
GRAPE: Grammatical algorithms in python for evolutionGRAPE: Grammatical algorithms in python for evolution

Allan de Lima, Samuel Carvalho, DOUGLAS MOTA DIAS, ENRIQUE NAREDO, Joseph P. Sullivan, CONOR
RYAN

Publication datePublication date

13-09-2022

Published inPublished in

Signals, 3 pp. 642-663

LicenceLicence

This work is made available under the CC BY-NC-SA 4.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

de Lima, A., Carvalho, S., MOTA DIAS, D., NAREDO, E., Sullivan, J.P.and RYAN, C. (2022) ‘GRAPE:
Grammatical algorithms in python for evolution’, available: https://doi.org/10.34961/researchrepository-
ul.22285702.v1.

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:ir@ul.ie

����������
�������

Citation: de Lima, A.; Carvalho, S.;

Dias, D.M.; Naredo, E.; Sullivan, J.P.;

Ryan, C. GRAPE: Grammatical

Algorithms in Python for Evolution.

Signals 2022, 3, 642–663. https://

doi.org/10.3390/signals3030039

Academic Editor: Ioannis G. Tsoulos

Received: 1 March 2022

Accepted: 14 July 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

signals

Article

GRAPE: Grammatical Algorithms in Python for Evolution
Allan de Lima 1 , Samuel Carvalho 2 , Douglas Mota Dias 1,3 , Enrique Naredo 1 , Joseph P. Sullivan 2

and Conor Ryan 1,*

1 Department of Computer Science and Information Systems, University of Limerick,
V94 NX93 Limerick, Ireland

2 Department of Electrical and Electronic Engineering, Technological University of the Shannon: Midlands
Midwest, Moylish Campus, V94 EC5T Limerick, Ireland

3 Department of Electronics and Telecommunications, Rio de Janeiro State University (UERJ),
Rio de Janeiro 20559-900, Brazil

* Correspondence: conor.ryan@ul.ie

Abstract: GRAPE is an implementation of Grammatical Evolution (GE) in DEAP, an Evolutionary
Computation framework in Python, which consists of the necessary classes and functions to evolve a
population of grammar-based solutions, while reporting essential measures. This tool was developed
at the Bio-computing and Developmental Systems (BDS) Research Group, the birthplace of GE, as
an easy to use (compared to the canonical C++ implementation, libGE) tool that inherits all the
advantages of DEAP, such as selection methods, parallelism and multiple search techniques, all of
which can be used with GRAPE. In this paper, we address some problems to exemplify the use of
GRAPE and to perform a comparison with PonyGE2, an existing implementation of GE in Python.
The results show that GRAPE has a similar performance, but is able to avail of all the extra facilities
and functionality found in the DEAP framework. We further show that GRAPE enables GE to be
applied to systems identification problems and we demonstrate this on two benchmark problems.

Keywords: Grammatical Evolution; Python; tool

1. Introduction

Grammatical Evolution (GE) [1–3] is a grammar-based Evolutionary Algorithm (EA),
inspired by Darwin’s theory of evolution by natural selection. The general idea consists of
evolving a population of numeric strings, to which genetic operators, such as crossover and
mutation can be applied. A grammar, specific to each problem, is used to transform these
strings into syntactically correct solutions. These solutions are programs that are evaluated
based on some metric, and the evolution occurs following the principle of survival of
the fittest.

DEAP (Distributed Evolutionary Algorithms in Python) [4] is an evolutionary compu-
tation framework that provides all the necessary tools to easily implement
evolutionary algorithms.

This paper presents GRAPE (Grammatical Algorithms in Python for Evolution), an
implementation of GE using the DEAP framework, consisting of essential classes and
functions to evolve GE, as well as reporting important relevant measures. In keeping
with the original spirit of DEAP, with GRAPE, we aim to provide explicit algorithms and
transparent data structures.

Although GE has been publicly available for more than 20 years, many of the tools
that we have already implemented on DEAP were still not available for GE. Particularly,
in Section 2.2, we list the most important selection methods available on DEAP, in com-
parison with PonyGE2, another implementation of GE in Python [5], and the difference
in quantity is clear. Then, we believe that implementing GE with DEAP can attract more
users to the GE community due to its ease of use and its large number of functions already

Signals 2022, 3, 642–663. https://doi.org/10.3390/signals3030039 https://www.mdpi.com/journal/signals

https://doi.org/10.3390/signals3030039
https://doi.org/10.3390/signals3030039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0000-0002-1040-1321
https://orcid.org/0000-0003-3088-4823
https://orcid.org/0000-0002-1783-6352
https://orcid.org/0000-0001-9818-911X
https://orcid.org/0000-0003-0010-3715
https://orcid.org/0000-0002-7002-5815
https://doi.org/10.3390/signals3030039
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals3030039?type=check_update&version=1

Signals 2022, 3 643

implemented. Moreover, we believe that many GE researchers are already familiar with
the DEAP structure for evolving Genetic Algorithms or Genetic Programming, and the
migration to using GRAPE will be intuitive.

2. Grammatical Evolution

GE is a grammar-based method, which fits in the family of EAs and is used to build
programs [1–3]. The genotype of a GE individual is represented by a variable-length
sequence of codons, each being equivalent to an integer number, originally defined by
eight bits. This genotype is mapped into a phenotype, a more understandable represen-
tation, which can be a mathematical expression or even an entire program in practically
any language.

The evolutionary process occurs at the genotypic level, which ensures that the respec-
tive phenotypes will always be syntactically correct [6]. However, the evaluation of the
individuals happens at the phenotypic level, since a phenotype is a structure, which can
directly be evaluated using a fitness function.

In the evolutionary process, operators such as crossover and mutation are applied to
the selected parents, in order to produce new offspring for the next generation. Crossover
occurs between two parents, generally generating two offspring. The most common version
is one-point crossover, which consists of randomly choosing point in each parent to split
them. The resulting tails are then exchanged by the parents producing the offspring.
Figure 1 shows an example of this procedure. It is worth noticing that this process can
change the size of the genomes. Mutation is an operator that occurs using one parent to
generate one offspring and changes the value of a codon at random. In its most common
version, every codon is operated on with a predefined probability, usually a small value,
which avoids changing an individual too much. This operator does not change the size of a
genome, but can change the size of its respective phenotype.

250Parent 1 128 50 2 18 96 46 89

199Parent 2 5 24 80 201 19 102 51

250Offspring 1 128 50 2 18 96 201 19 102 51

199Offspring 2 5 24 80 46 89

Figure 1. Example of two individuals being operated by one-point crossover.

A grammar is a set of rules that define a language. In GE, grammars are usually
represented in Backus-Naur Form (BNF), a notation represented by the tuple N, T, P, S,
where N is the set of non-terminals, transitional structures used by the mapping process,
T is the set of terminals, items that can occur in the final program, P is a set of production
rules, and S is a start symbol. We can see an example of P in the Listing 1. This example
represents a simple grammar with only two production rules, being the first one associated
with three possible choices and the second one with five.

Listing 1. Example of production rules.

<e> ::= and(<e>,<e>)
| or(<e>,<e>)
| <x>
<x> ::= x[0] | x[1] | x[2] | x[3] | x[4]

Signals 2022, 3 644

Figure 2 shows an example of the genotype-phenotype mapping process being exe-
cuted using the grammar presented in Listing 1. This genotype has eight codons, and the
mapping procedure starts from the leftmost one, using the modulo operator with the value
of the codon and the number of possible choices in the production rule, which is being
currently mapped. The choice is made according to the remainder of the division, and the
process follows from left to right, always replacing the leftmost non-terminal standing in
the intermediate string. Once a fully mapped phenotype, i.e., no more non-terminals, has
been produced, the mapping process stops consuming codons, ignoring any remaining
ones. Apart from the effective codons used in the mapping process, the unconsumed codons
are named as the tail of the individual. However, if all codons were used and there are
still non-terminals remaining in the phenotype, that individual is considered invalid, and
usually receives the worst value possible to its fitness score. An alternative approach to
reduce the possibility of an individual being considered invalid is using wrapping, which
consists of reusing the codons from the beginning [6]. Nonetheless, sometimes the mapping
process cannot finish even considering many wrappings.

60Genotype: 47 125 92 158 11 84 15

effective codons tail

<e>

and(<e>,<e>)

and(<x>,<e>)

and(x[0],<e>)

and(x[0],<x>)

and(x[0],x[3])Phenotype:

60 mod 3 = 0

47 mod 3 = 2

125 mod 5 = 0

92 mod 3 = 2

158 mod 5 = 3

Figure 2. Example of a genotype being mapped into its respective phenotype.

2.1. Initialisation Methods

Random initialisation is the original method to initialise individuals in GE, which
consists of generating a random value for each codon in a predefined initial genome
length [1]. With this method, the initialisation process brings many invalid individuals and
even a less diverse population. Moreover, depending on the grammar, the individuals tend
to be short or have parse trees mostly tall and thin, which impacts on the possibilities of
the population to find a good solution [7].

While random initialisation is executed at the genotypic level, other methods have
explored initialisation at the phenotypic level. The full method generates individuals in
which each branch has a depth equal to the predefined value for maximum initial depth,
while the grow method produces individuals with different shapes that also respect the
predefined maximum initial depth. The ramped half-and-half (RHH) method is a mix of
the full and the grow mechanisms, and initialises GP trees with depths within the range
between the predefined values for minimum initial depth and maximum initial depth [8].
Sensible initialisation is the application of RHH to GE [9], which starts by identifying which
production rules are recursive, and the minimum depth necessary to finish the mapping

Signals 2022, 3 645

process starting with the related non-terminal symbol for each production rule. Then,
when the individuals are being initialised from the start symbol, productions are chosen in
order that the individuals have depths within the range between the predefined values for
minimum initial depth and maximum initial depth [10].

Another method which initialises at the phenotypic level is Position Independent
Grow (PI Grow) [11], which works as the grow approach to generate derivation trees, by
randomly picking production rules from the grammar. However, while expanding the
branches, the next non-terminal to be replaced is randomly chosen, instead of the leftmost
non-terminal as in the sensible initialisation. It allows the process to pick only recursive
production rules, if the expected maximum initial depth was not achieved and there is a
single non-terminal symbol remaining to map.

In both methods, sensible initialisation and PI Grow, once a phenotype is finished, the
initialisation process map the sequence of necessary choices in the grammar to produce
that phenotype. Then, it is possible to transform this sequence in its respective genotype. It
means that we can assure that we will avoid invalid individuals in the first generation, since
these methods define the phenotypes before the genotypes, unlike the random initialisation.

However, it is not a good practice to initialise genotypes having exactly the minimum
number of codons to map their respective phenotypes. If we do so, the chance of producing
invalid individuals when operating with crossover or mutation is higher, because the
genetic material is insufficient to produce different individuals from those already existing.
Then, when initialising using sensible initialisation or PI Grow, a random tail is added to
each genotype, usually with 50% of the length of their effective codons, in order to reduce
the propagation of invalid individuals in the following generations [12].

2.2. Selection Methods

As in most of the EAs, the selection process on GE consists of choosing individuals in
the current population as parents, which will be operated by crossover, mutation etc., in
order to provide offspring to the next generation. This choice is usually probabilistically
based on the quality of possible parents.

One of the most known selection methods is tournament selection, in which a prede-
fined number of individuals is chosen at random from the population and the one with the
best fitness is selected as a parent. This selection is done with replacement, so the chosen
parent remains in the population during the current generation, so it can be selected again.

On the other hand, lexicase selection [13] considers the fitness of each training case
individually instead of an aggregated value over the whole set. Its algorithm can be seen in
Listing 2, and starts with the entire population in a pool of candidates. A training case is
picked at random order, and only the candidates with the best fitness value regarding that
single case persist in the set of candidates. The process continues until a single candidate
survives in the pool or all training cases are checked. If the first happens, that individual
will be selected as a parent, and if the second happens, the choice is made randomly within
the remaining candidates. This method has been tested in different kinds of problems
providing successful results [14–16]. The reason for its success may be explained by its
ability to maintain a higher level of population diversity than methods based on aggregated
fitness measurements [17].

In this paper, we address problems using tournament and lexicase selection, but many
other methods can be applied with GE, depending on the purpose. Table 1 shows the main
selection methods already available in DEAP (https://deap.readthedocs.io/en/master/
api/tools.html accessed on 8 August 2022) and PonyGE2 (https://github.com/PonyGE/
PonyGE2 accessed on 8 August 2022). Since we built GRAPE on DEAP structure, we can
import these methods into our code and use them when running GE on GRAPE.

https://deap.readthedocs.io/en/master/api/tools.html
https://deap.readthedocs.io/en/master/api/tools.html
https://github.com/PonyGE/PonyGE2
https://github.com/PonyGE/PonyGE2

Signals 2022, 3 646

Listing 2. Algorithm for lexicase selection.

1. Initialise:

(a) Put the whole population in a pool of candidates
(b) Put all training cases in a list of cases in random order

2. Loop:

(a) Replace candidates with the individuals currently in candidates, which
presented the best fitness for the first training case in cases

(b) If a single individual remains in candidates, return this individual
(c) Else if there is no more training cases in cases, return a random individual

in candidates
(d) Else return a random individual within the remaining individuals in

candidates

Table 1. Main selection methods available in DEAP and PonyGE2.

Method DEAP PonyGE2

Tournament X X
Pareto tournament X X

NSGA2 X X
NSGA3 X

Double tournament X
Lexicase X

Epsilon Lexicase X

3. GRAPE

GRAPE implements GE in Python using DEAP, a framework that provides all tools
to easily implement refined evolutionary algorithms. The idea behind DEAP is to enable
the users to manipulate every part of the evolutionary mechanism. It is simply done by
understanding the operation of the modules base, creator and tools, which are the core of
DEAP’s architecture [4].

The central aspect of implementing a GE mechanism is to carry out the mapper from
genotype into phenotype based on predefined grammars, which we coded in a new module
named ge. Moreover, we included the main operators traditionally used in GE, likewise
some evolutionary algorithms and wide-ranging reports regarding the attributes of GE.

Following the simple and intuitive structure of DEAP, GRAPE allows the user to easily
carry out his own fitness function, change the evolutionary algorithm, and implement other
selection and initialisation methods. The aim of GRAPE is that the users go further than
merely changing the hyperparameters helping them to become active GE users.

The first step when preparing a code to run GRAPE is, as in any DEAP program, to
define in the creator the fitness class. This is easily made with the class base.Fitness,
which has as mandatory parameter for the weights of each objective considered in the
evolution. For a single objective, we usually set it to +1.0 for maximisation problems
and −1.0 for minimisation problems. Also, in the creator, we need to define the type of
individual we will use to run the evolutionary process. In our case, we can use a class named
Individual already implemented on GRAPE, which has essential attributes related to a
GE individual, such as the genome (a list of integers), the phenotype (a string), the depth,
the effective length of the genome, the number of wraps used to map the individual, etc.

The next step involves the module base, which we populate with the initialisa-
tion method, the fitness function, the selection method, the crossover operator and the
mutation operator. The initialisation methods we provide are random_initialisation,
sensible_initialisation and PI_Grow_initialisation. Regarding selection methods,
we can address using ge.selTournament or ge.selLexicase. The first one needs the

Signals 2022, 3 647

parameter tournsize, and the second one needs the attribute fitness_each_sample cor-
rectly filled for each individual when evaluating the fitness. Finally, there is a single option
implemented for each of the remaining operators, notably ge.crossover_onepoint and
ge.mutation_int_flip_per_codon.

The last module tools is used to define the hall-of-fame object and the statistics
object. The latter is used on DEAP programs to define which attributes will be reported
and recorded in the logbook, usually with its average, standard deviation, minimum
and maximum values within the population. However, we already have on GRAPE a
predefined set of attributes to report, which can be expanded using the statistics object.

The population is initialised once we call the function registered in the module base.
If we are using random_initialisation, the hyperparameters are as follows:

• population_size: number of individuals to be initialised;
• bnf_grammar: object defined by the class named BNF_Grammar, which is used to read a

grammar file in the Backus-Naur Form, and translate it into an understandable way to
the mapper;

• initial_genome_length: the length of the genomes to be initialised;
• max_initial_depth: maximum depth of the individuals to be initialised. Since the

initialisation is made at random, if, after the mapping process, an individual presents
a higher value than the one defined in this parameter, the individual will be invalided;

• max_wraps: maximum number of wraps allowed to map the individuals;
• codon_size: maximum integer value allowed to a codon.

On the other hand, we do not need the parameter initial_genome_length if we are
using sensible_initialisation or PI_Grow_initialisation, but we do need to define
using the parameter min_initial_depth the minimum depth of the individuals to be
initialised, since the method Grow used in both initialisation procedures creates individuals
with depth between a minimum and a maximum predefined values.

Once the population is initialised, we can run the evolutionary algorithm already
implemented as ge_eaSimpleWithElitism, which uses the following hyperparameters
plus max_wraps, codon_size and bnf_grammar, which were previously presented.

• population: object with the population already initialised;
• toolbox: object of the module base, where the fitness function, the selection method,

the crossover operator and the mutation operator were registered;
• crossover_prob: probability of crossover;
• mutation_prob: probability of mutation;
• n_gen: number of generations;
• elite_size: number of elite individuals;
• halloffame: object to register the elite individuals;
• max_depth: the number of individuals;
• points_train: samples of the training set;
• points_test: samples of the test set (optional parameter);
• stats: object to register the statistics (optional parameter);
• verbose: if True, the report will be printed on the screen each generation.

The algorithm ge_eaSimpleWithElitism is summarised in Listing 3. The initialised
population is evaluated with the points_train once the first generation starts, and then
the halloffame object is updated according to the best individuals found in the population.
Next, the attributes to be reported are calculated, and their results are recorded in
the logbook. Finally, the initial generation ends, and the algorithm starts a loop to run
the remaining generations. The first step is selecting parents according to the method
registered in the toolbox. There are selected (population_size – elite_size) individuals
as parents each generation. These individuals are operated by crossover and mutation,
considering their respective probabilities. Regarding the crossover, all individuals are
considered pairwise, and according to the probability each pair is operated on or not,
and the point to perform the crossover in each individual is chosen at random within

Signals 2022, 3 648

the effective length of the genomes. Before finishing the crossover step, the offspring is
mapped in order to get its current effective length before the next operation. Concerning
the mutation, all individuals after the crossover procedure (even those which were not
operated on) are considered individually. Each codon within the effective length of the
genomes is mutated or not, according to the mutation probability. Finally, the offspring
is generated, and is evaluated with the points_train. Next, the population is replaced
(except by the elite individuals) with the offspring, the halloffame object is updated, the
attributes to be reported are calculated, and their results are recorded in the logbook. If
the last generation was achieved, the process ends, and the best individual is evaluated
with the points_test. Otherwise, the loop continues.

Listing 3. Basic algorithm for GE on GRAPE.

1. Initialise:

(a) Evaluate the initialised population
(b) Update halloffame
(c) Calculate the attributes according to the initial population
(d) Report the attributes and record them in the logbook

2. Loop:

(a) Select parents considering the population of the previous generation
(b) Generate an offspring by operating crossover and mutation in the parents
(c) Evaluate the offspring
(d) Replace the population (except by the halloffame individuals) with the

offspring
(e) Update halloffame
(f) Calculate the attributes according to the current population
(g) Report the attributes and record them in the logbook

Once the evolution is completed, we can take results from some objects. In the
population we have the attributes (genome, phenotype, depth etc.) of all individuals in
the last generations, while in the halloffame we have the attributes of the elite_size
best individuals. However, the main source of results is found in the logbook, where
the statistics over all the generations are registered. These results can be used to build
graphs showing the performance in one run, or we can easily perform multi-runs, each
time stacking the final logbook in a list, which will be used to build graphs showing the
average performance in multi-runs. Another option is to save the results of each runs in an
external file such as a .csv for posterior use.

4. General Experiments

We perform three different comparisons in this section. In the most important one, we
compare the results of GRAPE against PonyGE2 in four datasets, showing results related to
the performance and carrying out statistical analyses to substantiate our observations. We
aim to show that there are no significant differences between the results, and therefore that
it is worthwhile to use GRAPE due to the advantages such as the easy manipulation of the
evolutionary mechanism and the compatibility with other tools already that it inherits from
DEAP. In this comparison, we run experiments with two well-known regression problems
(Pagie-1 and Vladislavleva-4) and two binary classification problems (Banknote and Heart
Disease). Secondly, we run other experiments using only GRAPE to exemplify the use of its
different tools. We use different initialisation methods with the same datasets previously
mentioned, and we also compare lexicase selection with tournament selection when evolv-
ing two distinct Boolean problems (11-bit multiplexer and 4-bit parity) traditionally used
as benchmarks in evolutionary algorithms.

Signals 2022, 3 649

Vladislavleva-4 is a benchmark dataset for regression, produced with the following
expression, in which the training set is built using 1024 uniform random samples between
0.05 and 6.05, and the test set with 5000 uniform random samples between −0.25 and 6.35.

y =
10

5 + ∑5
i=1(xi − 3)2

(1)

Another benchmark dataset for regression used in this work is Pagie-1. This dataset is
produced with the following expression, in which the training set is built using a grid of
points evenly spaced from −5 to 5 with a step of 0.4, and the test set in the same interval,
but using a step of 0.1.

y =
1

1 + x−4
1

+
1

1 + x−4
2

(2)

Regarding the classification problems, the Banknote dataset has four continuous
features, while the Heart Disease dataset has 76 multi-type features, but only 14 are typically
used with Machine Learning experiments [18], this consisting of five numeric and nine
categorical features. The dataset has four classes, but in the literature, the last three classes
are grouped as one, and the classification indicates the presence or absence of heart disease.

4.1. Experimental Setup

The datasets related to Pagie-1, Vladislavleva-4 and Banknote problems are found in
the PonyGE2 GitHub repository [19], and we use their split into training and test sets. We
also use their proposed grammars. We split the Heart Disease data into 75% for training
and 25% for test, using the same sets in all experiments. Finally, we use the entire dataset
as training set when running Boolean problems, since we do not execute a test step.

Figure 3 shows the grammars used in our experiments. We execute a preprocessing
step for the Heart Disease dataset, in which we normalise the numeric features and use
one-hot encoding in the categorical features (except when the feature is already binary).
As a result, we have 20 Boolean features and five non-Boolean features, as we can see
in the Heart Disease grammar. We have numerical operators to use with non-Boolean
features and float numbers, and conditional branches to convert these results into Boolean
enabling operations with Boolean features bringing to a binary result. Regarding the
Boolean problems, we use the same function sets as Koza [8], which involves the operators
AND, OR and NOT, and the IF function, which executes the IF-THEN-ELSE operation.

We summarise in Figure 2 the information related to the regression problems using
a style similar to [6,8], and Table 3 shows the hyperparameters used in all experiments.
We chose these parameters according to the results of some initial runs. In the table, the
population size and the minimum initial depth values refer to the Vladislavleva-4, Pagie-1,
Banknote, Heart Disease, 11-bit multiplexer and 4-bit parity problems, respectively. We set
up the minimum initial depth with the lowest possible value for each problem, considering
their respective grammars. The initial genome length parameter is only relevant when
running experiments with random initialisation, and in this case the values refer to the
Vladislavleva-4, Pagie-1, Banknote and Heart Disease problems, respectively.

Signals 2022, 3 650

<e> ::= <e>+<e> | <e>-<e> | <e>*<e>
| pdiv(<e>,<e>) | psqrt(<e>)
| np.sin(<e>) | np.tanh(<e>)
| plog(<e>)
| x[0] | x[1] | x[2] | x[3]
| x[4]| <c><c>.<c><c>
<c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6
| 7 | 8 | 9

(a) Vladislavleva-4

<e> ::= <e>+<e> | <e>-<e> | <e>*<e>
| pdiv(<e>,<e>) | psqrt(<e>)
| np.sin(<e>) | np.tanh(<e>)
| plog(<e>)
| x[0] | x[1] | <c><c>.<c><c>
<c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6
| 7 | 8 | 9

(b) Pagie-1

<e> ::= (<e> <op> <e>) | <f1>(<e>)
| <f2>(<e>, <e>) | <v> | <c>
<op> ::= + | * | -
<f1> ::= psqrt | plog
<f2> ::= pdiv
<v> ::= x[0] | x[1] | x[2] | x[3]
<c> ::= -1.0 | -0.1 | -0.01 | -0.001
| 0.001 | 0.01 | 0.1 | 1.0

(c) Banknote

<log_op> ::= <cond>
| and_(<log_op>,<log_op>)
| or_(<log_op>,<log_op>)
| not_(<log_op>) | <boolean>
<cond> ::= less_than_or_equal(<num_op>,<num_op>)
| greater_than_or_equal(<num_op>, <num_op>)
<num_op> ::= add(<num_op>,<num_op>)
| sub(<num_op>,<num_op>)
| mul(<num_op>,<num_op>)
| pdiv(<num_op>,<num_op>)
| <nonbool>
<boolean> ::= x[1] | x[4] | x[6] | x[8] | x[9] | x[10]
| x[11] | x[12] | x[13] | x[14] | x[15]
| x[16] | x[17] | x[18] | x[19] | x[20]
| x[21] | x[22] | x[23] | x[24]
<nonbool> ::= x[0] | x[2] | x[3] | x[5] | x[7]
| <c><c>.<c><c>
<c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

(d) Heart Disease
<e> ::= and(<e>,<e>)
| or(<e>,<e>)
| not(<e>)
| if(<e>,<e>,<e>)
| x[0] | x[1] | x[2] | x[3]
| x[4] | x[5] | x[6] | x[7]
| x[8] | x[9] | x[10]

(e) 11-bit Multiplexer

<e> ::= and(<e>,<e>)
| or(<e>,<e>)
| not(<e>)
| x[0] | x[1] | x[2] | x[3]

(f) 4-bit Parity

Figure 3. Grammars used for all experiments. Items in bold are non-terminals.

Table 2. Symbolic regression tableau.

Objective:

Vladislavleva-4: Find a function of five independent variables
and one dependent variable that fits 1024 data points, where the
target function is seen in Equation (1)
Pagie-1: Find a function of two independent variables and one
dependent variable that fits 676 data points, where the target
function is seen in Equation (2)

Terminal operands: Xi, where i = 1, 2, 3, 4, 5 (Vladislavleva-4) or i = 1, 2 (Pagie-1), and
constant values between 0 and 99.99

Terminal operators: +, −, *, protected div, protected sqrt, sin, tanh and protected log

Fitness cases:

Vladislavleva-4: 1024 uniform random samples between 0.05
and 6.05
Pagie-1: grid of points evenly spaced from −5 to 5 with a step
of 0.4

Fitness score: root mean squared error over all fitness cases

Signals 2022, 3 651

Table 3. Experimental hyperparameters.

Parameter Type Parameter Value

Number of runs 30
Number of generations 200
Population size 1000/1000/100/1000/500/500
Elitism ratio 0.01
Mutation probability 0.01
Crossover probability 0.8
Initial genome length 21/24/50/42
Maximum initial depth 10
Minimum initial depth 1/1/1/2/1/1
Maximum depth 90
Codon size 255
Wrapping 0

When running experiments with random initialisation, we have another parameter,
which defines the initial length of the genome. In order to carry out a fair comparison with
other methods, we decided to choose this parameter based on the results from sensible
initialisation and PI Grow initialisation. Table 4 shows the average in 30 runs of the initial
genome length using sensible initialisation or PI Grow initialisation. For the experiments
with random initialisation, we used as initial genome length approximately the average of
the other methods, which brings the values presented in Table 3.

Table 4. Average of the genome length in the first generation in 30 runs using sensible initialisation
or PI Grow initialisation on GRAPE.

Initial Genome Length

Sensible Initialisation PI Grow Initialisation

Banknote 44.8 55.8
Heart Disease 38.1 46.2

Pagie-1 21.6 27.1
Vladislavleva-4 16.3 25.6

We use the root mean squared error (RMSE) as fitness metric for the regression prob-
lems and the mean absolute error (MAE) for the remaining problems; therefore, we wish
to minimise the score. Concerning the lexicase selection process when running Boolean
problems, we define the fitness for each sample with two possible values: 1, if the sample
was correctly predicted, and 0 otherwise.

4.2. Results and Discussion

Figure 4 shows the average fitness of the best individual in the training sets across
generations using GRAPE and PonyGE2 for each of the experiments. We run all exper-
iments using PI Grow initialisation, tournament selection (size 7), the same parameters
and the same grammars. In general, the results are quite similar. In the final generations,
the curves are too close for each of the Pagie-1 and Heart Disease problems to distinguish,
PonyGE2 is a slightly better with the Vladislavleva-4 problem and GRAPE is a little better
on the Banknote problem. We show these results to compare the evolutionary process in
both tools, but, of course, test performance is the key goal.

Box plots for test fitness scores for all runs are shown in Figure 5, and their respective p-
values calculated using the Mann-Whitney-Wilcoxon test. We used this test since we do not
know a priori what sort of distribution the results have, and the aim of this statistical analysis
is to check if there is a significant difference between the results using PonyGE2 and GRAPE,
which we compared in each problem independently. Given that the null hypothesis says
that there is no difference between the results and that we need at most p = 0.05 to reject

Signals 2022, 3 652

it with a confidence level of 95%, we can conclude that there is no significant difference
between the results using PonyGE2 and GRAPE on these four problems.

50 100 150 200
0

0.01

0.02

0.03

Generations

Be
st

fit
ne

ss

50 100 150 200
0

0.05

0.1

Generations

GRAPE
PonyGE2

50 100 150 200
0

0.05

0.1

0.15

0.2

Generations

Be
st

fit
ne

ss

50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

Generations

Figure 4. Average fitness of the best individual across generations using GRAPE and PonyGE2:
Vladislavleva-4 (top left), Pagie-1 (top right), Banknote (bottom left) and Heart Disease
(bottom right).

Figure 6 shows the average fitness of the best individual in the training set across
generations when using GRAPE with the three initialisation methods. The results are
similar in the first generations, but random initialisation presents the worst results for all
problems once the evolution advances. This happens because this method cannot create
a high-level diversity population. On the other hand, sensible initialisation and PI Grow
initialisation present similar results in the final generations for the Pagie-1 and Banknote
problems, while sensible initialisation is slightly better for the Vladislavleva-4 and Heart
Disease problems.

The average number of invalid individuals across generations when running GRAPE
with distinct initialisation methods is shown in Figure 7. Both sensible initialisation and
PI Grow initialisation start with zero invalid individuals, but in the second generation,
both experience the peak of the curves. This is due to the randomness of the tails added
to the initial individuals. On the other hand, random initialisation presents its peak of
invalid individuals in the first generation. In general, the number of invalids decreases
sharply in the first generations as the randomness of the initialisation loses influence on the
current population. However, after some generations, this number slightly increases as the
individuals in the population increase in size, and therefore become more complex. In this
situation, applying crossover or mutation is more likely to invalidate the individuals than
in a population with small individuals. Finally, in terms of the percentage of the population
representing invalid individuals, the highest value occurs for the Heart Disease problem.
This is an expected observation because these experiments use the most complex grammar.

Signals 2022, 3 653

0.61

0.01

0.02

0.03

0.04

PonyGE2 GRAPE

Te
st

fit
ne

ss

0.6

0.000

0.025

0.050

0.075

PonyGE2 GRAPE

0.81

0.05

0.10

0.15

0.20

PonyGE2 GRAPE

Te
st

fit
ne

ss

0.081

0.05

0.15

0.25

0.35

PonyGE2 GRAPE

Figure 5. Test fitness score achieved by the best individual of each run using GRAPE and
PonyGE2: Vladislavleva-4 (top left), Pagie-1 (top right), Banknote (bottom left) and Heart Disease
(bottom right).

50 100 150 200
0

0.01

0.02

0.03

Generations

Be
st

fit
ne

ss

50 100 150 200
0

0.05

0.1

Generations

PI Grow
Sensible
Random

50 100 150 200
0

0.05

0.1

0.15

0.2

Generations

Be
st

fit
ne

ss

50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

Generations

Figure 6. Average fitness of the best individual across generations using GRAPE with different
initialisation methods: Vladislavleva-4 (top left), Pagie-1 (top right), Banknote (bottom left) and
Heart Disease (bottom right).

Signals 2022, 3 654

50 100 150 200
0

100

200

Generations

In
va

lid
in

di
vi

du
al

s

50 100 150 200
0

100

200

300

Generations

PI Grow
Sensible
Random

50 100 150 200
0

20

40

Generations

In
va

lid
in

di
vi

du
al

s

50 100 150 200
0

200

400

600

Generations

Figure 7. Average number of invalid individuals across generations using GRAPE with different
initialisation methods: Vladislavleva-4 (top left), Pagie-1 (top right), Banknote (bottom left) and
Heart Disease (bottom right).

In our final comparison, we run experiments using GRAPE with lexicase selection and
tournament selection to evolve Boolean problems. We run all experiments with sensible
initialisation. The results using lexicase selection are clearly much better, as we can see in
Figure 8. In Boolean problems, since there is no split in training and test sets, we usually
also measure the number of successful runs during training. These are runs that achieved a
solution that satisfies all cases in the dataset. Table 5 shows these results, and we can see
again a clear superiority of lexicase selection.

Table 5. Number of successful runs in the 11-bit Multiplexer and 4-bit Parity problems.

Successful Runs (Out of 30)

11-Bit Multipler 4-Bit Parity

Lexicase selection 27 28
Tournament selection (size 7) 0 1

Signals 2022, 3 655

50 100 150 200
0

0.2

0.4

Generations

Be
st

fit
ne

ss

50 100 150 200
0

0.2

0.4

Generations

Lexicase
Tournament

Figure 8. Average fitness of the best individuals across generations using GRAPE with tourna-
ment selection or lexicase selection to evolve Boolean problems: 11-bit Multiplexer (left) and 4-bit
Parity (right).

5. Signals and Systems Experiments
5.1. Introduction

In this section we use the newly developed GRAPE library on two systems identifi-
cation benchmark problems: “Silverbox” and “Coupled Drives”. The two data sets are
publicly available at the nonlinearbenchmark.org website (accessed on 8 August 2022), a
collection of data sets meant to be used in nonlinear system identification tasks [20]. The
use of Evolutionary Computation methods for identifying dynamical systems is a common
approach, since this task can be interpreted as an special case of symbolic regression, and
most of these algorithms are capable of finding model structures and estimate parameters in
optimal or close-to-optimal fashion. When a fixed structure is known a priori, for example,
a simple GA can be used for parameters estimation, while GP or GE can search for both
a structure and parameters at the same time during evolution. When presenting GP in
his seminal work, John Koza has suggested system identification as one class of problems
that could be solved by his technique [8], a suggestion since validated by the substantial
literature on the field [21]. Grammar-based techniques have also been applied to these
problems, bringing some advantages such as the possibility of limiting the search scope
into a specific class of models (e.g., ARX, ARMAX, NARMAX, etc.) [22] and incorporating
problem-specific knowledge, such as signal periodicity [23].

Another specific aspect of system identification problems is the differentiation between
prediction error and simulation error. In one-step-ahead prediction the model has access
to both previous input and output data from the original data set, while in simulation the
model is presented only with input data, and any autoregressive term must use previous
outputs from the simulation itself, not from the data set. This difference when sourcing
data can result in completely different behaviours for a given model when submitted to
prediction or simulation: very often models that present a low prediction error end up being
unstable or presenting a much higher error rate when submitted to free-run simulation.
The main reason for this is the fact that small output errors in simulation get fed back into
the system, getting accumulated and amplified, while in prediction the model can always
go back to the “ground truth” of the original data set, preventing its output from drifting
too much [24]. This difference in performance between prediction and simulation errors
can be seen on the experiments performed in this work, where despite the good simulation
results that have been achieved, prediction errors are always significantly lower. Also,
obtaining the simulation error is typically more computationally expensive than obtaining
the prediction error. A compromise between both can be achieved with k-step-ahead
prediction, where simulation can run freely for a specified number of steps (k) before using
the original data again.

Therefore, results for system identification experiments are typically reported using
their simulation errors, which is a challenge itself in some cases, given the extra computa-

nonlinearbenchmark.org

Signals 2022, 3 656

tional effort required for simulation in comparison with prediction. In this work we use the
prediction error as the main driver for the evolution process, since we use the prediction
root mean squared error (RMSE) as the fitness function used for selection, but all results are
reported on the best obtained simulation error. While there is no guaranteed correlation
between prediction error and simulation error for a given individual, a population-based
approach such as GE can benefit from the use of the less expensive prediction error in
the evolutionary loop while only the best performing individuals are simulated. The
rationale is that within a large enough population of solutions at least one good perform-
ing individual in terms of prediction will also eventually present a low simulation error.
Another approach often used in EC experiments is the parameters tuning of the best or
all individuals after each generation, which would adjust constants associated to a given
model structure in an effort to reduce its error or even bring it back from instability. For
linear-in-the-parameters models, well known techniques such as the least squares approach
can be applied to this optimisation step. We envisage that, as future work, such techniques
will be integrated into GRAPE.

5.2. The Silverbox Data Set

The “Silverbox” data set is one of the three nonlinear system identification benchmark
problems published by Wigren and Schoukens in a paper from 2013 [25]. The paper
introduces data sets “collected from laboratory processes”, i.e., empirical data, instead of
simulations. It uses an electrical circuit to represent a nonlinear mechanical resonating
system constituted of three elements: a moving mass, m, a viscous damping, d, and a
nonlinear spring that depends on displacement, k(y). The circuit is then responsible for
relating the output y(t) (displacement), with the input force u(t). The system can be
represented by the following differential equation:

m
d2y(t)

dt2 + d
dy(t)

dt
+ k(y(t))y(t) = u(t), (3)

while the position-dependent nonlinear spring stiffness can be described by the following
quadratic equation:

k(y(t)) = a + by2(t). (4)

The resulting data set has a high enough signal to noise ratio so measurement noise
can be discarded, and it is generated in two parts: on the first one, with 40,000 samples, the
reference signal r(k) is given by a Gaussian white noise sequence filtered by a 9th order
discrete Butterworth filter (cut-off frequency of 200 Hz), and the amplitude was linearly
increased from zero to approximately 150 mV maximum. On the second part the reference
signal consisted of a sequence of 10 successive realizations of a random odd multi-sine
signal of frequencies also up to 200 Hz, given by

r(k) = A
lmax

∑
l=1

cos(2π f0l + ϕl). (5)

where A is the amplitude, in V, k is the index of the sample, l is the index of the different
sine waves, f0 is the base frequency (derived from the sampling frequency, as explained
in [25]) and ϕl is a uniformly distributed phase value.

The ten consecutive realizations of the multi-sine signal were concatenated with
sequences of 100 zeros to indicate the end and start of each new realization. The sampling
frequency for the data acquisition was set to 610.35 Hz, and further information regarding
the equipment used in the signal generation and data acquisition, as well as the experiment
setup can be retrieved from the original paper [25]. For the evolutionary experiments
conducted in this paper we have followed the data split proposed by Kandhelwal et al. [22]:
the first nine out of the ten sinusoidal realizations have been used for training (parameters
and structure estimation), with the remaining one being used as the validation set. The

Signals 2022, 3 657

resulting models were then evaluated regarding their prediction and simulation errors on
the first 40,000 samples.

5.3. The Coupled Drives Data Set

The data set called “Coupled Drives” is also described by Wigren and Schoukens [25],
and is another example of empirical data generated from a laboratory process. The physical
process consists of two electrical motors connected to a pulley trough a flexible belt, while
the pulley itself is held by a spring, resulting in a slightly damped dynamic. Both electric
motors can be controlled individually, what also allows for the speed and tension on
the belt to be controlled simultaneously. Movement is possible in both clockwise and
counterclockwise directions, and a pulse encoder is used for measuring the speed, which is
insensitive to direction, i.e., velocity in both directions is always registered as a positive
value. Furthermore, there are low-pass and anti-aliasing filters at the output signal. A
possible representation of the system on discrete time presented by the authors is given by
the following equations, where the input u(t) is considered to be the sum of the voltages
applied to the motors and yn(t) the output signal:

y(t) =
b1q−1 + b2q−2 + b3q−3

1 + f1q−1 + f2q−2 + f3q−3 u(t) + w(t), (6)

yn(t) = |y(t)|+ e(t), (7)

where b and f are the model parameters and e(t) and w(t) are disturbances. The Authors
also present a Wiener-Hammerstein model for the same process, not demonstrated here.
The resulting data set from the “Coupled Drives” experiment was generated using two
types of inputs on the electric motors: first a Pseudo-Random Binary Signal (PRBS) rang-
ing from a negative to a positive value ±uPRBS in three different open loop realizations
(uPRBS = 0.5, 1.0 and 1.5 V). The second input signal was generated from a PRBS with a
clock period of five times the sampling period, this time switching between −1.0 V and
1.5 V on a first realization and −1.0 V to 3.0 V in a second realization. The signal was then
multiplied by a random number coming from a uniform distribution ranging from 0 to 1.
Both types of inputs were sampled using a 20 ms period, and because they switch between
positive and negative numbers, the direction of the belt rotation was also frequently chang-
ing. The different realizations resulted in data sets containing 500 samples each, and in this
work we follow the same data split used by Nechita et al. [26]: the first realization of the
uniformly distributed inputs is used as training data, while the second one is used for test
and results reporting.

5.4. Experimental Setup

The system identification of the described data sets was performed using the GRAPE
library in several evolutionary experiments, each one consisting of 50 different runs, with
the best model emerging from these runs used for reporting prediction and simulation
errors. A parallelisation strategy based on the “multiprocessing” Python library was imple-
mented to speed up the process, allowing it to perform several simultaneous concurrent
evolutionary loops. For the Silverbox problem a grammar capable of generating NARMAX
models was used, while the Coupled Drives problems used the same grammar extended
with the cos, sin and absolute functions, given the characteristics of the physical process [26].
An autocorrelation analysis was also performed in both data sets in order to define the
scope of past observations of inputs, outputs and noise terms that would be available
in the grammar, instead of using a lag operator. Therefore, a lag matrix was generated
from the original data set and the grammar, as implemented in [23], was seeded with the
highest autocorrelated terms: inputs up to u(k − 5), outputs up to y(k − 10) and noise
terms up to w(k− 5). The extended grammar can be seen in Listing 4, while the evolution
hyperparameters used in both case studies are presented in Table 6:

Signals 2022, 3 658

Listing 4. Extended NARMAX grammar used in the Coupled Drives problem. A similar one, without
the sin, cos and absolute functions was used for the Silverbox problem.

<expression> ::= <terms> + <epsilon>

<terms> ::= <constant>*<inputterm>*<outputterm>*<noiseterm> |
<constant>*<inputterm>*<outputterm>*<noiseterm> + <terms>

<inputterm> ::= <input>|
np.power(<input>,<power>)|
<input>*<inputterm>|
np.power(<input>,<power>)*<inputterm>|
np.sin(<input>)|
np.cos(<input>)|
np.absolute(<input>)|
np.sin(<input>)*<inputterm>|
np.cos(<input>)*<inputterm>|
np.absolute(<input>)*<inputterm>|
1

<outputterm> ::= <output>|
np.power(<output>,<power>)|
<output>*<outputterm>|
np.power(<output>,<power>)*<outputterm>|
np.sin(<output>)|
np.cos(<output>)|
np.absolute(<output>)|
np.sin(<output>)*<outputterm>|
np.cos(<output>)*<outputterm>|
np.absolute(<output>)*<outputterm>|
1

<noiseterm> ::= <noise>|
np.power(<noise>,<power>)|
<noise>*<noiseterm>|
np.power(<noise>,<power>)*<noiseterm>|
np.sin(<noise>)|
np.cos(<noise>)|
np.absolute(<noise>)|
np.sin(<noise>)*<noiseterm>|
np.cos(<noise>)*<noiseterm>|
np.absolute(<noise>)*<noiseterm>|
1

<input> ::= x[0]|x[1]|x[2]|x[3]|x[4]|x[5]
<output> ::= x[6]|x[7]|x[8]|x[9]|x[10]|x[10]|x[11]|x[12]|x[13]|x[14]|x[15]
<epsilon> ::= x[16]
<noise> ::= x[17]|x[18]|x[19]|x[20]|x[21]

<power> ::= 2 | 3 | 4 | 5
<constant> ::= +<c>.<c><c><c><c> | -<c>.<c><c><c><c>
<c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Table 6. Experimental hyperparameters for the two system identification case studies.

Parameter Type Parameter Value

Number of runs 50
Number of generations 500
Population size 100
Elitism ratio 0.01
Mutation probability 0.01
Crossover probability 0.99
Maximum initial depth 20
Minimum initial depth 5
Maximum depth 150
Codon size 255
Wrapping 0

Signals 2022, 3 659

5.5. Results

This subsection presents the results obtained on the identification of the two systems.
Table 7 contains the numerical results for the Silverbox problem, while Figures 9–11 depict,
respectively: the average minimum prediction RMSE for the validation data over the
50 runs, the predicted output from the best individual (green) compared to the empirical
data (blue), and the simulated output from the best individual (green) also compared to
the empirical data (blue). Table 8 and Figures 12–14 present the same information, but for
the Coupled Drives problem.

Table 7. Experimental results from the Silverbox problem.

Metric Value

Simulation RMSE 0.01295
Prediction RMSE 0.00529
Average Min RMSE (Prediction) 0.00587
Standard Deviation 0.00059
Elapsed time (50 runs) 27,550.79 s
Average time per run 551.02 s

Figure 9. Average minimum fitness and error bars (prediction RMSE) for the Silverbox problem.

Figure 10. Output from prediction (green) using the best found individual for the Silverbox problem,
compared to the empirical data (blue).

Signals 2022, 3 660

Figure 11. Output from simulation (green) using the best found individual for the Silverbox problem,
compared to the empirical data (blue).

Table 8. Experimental results from the Coupled Drives problem.

Metric Value

Simulation RMSE 0.28148
Prediction RMSE 0.08008
Average Min RMSE (Prediction) 0.12584
Standard Deviation 0.04074
Elapsed time (50 runs) 1413.20 s
Average time per run 28.26 s

Figure 12. Average minimum fitness and error bars (prediction RMSE) for the Coupled
Drives problem.

5.6. Discussion

As shown in Section 5.5, GRAPE has been successfully used for two benchmark
nonlinear system identification problems. The “fitness over generations” graphs presented
a typical convergence behaviour expected in evolutionary experiments, while the prediction
and simulation output graphs show results that are stable and close to the target empirical
data also in the time domain. As expected and discussed in Section 5.1, the simulation
results were in both cases slightly worse than prediction results for both problems. This
difference can be clearly seen when comparing Figures 13 and 14 for example, where the
best individual on simulation captures the overall behaviour of the system, but struggles to
match perfectly all the oscillations seen on the empirical data like prediction does.

Signals 2022, 3 661

Figure 13. Output from prediction (green) using the best found individual for the Coupled Drives
problem, compared to the empirical data (blue).

Figure 14. Output from simulation (green) using the best found individual for the Coupled Drives
problem, compared to the empirical data (blue).

While these results outperform some works currently reported in literature [27,28], we
are aware of other authors that were capable of achieving better results than ours using
other approaches [20]. However, we highlight that the intent of these case studies was
mainly to illustrate the use of GRAPE and Grammatical Evolution in system identification
problems approached from a symbolic regression perspective, and no extra optimisation
steps currently seen in literature such as parameters tuning, local search or multiobjective
approaches have been implemented. Nevertheless, we believe that GRAPE offers a user-
friendly and robust platform for system identification problems that can yield competitive
results, specially considering the potential for the implementation of these and other further
optimisation techniques in future works.

6. Conclusions

We have described a new implementation of GE in DEAP, a powerful EA framework
in Python. We presented a short overview introducing the main topics of GE to new users
as well as the algorithm already implemented on GRAPE. We showed some examples
of its general use, with different initialisation methods and selection methods. We also
performed a comparison with PonyGE2, an existing Python implementation of GE, in
which GRAPE was able to achieve similar performance.

Signals 2022, 3 662

Using DEAP brings many advantages, as it is comes with many built-in features that
GRAPE inherits, including selection schemes and even search techniques. Future work will
consider the impact of different search techniques on these and more problems, to assess if
evolution is the most appropriate search engine to use.

The source code of GRAPE, as well as some examples, is already available on the BDS
GitHub repository (https://github.com/UL-BDS/grape accessed on 8 August 2020). We
plan to make extensive documentation available there for GRAPE as well as any other
algorithm, initialisation method, selection method etc., which we implement for our own
research work in the future. As a short-term plan, we intend to develop some examples
using the multi-objective optimisation tools already implemented on DEAP.

Author Contributions: Conceptualization: E.N. and C.R.; Funding acquisition: J.P.S. and C.R.;
Methodology: D.M.D.; Project administration: J.P.S. and C.R.; Software: A.d.L.; Supervision: D.M.D.,
E.N., J.P.S. and C.R.; Validation: S.C.; Writing—original draft: A.d.L. and S.C.; Writing—review &
editing: D.M.D. and C.R. All authors have read and agreed to the published version of the manuscript.

Funding: This publication has emanated from research conducted with the financial support of
Science Foundation Ireland under Grant number 16/IA/4605. The third author is also financed by
the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES), Finance Code
001, and the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). Open Access
funding provided by the IRel Consortium.

Data Availability Statement: Systems identification datasets are available in http://nonlinearbench
mark.org/ and the codes used in this work are available in https://github.com/UL-BDS/grape and
https://github.com/carvalhosamuel/GrapeForSysID.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ARMAX AutoRegressive Moving Average with eXogenous inputs
ARX AutoRegressive with eXogenous inputs
BDS Bio-computing and Developmental Systems
BNF Backus-Naur Form
DEAP Distributed Evolutionary Algorithms in Python
EA Evolutionary Algorithm
EC Evolutionary Computation
GA Genetic Algorithm
GE Grammatical Evolution
GP Genetic Programming
GRAPE GRammatical Algorithms in Python for Evolution
MAE Mean Absolute Error
MSE Mean Squared Error
NARMAX Nonlinear AutoRegressive Moving Average with eXogenous inputs
PI Position Independent
PRBS Pseudo-Random Binary Signal
RHH Ramped Half-and-Half
RMSE Root Mean Squared Error

References
1. Ryan, C.; Collins, J.; O’Neill, M. Grammatical Evolution: Evolving Programs for an Arbitrary Language; Lecture Notes in Computer

Science; Springer: Berlin/Heidelberg, Germany, 1998; pp. 83–96. [CrossRef]
2. O’Neill, M.; Ryan, C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language; Springer: Boston, MA,

USA, 2003; Volume 4. [CrossRef]
3. Ryan, C.; O’Neill, M.; Collins, J.J. (Eds.) Handbook of Grammatical Evolution; Springer: Cham, Switzerland, 2018. [CrossRef]
4. De Rainville, F.M.; Fortin, F.A.; Gardner, M.A.; Parizeau, M.; Gagne, C. DEAP: A Python framework for evolutionary algorithms.

In GECCO 2012 Evolutionary Computation Software Systems (EvoSoft); Wagner, S., Affenzeller, M., Eds.; ACM: Philadelphia, PA,
USA, 2012; pp. 85–92. [CrossRef]

https://github.com/UL-BDS/grape
http://nonlinearbenchmark.org/
http://nonlinearbenchmark.org/
https://github.com/UL-BDS/grape
https://github.com/carvalhosamuel/GrapeForSysID
http://doi.org/10.1007/BFb0055930
http://dx.doi.org/10.1007/978-1-4615-0447-4
http://dx.doi.org/10.1007/978-3-319-78717-6
http://dx.doi.org/10.1145/2330784.2330799

Signals 2022, 3 663

5. Fenton, M.; McDermott, J.; Fagan, D.; Forstenlechner, S.; Hemberg, E.; O’Neill, M. PonyGE2: Grammatical Evolution in Python.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Berlin, Germany, 15–19 July 2017; ACM:
Berlin, Germany, 2017; pp. 1194–1201. [CrossRef]

6. O’Neill, M.; Ryan, C. Grammatical evolution. IEEE Trans. Evol. Comput. 2001, 5, 349–358. [CrossRef]
7. Harper, R. GE, explosive grammars and the lasting legacy of bad initialisation. In Proceedings of the IEEE Congress on

Evolutionary Computation (CEC 2010), Barcelona, Spain, 18–23 July 2010. [CrossRef]
8. Koza, J.R. Genetic Programming—On the Programming of Computers by Means of Natural Selection; Complex Adaptive Systems; MIT

Press: Cambridge, MA, USA, 1992.
9. Ryan, C.; Azad, R.M.A. Sensible Initialisation in Grammatical Evolution. In Proceedings of the GECCO 2003: Proceedings of the

Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, Chigaco, IL, USA, 12–16 July 2003; Barry, A.M.,
Ed.; AAAI: Chigaco, IL, USA, 2003; pp. 142–145.

10. Nicolau, M. Understanding grammatical evolution: Initialisation. Genet. Program. Evolvable Mach. 2017, 18, 467–507. [CrossRef]
11. Fagan, D.; Fenton, M.; O’Neill, M. Exploring position independent initialisation in grammatical evolution. In Proceedings of the

2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 5060–5067. [CrossRef]
12. Nicolau, M.; O’Neill, M.; Brabazon, A. Termination in Grammatical Evolution: grammar design, wrapping, and tails. In

Proceedings of the 2012 IEEE Congress on Evolutionary Computation, CEC 2012, Brisbane, Australia, 10–15 June 2012; pp. 1–8.
[CrossRef]

13. Spector, L. Assessment of Problem Modality by Differential Performance of Lexicase Selection in Genetic Programming:
A Preliminary Report. In Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation,
Philadelphia, PA, USA, 7–11 July 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 401–408. [CrossRef]

14. Helmuth, T.; Spector, L.; Matheson, J. Solving Uncompromising Problems With Lexicase Selection. IEEE Trans. Evol. Comput.
2014, 19, 630–643. [CrossRef]

15. Helmuth, T.; McPhee, N.F.; Spector, L. Lexicase Selection for Program Synthesis: A Diversity Analysis. In Genetic Programming
Theory and Practice XIII; Springer International Publishing: Cham, Switzerland, 2016; pp. 151–167. [CrossRef]

16. Aenugu, S.; Spector, L. Lexicase Selection in Learning Classifier Systems. In Proceedings of the Genetic and Evolutionary
Computation Conference, Prague, Czech Republic, 13–17 July 2019; Association for Computing Machinery: New York, NY, USA,
2019; pp. 356–364. [CrossRef]

17. Helmuth, T.; McPhee, N.F.; Spector, L. Effects of Lexicase and Tournament Selection on Diversity Recovery and Maintenance. In
Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, Denver, CO, USA, 20–24 July 2016;
Association for Computing Machinery: New York, NY, USA, 2016; pp. 983–990. [CrossRef]

18. Gupta, A.; Kumar, L.; Jain, R.; Nagrath, P. Heart Disease Prediction Using Classification (Naive Bayes). In Proceedings of the First
International Conference on Computing, Communications, and Cyber-Security (IC4S), Chandigarh, India, 12–13 October 2019;
Springer: Singapore, 2020; pp. 561–573. [CrossRef]

19. Fenton, M.; McDermott, J.; Fagan, D.; Hemberg, E.; Forstenlechner, S.; O’Neill, M. PonyGE2. 2017. Available online:
https://github.com/PonyGE/PonyGE2 (accessed on 8 August 2020).

20. Nonlinear Benchmark. Available online: https://www.nonlinearbenchmark.org/ (accessed on 8 August 2020).
21. O’Neill, M. Riccardo Poli, William B. Langdon, Nicholas F. McPhee: A field guide to genetic programming. Genet. Program.

Evolvable Mach. 2009, 10, 229–230. [CrossRef]
22. Khandelwal, D.; Schoukens, M.; Tóth, R. Grammar-based representation and identification of dynamical systems. In Proceedings

of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 1318–1323.
23. Carvalho, S.; Sullivan, J.; Dias, D.M.; Naredo, E.; Ryan, C. Using grammatical evolution for modelling energy consumption on a

computer numerical control machine. In Proceedings of the Genetic and Evolutionary Computation Conference Companion,
Lille, France, 10–14 July 2021; pp. 1557–1563.

24. Aguirre, L.A.; Barbosa, B.H.; Braga, A.P. Prediction and simulation errors in parameter estimation for nonlinear systems.
Mech. Syst. Signal Process. 2010, 24, 2855–2867. [CrossRef]

25. Wigren, T.; Schoukens, J. Three free data sets for development and benchmarking in nonlinear system identification. In Proceed-
ings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 2933–2938.

26. Nechita, Ş.C.; Tóth, R.; Khandelwal, D.; Schoukens, M. Toolbox for discovering dynamic system relations via tag guided genetic
programming. IFAC-PapersOnLine 2021, 54, 379–384. [CrossRef]

27. Marconato, A.; Sjöberg, J.; Suykens, J.; Schoukens, J. Identification of the silverbox benchmark using nonlinear state-space models.
IFAC Proceed. Vol. 2012, 45, 632–637. [CrossRef]

28. Aleksovski, D.; Dovžan, D.; Džeroski, S.; Kocijan, J. A comparison of fuzzy identification methods on benchmark datasets.
IFAC-PapersOnLine 2016, 49, 31–36. [CrossRef]

http://dx.doi.org/10.1145/3067695.3082469
http://dx.doi.org/10.1109/4235.942529
http://dx.doi.org/10.1109/CEC.2010.5586336
http://dx.doi.org/10.1007/s10710-017-9309-9
http://dx.doi.org/10.1109/CEC.2016.7748331
http://dx.doi.org/10.1109/CEC.2012.6256563
http://dx.doi.org/10.1145/2330784.2330846
http://dx.doi.org/10.1109/TEVC.2014.2362729
http://dx.doi.org/10.1007/978-3-319-34223-8_9
http://dx.doi.org/10.1145/3321707.3321828
http://dx.doi.org/10.1145/2908961.2931657
http://dx.doi.org/10.1007/978-981-15-3369-3_42
https://github.com/PonyGE/PonyGE2
https://www.nonlinearbenchmark.org/
http://dx.doi.org/10.1007/s10710-008-9073-y
http://dx.doi.org/10.1016/j.ymssp.2010.05.003
http://dx.doi.org/10.1016/j.ifacol.2021.08.389
http://dx.doi.org/10.3182/20120711-3-BE-2027.00135
http://dx.doi.org/10.1016/j.ifacol.2016.07.085

	GRAPE: Grammatical algorithms in python for evolution
	Introduction
	Grammatical Evolution
	Initialisation Methods
	Selection Methods

	GRAPE
	General Experiments
	Experimental Setup
	Results and Discussion

	Signals and Systems Experiments
	Introduction
	The Silverbox Data Set
	The Coupled Drives Data Set
	Experimental Setup
	Results
	Discussion

	Conclusions
	References

