason that if the cognitive task specifically designed to measure this
component did not find effects, it is unlikely that task-switching ability deficits were to impact

in-game performance to any measurable degree.
9.3. Strengths of the overall approach

The work comprising this thesis was highly multidisciplinary, owing to the novel nature of the
aims and infancy of esports science research more generally. As such, a wide range of topics
and methodologies were used. There were strengths and practical implications which spawned
from each individual piece of work but which are not directly related to the thesis as an overall
body of work. These strengths and implications are discussed within each individual chapter,
and as such, will not be rehashed here. Instead, this section will discuss the strength of the
overall approach outlined in the thesis, and its potential utility for future work aiming to assess
human factors that are relevant to esports performance. A flowchart of the overall approach is
conceptualised in Figure 9-3, and this will be referred to in the subsequent paragraphs. This

flowchart can be utilised and expanded on within future work.
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Does sleep loss impact esports performance?

Q: What esport is best suited for experimental human

Q: What is esports performance mostly predicated on? factors research?
Ans: Cognitive performance (Campbell et al. 2018) Ans: 1v1 Rocket League
Act: Review literature on SR and cognitive Act: Obtain ideal outcome measure & meaningful in-
performance in esport relevant populations Cogpnitive Domain-specific game metrics
1v1 Rocket Q: What in-game metrics should be used as outcomes?
League Ans: GD, difference score Pls
Act: Consider differences in GD as overall
v i performance changes. Consider differences in Pls as
. . - Review literature Obtain outcome & potential strategy changes
Q: What aspects of cognitive performance are most relevant? T performance metrics
Ans: Low-Salience and High-Salience-Flexible _ _
Act: Assess suitability of HSF test

CST

GD Pis
Explore test utility PVT

Q: How suitable is CST for test-retest design sleep loss study?
Ans: Some outcome measures are unreliable,
practice effects evident
Act: Only consider reliable outcome measures,
counterbalance Empirical investigation: total sleep deprivation and its effects on
esport & cognitive performance

Figure 9-3 A flowchart describing the individual components of the thesis and their linkage to the overall research objective.
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Delving into the left side of the flowchart first, the starting point for the body of work was
the question of what human factors theoretically contribute most greatly to esports
performance. This question was relevant, as it provided the specific element of
performance which was most pertinent to explore, in addition to ecologically valid in-
game measures. The consensus answer to this question within the scientific literature is
cognitive factors (Campbell et al., 2018; Pedraza-Ramirez et al., 2020). As such, it was
relevant to consider the influence of sleep loss on cognitive performance, with respect to
how this could ultimately impact in-game performance. An abundance of original
research had already been conducted regarding sleep loss and its effects on cognitive
performance, however prominent previous systematic collations (Lim & Dinges, 2010;
Lowe etal., 2017; Pilcher & Huffcutt, 1996; Wickens et al., 2015) had not been performed
with specific regards to populations who engage in cognitively demanding tasks with
critical outcomes in their occupation or area of expertise (ECPs). Furthermore, such
systematic collations (with the exception of Wickens et al. (2015)) had tended to avoid
examining ecologically relevant occupation specific (/ expertise relevant) task
performance, instead focussing on standardised cognitive tests (Lim & Dinges, 2010;
Lowe et al., 2017; Pilcher & Huffcutt, 1996). This is despite previous accounts of effects
of sleep loss on standardised cognitive tests not necessarily translating to performance
loss in task specific circumstances (a pattern supported by the review). Regarding this, |
point toward a quote from a seminal narrative review by Harrison and Horne (2000) (p.
236); “Much of the SD research, as of this writing, has focused on cognitive processes
that have little to do with the true nature of the job or normal working duties (e.g., serial
reaction time, vigilance). Sometimes, the overall picture can be confusing, with findings
showing no impairments for certain clinical skills and concurrent deterioration in
psychological performance tasks of unknown relevance to these and other medical skills.”
Overall, my review was particularly pertinent as it provided a summary of literature that
was most relevant to the specific context of esports, both in terms of population and

outcome measures.

The thorough and systematic nature of the review presents as an obvious strength of this
piece of work. In particular, the use of a database combination with a demonstrated
optimal sensitivity/ specificity trade-off (Bramer et al., 2017), along with a rigorous grey
literature and backward snowballing procedure, ensured that no relevant body of work
was missed. The usage of a field-relevant grey literature source (Defence Technical

Information Centre/ DTIC) resulted in an otherwise missed article (Hartzler et al., 2015)
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being included; as such, this review showcases the benefits of grey literature searching,
particularly using grey literature sources with specific field-relevance. This review
provided crucial insight into the nature of cognitive deficits we may expect to see within
sleep deprived esport athletes. The first was of rudimentary attentional capacity while
performing simple and monotonous (low-salience) tasks. Such tasks are not reflective of
the complex, engaging, and stimulating environment that esports provide, but were
included in the later experimental work nonetheless via. the PVT. The review suggested
that more complex tasks appeared to be more likely to be impacted by SR if they involved
high levels of cognitive flexibility (formally tested using task-switching, reversal
learning, or multitask tests), somewhat corroborating contemporary theories/ frameworks
(Whitney et al., 2019). This presented as high relevance for an esports context, as both
quasi-experimental and intervention studies have shown that exposure to video games
commonly played as esports results in improved cognitive flexibility, and in particular,
task-switching ability (Nuyens et al., 2019; Toth et al., 2020). Thus, my findings
somewhat aligned with suggestions by Toth et al. (2020), that sleep loss may impact
esports performance specifically through decreasing esport athlete’s task-switching

ability.

A pervasive issue in the realm of sleep literature is the usage of tests with untested
properties or properties which are unsuitable for sleep deprivation designs. Two such
properties are the test-retest reliability of the task, along with its propensity to result in
practice effects within the test-retest timeframe of consideration (Dorrian et al., 2004). A
major strength of the approach taken in this thesis is that these elements were explicitly
tested through a pilot study (outlined in Chapter 3, and the next box on the left path of
Figure 9-3). In doing so, | was able to identify outcome measures that were not suitable
for use. This work also confirmed my suspicion regarding the potential issue practice
effects would present that warranted addressing through experimental design
(counterbalancing). Running a pilot study to attain test-retest reliability and the propensity
of practice effects to bias results is essential where cognitive assays are considered for

repeated measures assessment.

Switching over to the right side of Figure 9-3, the important first step was to uncover an
esport competition that would be suitable for experimental testing. | believe that my thesis
makes a strong case for 1v1 Rocket League being the default esport of choice for future
research examining human factors in esports. This is for many reasons, which have been

discussed many times already. However, one important consideration not yet thoroughly
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discussed is game popularity. It is important that a sufficient number of players of a given
esport are available, such that sufficiently powered experiments can take place. This is
one of the major successes of the outlined work; forty Rocket League players were
recruited specifically for an in-person total sleep deprivation study, within a relatively
small city in a relatively small country. This, alongside the already mentioned short and
predictable match lengths, data (and now, outcome measures and performance indicator)
availability, and play as individuals, positions Rocket League as arguably the best starting
point (without consideration of genre specific demands as discussed in the previous

section) with regards to human factors research in esports.

A unique element of esports (when compared to most traditional sports) is computerised
gameplay, resulting in in-game statistics/ metrics actually being recorded digitally by the
game itself. This data can then subsequently be accessed using application processing
interfaces (APIs), should they be available for the particular game. Unfortunately, data
availability is highly variable between different esport titles. Rocket League is relatively
unique in that in-game data are freely available and are readily updated to a replay
database (ballchasing.com), which provides in-game statistics for over 90 million games
(as per 30/05/2023). This large amount of data availability facilitated my use of a machine
learning and feature selection approach (taking inspiration from similar previous work in
traditional sports, (i.e., Bennett et al. (2020); Bennett et al. (2019); Bishop and Barnes
(2013); Garcia et al. (2013); Hughes et al. (2017); Leicht et al. (2017); Mosey and
Mitchell (2020); Robertson et al. (2016); Vaz et al. (2010); Whitehead et al. (2020);
Woods et al. (2017)) to extract information about certain gameplay styles or strategies
that influences one’s performance; information that can subsequently be used for
analytical depth in esports performance research. Chapter 5 provides such groundwork
for Rocket League, while similar work in other esports provide performance indicator
metrics as well (Bahrololloomi et al., 2023; Biatecki et al., 2023; Hitar-Garcia et al., 2023;
Hojaji et al., 2023; D. Lee et al., 2021; Novak et al., 2020; Xia et al., 2017). However,
one issue that is pervasive within most esports is meta-shifts (changes in the dominant
strategy/ set of strategies, or perceived optimal playstyle, within an esport; Kemp et al.
(2020); Kokkinakis et al. (2021)) resulting from game patches (changes of game
parameters introduced by game developers Chitayat et al. (2023)). These can be
analogised to traditional sport are game-changing rule changes, such as the introduction
of the three-point field goal in basketball (Jaguszewski, 2020), or castling in modern chess

(Pratesi, 2008). However, while these occur on a highly frequent basis in most major
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esports (i.e., approximately every two weeks in League of Legends; Sabtan et al., 2022),
they have barely been a factor in Rocket Leaguet, due to its stable and standardised game
mechanics. Hence, the understanding of in-game factors leading to success in Rocket
League remains far robust than most other esports over time; yet another strength of using

Rocket League as a target esport for human factors research.
9.4. Limitations and Future Research

Again, it is extremely important to outline the novelty of the work outlined in the current
thesis. This was the first experimental foray into a large, complicated, and highly nuanced
area. As such, there are naturally many more questions raised than answers gained at the
conclusion of the work. To avoid the risk of taking of too much space within the
discussion, | have omitted most of these future avenues of inquiry here, but have instead
provided a paragraph(/s) description of four of them within Appendix 9.1. Also, like the
previous section, | have omitted the limitations and future research avenues which are
highly specific to each chapter and, as they are discussed within the given chapter. Instead
I will focus on three broader concepts here; generalisability, expertise, and forms of sleep

loss.
9.4.1. Generalisability

Throughout this discussion, | have suggested that the effects of sleep loss on in-game
performance may not be completely uniform between esports of different genres. Despite
great diversity in game dynamics, esports are often discussed as one activity (to a much
greater degree than traditional sports are). This is likely due to a combination of reasons,
the first being the sheer infancy of esports research (Cranmer et al., 2021). The second
reason is a relative ambiguity or line-blurring between esports of different genres
(Apperley, 2006). Lastly, almost all esports use similar (if not identical) input (keyboard
and mouse or controller) and output (computer monitor) devices, within a seated posture.
A traditional sport analogy would be to consider all sports which involve running as the
primary movement modality as identical; including sprinting, marathon running, rugby,
netball, baseball, and squash. Following this analogy, we would certainly not consider all

human factors (including relative demands of strength, aerobic/ anaerobic capacity,

tWhile some Rocket League patches have changed gameplay, very few have resulted in
meta-shifts. Examples of such could be the addition of directional air roll in patch v1.17
(25/04/2016), addition of deadzone/ sensitivity customisation in patch v1.25
(07/12/2016), standardisation of car hitbox/ turning radii in patch v1.35 (05/07/2017), and
the standardisation of maps in Competitive Season 6 (Legacy; 29/08/2017).
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agility etc.) leading to optimal performance to be identical between these sports, however
we can certainly find insight and applicability from research within one of these sports,
for another one of these sports. In the same vein, we should not consider the effects of
sleep loss to be exactly identical between esports of different genres. As discussed in
Chapter 7, multiplayer online battle arena (MOBA) games such as League of Legends
(LoL), which have match lengths spanning from 20-90 minutes and often without
gameplay breaks, present as an esport in which the time-on-task effect is far more likely
to play arole than other esports. Likewise, a first person shooter (FPS) game like Counter
Strike: Global Offensive (CS:GO) is far more likely to have events in which fast
responses are the primary determinant of success, compared to other esports.

This issue of generalisability remains relevant even within the discussion of Rocket
League as an esport. | specifically explored 1vl Rocket League, due to the potential
procedural and analytical complexities that the inclusion of participants and team-based
gameplay would introduce. However, the game mode which receives the greatest amount
of attention as a competitive game mode is 3v3 Rocket League. The differences between
1v1 and 3v3 Rocket League, with respect to how sleep loss may impact performance,
warrant consideration. Game specific differences (i.e., relative importance of positioning,
certain in-game mechanics etc.) between 1v1 and 3v3 are frequently theorised however
not formally explored within peer-review literature. Beyond gameplay specific
differences, the adverse impact that sleep loss may have on leader-follower interactions
(Barnes et al., 2016; Guarana & Barnes, 2017; Olsen et al., 2016) and specialised
communication abilities (Banks et al., 2019; Harrison & Horne, 2000; Holding et al.,
2019; Whitmore & Fisher, 1996) warrant consideration.

It is important to stress that the results outlined within this thesis with regards to sleep
loss present as the most generalisable and applicable, probably to all esport contexts, to
date. However, it is noted that the generalisability of my results to all esport contexts is
not perfect, and many factors which are relevant to specific esports contexts could not be

considered.
9.4.2. Expertise

Within the discussions of Chapter 2 and Chapter 5, | discussed how esports (and
specifically Rocket League) may be a useful window to explore how expertise moderates
the effect of sleep loss on cognitively demanding task performance. This is due to the use
of the Elo system (called MMR in Rocket League), which is a continuous and accurate
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measure of in-game expertise, along with measures of match outcome and performance
indicators outlined in Chapter 5. However, this was not a primary aim within the scope
of the thesis, and as such, analysis with consideration to player expertise was not provided
in Chapter 7. By including the MMR of the TSD player within each pair as a fixed effect
and allowing for a session by MMR interaction within the models exploring GD and Pls,
this idea could be explored using our data. | performed this analysis for curiosities sake,
and included the model creation process and results tables (as per Chapter 7) as
Appendix 9.2. In short, player MMR did not appear to influence the (lack of) relationship
between the TSD protocol and GD, nor the relationship between the TSD protocol and
any Pl with the exception of time spent goalside of the ball difference, where a negative
session by MMR interaction trended toward significance (b = -0.0064+0.0035, t(1,
257.06) = -1.83, p = 0.058). This interaction would suggest that the extent to which time
spent goalside of the ball difference increased following TSD (a trend towards
significance, p = 0.059, that was replicated in this analysis, p = 0.058) decreased as player
MMR increased. In other words, there was a trend towards TSD impacting this Pl more

in less skilled players, compared to more skilled players.

I would encourage future use of esports as a tool to explore the moderating role of task
expertise on sleep loss and its effects on performance. However, this question may be
better approached by comparing two clearly defined and distinct expertise groups (i.e.,
novice vs. highly skilled). I note that such an approach has been previously undertaken to
examine differential effects of neurostimulation during esports specific skill learning
(Toth, Ramsbottom, et al., 2021).

9.4.3. Forms of Sleep Loss

The systematic review disseminated in Chapter 2 specifically explored performance
within the context of sleep restriction (SR). This was because SR is the most ecologically
relevant form of sleep loss for esport athletes. At the time the review was undertaken, the
specific design of the sleep loss experimental research was not fleshed out, and the
direction was leaning towards the undertaking of a SR protocol. However, as protocol
drafting ensued (coinciding with the easing of COVID-19-related restrictions), it became
increasingly clear that a SR protocol was not feasible. This was primarily due to
participant burden and safety concerns. Practically all SR protocols which go beyond one
night of mild SR (~5hr SO for example, which was highly unlikely to result in any effect)

necessitate in-person monitoring of sleep, and restriction of participant movement (i.e.,
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the avoidance of driving; this is typically realised by restricting participants completely
to the laboratory) throughout the protocol. This was highly impractical considering (a)
most of the included participants were university students and/ or travelling from outside
of Limerick to complete the protocol, and (b) the absence of a purpose-built laboratory.
Conversely, a performance impairment (as measured by PVT) equivalent to multiple days
of SR (~7 days of 4hr SO and ~10 days of 6hr SO; see Figure 1-1, lining up where ~29hrs
on the Ohr SO line corresponds to relative to the 4hr SO and 6hr SO lines with regards to
PVT lapses) could be achieved through one night of TSD, and as such, TSD was chosen

as the sleep loss modality.

It is important to note that while TSD and SR have some differential effects, these seem
limited mostly to (a) a slower decrease in a subjective alertness relative to objective
performance in SR compared to TSD (Banks et al., 2010; Belenky et al., 2003; Van
Dongen et al., 2003), and (b) a longer recovery period (to return to baseline cognitive
performance) in SR, compared to the equivalent performance impairment realised
through TSD (Banks et al., 2010; Belenky et al., 2003). There is no evidence (to my
knowledge) that outside of the dosage required, TSD and SR result in differential effects
on an aspect of cognitive performance (i.e., no evidence that SR impacts performance
within a cognitive domain that isn’t impacted by TSD). This is exemplified by the
similarity of results between a meta-analysis on the cognitive performance effects of TSD
(Lim & Dinges, 2010) and SR (Lowe et al., 2017). Hence, | argue that the results from
the review in Chapter 2 and Chapter 7 can be discussed together, despite focussing on

different types of sleep loss.
9.5. Practical implications

The results presented within this thesis primarily suggest that an acute sleep loss bout is
unlikely to impact overall in-game esport performance to a measurable degree. This
presents as somewhat of a positive message for esport coaches and players alike, who
may be concerned about sleep loss experienced immediately before competition spelling
the difference between victory and defeat in upcoming competitions (which can have
significant potential financial ramifications). This is highly relevant considering that
esport athletes face significant risk of experiencing disturbed sleep (Bonnar, Lee, et al.,
2019; Lee et al., 2020; S. Lee et al., 2021), including the same disturbances frequently
observed the night prior to competition for traditional sport athletes (Bonnar, Castine, et
al., 2019; Juliff et al., 2015).
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However, this implication is caveated by the fact that only one esport was explored, and
the generalisability of the results presented here (while almost certainly being greater than
any other work disseminated to date) to other esports remains unknown. Athletes,
coaches, and individuals with a vested interest in optimising in-game esports performance
outside of Rocket League, should interpret the relevance of the current findings at the
same level that individuals outside of a basketball context should interpret findings
relating sleep to basketball-related performance measures, such as those from Mabh et al.
(2011), Staunton et al. (2017), and Fox et al. (2021), for example.

Also, these results presented within this thesis do not absolve sleep as an important human
factor within the world of esports. Sleep plays an instrumental role in learning (including
the refinement of fine-motor skills, i.e., Walker et al. (2002)) and hence is important for
the learning/ refinement of in-game skills and strategies. These skills/ strategies are the
primary determinant of success in esports, and as such, are the ultimate currency for the
esport athlete, who compete in a profession with remarkably low job security (Smithies
et al., 2020). Given this importance of habitual sleep for esport athletes, combined with
worrying poor sleep quality and behaviours previously outlined for esport athletes
(Bonnar et al., 2022; Lee et al., 2020; S. Lee et al., 2021) and a relative reluctance/ dislike
of sleep monitoring/ hygiene practices aiming to address such issues (Bonnar et al., 2023),
I caution that my results do not downplay the importance of sleep for esports. As such, |
encourage future research towards and employment of interventions aiming to improve

habitual sleep outcomes for esports athletes, such as that outlined by Bonnar et al. (2022).

9.6. Conclusions

Esports are by far the fastest growing competitive activity worldwide. Successful esport
athletes can receive significant earnings (135 players have earnt over €1million as of June
20, 2023; Esports Earnings (2023a)) by playing the video game they love, making esports
an attractive career path for many. However, esports as a career is characterised by
extremely short career spans (Ward & Harmon, 2019) and minimal job security (Smithies
et al., 2020). These factors, alongside demands from sponsors and stakeholders, result in
an extreme drive for in-game performance maximisation. Esports is characterised by a
high relative importance of cognitive factors, leading some researchers to refer to esport
athletes as cognitive athletes (Campbell et al., 2018). This, combined with the wealth of

literature linking sleep loss to worsened cognitive performance, has led many researchers
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and esport athletes alike to hypothesise that sleep loss leads to worsened in-game

performance.

In this thesis, | tested this for the first time in an experimental design, using 1v1 Rocket
League. | show that ~29hr TSD (equivalent to ~7 days of 4hr TIB or ~10 days of 6hr TIB,
considering lapse propensity on the PVT (Van Dongen et al., 2003)) does not impact in-
game performance in 1v1l Rocket League, despite potentially causing strategy changes
observed using in-game performance indicators (which were identified using a machine
learning notational analysis approach). | conclude that acute sleep loss immediately prior
to competition may not be of primary concern for esport athletes, though caution this
interpretation with the observation that different esports can vary in factors (for example,
length of gametime without a break) which may influence the relative impact of sleep

loss on performance.
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