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ABSTRACT Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases.
However, due to the large volume of patients’ ECG data, manual diagnosis is time-consuming and laborious.
Therefore, intelligent automatic ECG signal classification is an important technique for overcoming the
shortage of medical resources. This paper proposes a novel model for inter-patient heartbeat classification,
named G2-ResNeXt, which adds a two-fold grouping convolution (G2) to the original ResNeXt structure,
as to achieve better automatic feature extraction and classification of ECG signals. Experiments, conducted
on the MIT-BIH arrhythmia database, confirm that the proposed model outperforms all state-of-the-art
models considered (except the GRNNmodel for one of the heartbeat classes), by achieving overall accuracy
of 96.16%, and sensitivity and precision of 97.09% and 95.90%, respectively, for the ventricular ectopic
heartbeats (VEB), and of 80.59% and 82.26%, respectively, for the supraventricular ectopic heartbeats
(SVEB).

INDEX TERMS Cardiovascular disease (CVD), ECG signal classification, ResNeXt, convolutional block
attention module (CBAM), MIT-BIH.

I. INTRODUCTION
Cardiovascular disease (CVD) is a chronic disease of aging
with a high mortality rate. As reported in the ‘‘Top Ten
Causes of Death’’ issued by the World Health Organiza-
tion (WHO) [1], CVD is the No. 1 killer in the world as
more people die from it annually than from other causes.
By 2030, 23.6 million people are expected to die from CVD.
Electrocardiogram (ECG) is a non-invasive diagnostic tool
for cardiac pathology, which plays an important role in the
classification of CVDs. However, the timely and accurate
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detection of abnormal heartbeat signals in patients’ ECG has
become a major difficulty in the medical field.

As a main method of diagnosis of arrhythmia, ECG could
objectively reflect the physiological and working conditions
of all parts of the heart, which is of great significance for
the detection of CVDs. The typical basic waveform of ECG
mainly includes a P wave, a QRS wave, and a T wave,
as shown on Figure 1. The P wave represents the depolar-
ization process of two atria, the QRS wave represents the
depolarization process of two ventricles, and the T wave
represents the repolarization process of two ventricles [2].

Usually, arrhythmia is divided into two types, i.e., fatal
arrhythmia, and non-fatal arrhythmia. The fatal arrhyth-
mia needs to be immediately treated, otherwise it can be
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FIGURE 1. A single heartbeat waveform.

life-threatening. For the non-fatal arrhythmia, relevant exam-
ination and treatment are also required, and ECGs should be
regularly conducted. Basically, early detection and treatment
of arrhythmia can tackle the problem of sudden death [3].
Arrhythmia is usually caused by an irregular heartbeat, which
can be found from the interval and amplitude of ECG signals,
meaning that the shapes and other morphological character-
istics of ECG signals determine the type of arrhythmia [4].
In the early clinical practice, doctors analyzed ECGs by
visual evaluation and, based on their experience, identified
the characteristics of ECG signals and provided diagnostic
results. However, the strong non-linearity, non-stationarity,
and randomness of ECG signals make the classification of
arrhythmia in ECG signals a very difficult task.

This paper proposes an improved version of the ResNeXt
model [5] for ECG signal classification, called G2-ResNeXt,
which adds a two-fold grouping convolution (G2) to the
original ResNeXt structure, along with a modified convolu-
tional block attentionmodule (CBAM), allowing themodel to
focus more on the changes in the characteristics of the ECG
signals and, as a result, to achieve better automatic feature
extraction and classification of ECG signals. According to
the results obtained by experiments, conducted on the MIT-
BIH arrhythmia database, the proposed model outperforms
all state-of-the-art models considered, according to all evalu-
ation metrics used, except the GRNN model which achieves
better sensitivity and precision in classifying heartbeats of
class S of the Association for the Advancement of Medical
Instrumentation (AAMI) standard [6].

The remainder of the paper is structured as follows. Sec-
tions II and III present the necessary background of ECG
signals and relevant neural networks, respectively. Section IV
presents the related work done in the field of applying an
artificial intelligence for ECG signal detection and classifica-
tion. Section V describes the proposed G2-ResNeXt model.
Section VI presents experiments, conducted for performance
evaluation of the proposed model compared to other state-of-
the-art models, and corresponding results obtained. Finally,
Section VII concludes the paper.

TABLE 1. Mapping of the MIT-BIH heartbeat types to the AAMI heartbeat
classes.

II. BACKGROUND OF ECG SIGNALS
A. MIT-BIH ARRHYTHMIA DATABASE
The MIT-BIH arrhythmia database [7], provided by the Mas-
sachusetts Institute of Technology – Boston’s Beth Israel
Hospital, is among the most internationally-renowned and
commonly used databases as a source of clinical ECG signals,
along with the AHA database [8], provided by the American
Heart Association, and the European ST-T ECG database [9].
The MIT-BIH arrhythmia database contains 48 half-hour
two-channel ambulatory ECG recordings obtained from
47 subjects with a resolution of 11 bits and range of 10 mV.
The ECG recordings of 25 male subjects (aged 32-89) and
22 female subjects (aged 23-89) are included in the database,
60% of which are inpatients [7]. MIT-BIH is composed of
three files – a header file, a data file, and an annotation
file. The latter was produced by two experienced cardiolo-
gists, whereby around 110,000 computer-readable reference
annotations were made by them. In most recordings, the first
lead is of type MLII (obtained by placing the electrode on
the chest) and the second lead is usually V1 (occasionally
V2 or V5, and in one instance V4). The MLII leads were
chosen for use in the experiments, presented further in this
paper, because these were the most numerous. 15 heartbeat
types are mapped to the 5 main classes of AAMI standard,
as shown in Table 1. As unknown beats (class Q) are difficult
for identification, no data of Class Q are distinguished in the
existing mainstream models. Similarly, in this paper, only
data of classes N, S, V, and F are distinguished, with class-
Q data neglected.
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FIGURE 2. An illustration of the intra -patient and inter -patient
heartbeat classification methods.

TABLE 2. The training set, validation set, and test set, used in the
conducted experiments.

B. INTRA-PATIENT VS. INTER-PATIENT CLASSIFICATION
The classification of heartbeat signals has been subject to
many studies. Generally, there are two classification methods
that can be used, namely the intra-patient method and the
inter-patient method [10], as depicted on Figure 2.

The inter-patient classification method treats all ECG data
of each patient as a whole. When splitting the dataset into
a training set, validation set, and test set, it ensures that the
records of the same patient do not appear in more than one
set. The resulting model has a strong generalization abil-
ity and can be applied to real-life situations with practical
implications. The intra-patient classification method mixes
all the data in the dataset together and then splits these into a
training set, validation set, and test set [11], [12]. This results
in training the model on part of the ECG data of a patient and
then testing it on the rest of the ECG data of the same patient
to achieve a higher performance, which is very unreasonable.
Moreover, using the ECG data of the same patient for both
model training and testing may lead to biased results: if the
classification model has already seen ECG data of a patient
during training, then the model is likely to have acquired the
characteristics of that patient. Therefore, as being more real-
istic and meaningful, the inter-patient method was used in the
experiments described further in this paper.More specifically,
the MIT-BIH records of 44 patients were used as follows:
the records of 17 patients were used for the training set, the
records of 5 patients for the validation set, and the records of
22 patients for the test set (Table 2).

C. ECG SIGNAL SLICING
At present, most of research on heartbeat classification rel-
atively depends on the accuracy of QRS wave detection.
As the characteristics of the human body and the form and
parameters of a single signal are variable, certain differ-

TABLE 3. Sample classification of ECG signal slices.

ence may exist in the positioning results of different QRS
wave detection algorithms under the same accuracy [13]. For
example, some QRS algorithms provide position slightly to
the left, while others provide position slightly to the right,
resulting in an obvious deviation in the final positioning
results even if the same data are processed. As a result, the
waveform performance of the acquired heartbeats can vary,
leading to dependence on the QRS localization algorithm for
the learning process of the neural network later on, making
the network somewhat coupled to the QRS wave detection
algorithm.

Instead of using a QRS wave detection, an ECG signal
slicing method is used in the research, presented in this paper,
whereby the location and connotation of useful information
are learned by the neural network itself, freeing the network
from coupling with the QRS wave detection algorithm, and
making the signal diagnosis a simpler and more general
process that can be used more widely in reality. In the experi-
ments, reported further in this paper, 1080-length slices were
obtained by capturing three seconds of an ECG signal at a
sampling rate of 360 Hz. For the classification of slices, the
following rules (illustrated in Table 3) were applied:

1) When only normal heartbeats are present in a slice, the
slice is defined as belonging to the normal class (N).

2) When only one abnormal heartbeat is present in a slice,
and all other heartbeats are normal, the slice is defined
as belonging to the class of the abnormal heartbeat (i.e.,
V, S, or F).

3) When multiple numbers of different abnormal heart-
beats exist in a slice, the most represented abnormal
class (i.e., with the largest quantity) defines the class of
the slice.

4) When multiple numbers of different abnormal heart-
beats with the same highest quantity exist in a slice, the
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class of the first appearing abnormal heartbeat defines
the class of the slice.

In addition, a slice overlappingmethod is used in the research,
presented in this paper, to alleviate the class imbalance
problem of AAMI heartbeat data contained in the MIT-BIH
arrhythmia database, so that the obtained new samples and
original samples be different (to some degree) and of better
quality (theoretically). This imbalance problem may have
a severe effect on the model training process, thus likely
invalidating the neural network learning. To alleviate further
this problem, a stacking of slices was utilized in the exper-
iments, described further in this paper, allowing to collect
more samples by using more overlapping between adjacent
slices of a class with a small sample size. Compared with
simple oversampling used to obtain completely consistent
new samples, this slice-and-stack approach is more effective,
because simple oversampling generates new data samples for
fewer sample classes to participate in training, but may result
in identical new samples, which is prone to model overfitting
problems.

D. DATA DENOISING
The ECG signal is a low-frequency and high-impedanceweak
signal [14], which is easily affected by the in-vivo and in
vitro environments during its acquisition. In-vivo effects refer
to adverse reactions of the patient’s body during the ECG
measurement that cause errors in the test results, such as mus-
cle contractions due to the patient’s mental stress during the
measurement resulting in inotropic interference, or the patient
breathing excessively resulting in unstable ECG amplitude.
In vitro effects, such as electromagnetic interference in the
surrounding environment, have a relatively small impact but
nonetheless should be taken into account too. As a result,
the acquired ECG signal is usually accompanied with lots
of noise, such as baseline drifts, power frequency interfer-
ence, EMG interference andmotion artifact, whichmay cause
wrong classification. To improve the classification precision,
in this paper, the wavelet transform is used to eliminate the
noise, as follows [15]:

WTx (α, τ ) =
1

√
α

∫
+∞

−∞

x (t) ϕ∗

(
t − τ

α

)
dt, (1)

where α denotes the scale factor, used to stretch the basic
wavelet ϕ(t) function, and τ reflects the displacement. Fig-
ure 3 shows the overall denoising process of the ECG signal.

It is very important for signal denoising to select an
appropriate decomposition level, because each wavelet in the
wavelet transform has its own characteristics. In the research,
presented in this paper, the DB8 wavelet was used because it
could more effectively reduce the noise in the ECG signals
compared with other wavelets, [16]. In response to the large
fluctuation of ECG signals, a 9-layer wavelet decomposition
was adopted, whereby the wavelet coefficient of each layer
was kept for wavelet reconstruction. A soft threshold process

FIGURE 3. The ECG signal denoising process.

was used, as per the following equation:

wnew =

{
w∗
old f (x) , |wold | > T

0, |wold | < T ,
(2)

where f (x) denotes the shrinkage function, wold denotes the
input wavelet values, wnew denotes the output wavelet values,
and T denotes the threshold of the wavelet transform. The
denoising effect is shown in Figure 4.

III. BACKGROUND OF CNNs AND ResNets
A. CNN
Compared with traditional neutral networks, convolutional
neural networks (CNNs) are characterized by weight shar-
ing and local connection, which could greatly improve their
feature extraction capability and training efficiency. CNNs
can be applied not only in the field of 2D images but also
in the field of 1D data, such as natural language processing
(NLP) and some physiological signals (e.g., blood pressure
signals [17], respiratory signals [18], ECG signals [19], etc.).
The basic CNN structure consists of an input layer, a con-
volutional layer, a pooling layer, a fully-connected layer, and
an output layer. Generally, several convolutional layers and
pooling layers are used alternately, that is, a convolutional
layer is connected to a pooling layer, which in turn is con-
nected to another convolutional layer and so on, as shown
in Figure 5. In some studies, Long Short-Term Memory
(LSTM)-based models are used for classification. Compared
with CNN, the LSTM structure is relatively complex. Each
LSTM cell includes four fully-connected layers (MLPs). If a
LSTM has a large time span and the network is very deep,
the computation complexity is significant, and the training
is slow. The parameter sharing nature of the convolutional
operations in CNN allows for a significant reduction in the
number of parameters to be optimized, increasing the speed
of model training. Moreover, since convolutional operations
mainly deal with grid-like data, they have significant advan-
tages for the analysis and recognition of time series and image
data. In addition, although LSTMs alleviate the long-term
dependency problem of RNNs to a certain extent, they are
also tricky for use with longer sequence data.

B. ResNet
The deeper a CNN, the better its performance. However,
with the deepening of the network, problems related to
vanishing gradients and exploding gradients occur. In order
to solve these problems, He et al. proposed a deep resid-
ual network (ResNet) [20], which is more easily optimized
than traditional CNNs and could provide a higher preci-
sion while increasing the depth. ResNet became the winner
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FIGURE 4. A sample ECG signal before denoising (red color) and after denoising (black color).

FIGURE 5. The basic structure of a convolutional neural network (CNN).

FIGURE 6. The ResNet building block.

of the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) 2015 [21] in image classification, single-
object localization, and object detection tasks, as well as
the winner of the Microsoft Common Objects in COn-
text (MS COCO) 2015 [22] detection and segmentation
tasks (https://towardsdatascience.com/review-resnet-winner-
of-ilsvrc-2015-image-classification-localization-detection-
e39402bfa5d8).

In order to solve the degradation problem in deep neural
networks, a residual structure was proposed in [20] as shown
in Figure 6, producing the following output vector:

y = F (x, {Wi}) + x, (3)

where x denotes the input vector and function F (x, {Wi})

expresses the error mapping to be learned. The connections in
Figure 6 neither introduce additional parameters nor increase
the complexity of computation, but x and F must have the
same dimensions. If the input/output dimensions need to be
changed (e.g., changing the number of channels), the follow-
ing formula can be used:

y = F (x, {Wi}) +Wsx, (4)

whereWi denotes the weight matrix of the two-layer network
in the ResNet block shown in Figure 6 and Ws is used to
adjust the input dimension to the output dimension so that
the matrix summation operations can be performed. For the
residual structure, the learned feature is recorded as H (x),
and this module uses a kind of shortcut connection to allow
it to directly learn the residual F (x) = H (x) − x, so as to
output the target of F (x)+x. When the residual is 0, identify
mapping is only made for the accumulation layer, ensuring at
least that the network performance will not be degraded and
the residual will not be 0; this also enables the accumulation
layer to learn new features based on the input features, so as
to achieve better performance.

C. ResNeXt
In 2017, Xie et al. improved the ResNet model by proposing
a combination of the ResNet and Inception models, called
ResNeXt, which compares favorably with ResNet and is
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FIGURE 7. The ResNeXt equivalent building blocks (adapted from [5]).

FIGURE 8. The structure of ResNeXt (simplified view).

much simpler than all Inception models, as it requires consid-
erably fewer hyperparameters to be set manually. ResNeXt is
essentially grouped convolution, where the number of groups
is controlled by the number of variable bases. Figure 7 shows
the three equivalent building blocks of ResNeXt.

Figure 8 shows a simplified view of the ResNeXt struc-
ture, where the input information passes through a convo-
lution, a batch normalization (BN), and an activation layer
before entering a group convolution module, consisting of
32 branches with the same topology, whose outputs are com-
bined and finally normalized, activated, and summed with the
shortcut connection to obtain the output information.

IV. RELATED WORK
In 2012, AlexNet [23] reached a milestone by making the
following contributions:

1) Using a graphics processing unit (GPU) for network
training for the first time, which greatly accelerated the
model training.

2) Using a Rectified Linear Unit (ReLU) non-linear acti-
vation function [24] instead of the traditional Sigmoid
and Tanh activation functions.

3) Using a local response normalization (LRN).
4) Using dropout random deactivation neuron operations

in the first two layers of the fully-connected layer to
reduce overfitting.

This was the first use of deep learning (DL) in the form
of a CNN, which paved the way for a new generation of
machine learning (ML) models and techniques. Since then,
ML has experienced revolutionary changes. DL models, such
as CNNs, LSTMs [25] and their variants, almost fully domi-
nate over the other ML models in all application fields. In the
medical field, for instance, researchers use DL or MLmodels
for classification of arrhythmia, in order to make its detection
and prediction an easier and more reliable process [26], [27].

In terms of data processing, a method, where the ECG sig-
nals are treated as one-dimensional data, is increasingly well

accepted. In [28], a one-dimensional adaptive CNN model
is proposed, in which two ECG modules are integrated into
a single learning system for extraction and classification of
features. In [29], a 9-layer deep CNN is proposed to classify
one-dimensional ECG signals. In [30], following the stage of
feature learning, a SoftMax layer is added to the top of the
hidden layer obtained to form a deep neural network (DNN).
After each iteration, the most relevant and uncertain heart-
beats in the test records are marked and used to update the
DNN weight, which significantly improves the detection and
classification accuracy. Amodel, based on a one-dimensional
CNN, is proposed in [31], where the data of the MIT-BIH
database is divided into normal and abnormal heart activity,
and a grid search method is used to find the hyperparameters
of the CNN.

Recently, many powerful DL models have been produced
to effectively classify ECG signals. In [32], a single-lead
ECG signal extraction method based on wavelet transform
is proposed, especially for positioning the end point of the
T wave. In [33], a new automatic heartbeat classification
method is proposed to effectively diagnose arrhythmia in
a unsupervised medical environment. In [34], a 34-layer
DNN based algorithm is developed to detect various cardiac
rhythm disturbances with the single-lead ECG data generated
by a sensing/monitoring equipment. The algorithm provides
a higher accuracy rate than that of ordinary cardiologists,
possibly due to the powerful feature learning ability of the
DNN used. In [35], a new multi-scale wavelet CNN is
proposed to automatically identify various cardiac rhythm
disturbances, combined with an one-dimensional CNN and
stationary wavelet transform. Distinguishable features are
extracted from the ECG signals, along with their wavelet sub-
bands, which greatly improves the feature learning process
of the model at different scales. In [36], a parallel gen-
eral regression neural network (GRNN) is used to classify
heartbeats, and an online learning module is added to the
GRNN to construct a personalized automatic classification
model for patients. In [37], a multi-model DL integration
model is proposed that can extract useful information from
the input of multiple ECG waves. In [38], a symboliza-
tion model is proposed, specifically designed for ECG sig-
nals, based on a multi-perspective CNN (MPCNN). In [39],
a new model for deep bidirectional LSTM network-based
wavelet sequences, called DBLSTM-WS, is proposed for
ECG signals classification. In [40], a 16-layer 1D CNN is
designed for efficient and automatic classification of ECG
signals, including AF. In [41], an end-to-end ECG signals
classification algorithm, based on a novel segmentation strat-
egy and 1D CNN, is proposed. In [42], a novel method
is proposed, based on genetic algorithm back propagation
neural network (GA-BPNN) for ECG signals classification
with feature extraction using wavelet packet decomposition
(WPD).

There are also many non-DL models that have achieved
good results as well. In [43], a wavelet packet entropy (WPE)
and random forest (RF) based ECG signal classification
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FIGURE 9. The structure of the proposed G2-ResNeXt model.

model is proposed. A RF model is used in [44] to select
features using a filter method based on a mutual informa-
tion ranking criterion, by reducing the number of features
while improving the performance. An automatic ECG signals
classification model, based on the combination of multiple
support vector machines (SVM), is proposed in [45], show-
ing a very good performance. In [46], a novel ensemble
multi-label classification model is proposed, which combines
multiple multi-label classification methods to build a high-
performance classifier.

V. PROPOSED MODEL: G2-ResNeXt
The classic ResNeXt structure is usually used for classifica-
tion of two-dimensional images. As such, it is not quite suit-
able for ECG signals classification considered in this paper,
so it has to be improved. The improvement proposed in this
paper, called G2-ResNeXt, adopts a one-dimensional con-
volution kernel of size 32, while the original ResNeXt uses
3 × 3 small convolution kernels. Such difference in sizes is
mainly due to the different nature of the ECG signals and the
image data. The resolution of the image input to the network
is generally low and a 3×3 area may also contain significant
information even with a small receptive field. However, for
low-frequency and low-sampling-rate ECG signals, the area
of 3 sampling points at any position is difficult to constitute
a waveform change with specific significance and is easily
interfered by noise, thus badly effecting the feature learning.
For solving this problem, the proposed G2-ResNeXt model
uses a large convolution kernel.

In the conducted experiments, the ECG signals were sliced
up with the sampling rate of 360 Hz, whereby the length of
each slice was 1080 sampling points, resulting in a 3-sec slice.
However, as the slice length of 1080 is reduced to 135 after
three down sampling operations and cannot be down sampled
again, all slices were re-sampled to 1024 sampling points in

FIGURE 10. Layers’ parameters of the proposed G2-ResNeXt model.

order to allowmore down sampling operations. Theminimum
number of features was set to 16 and this value increases with
passing through each convolutional layer.

The structure of the proposed G2-ResNeXt model is
depicted on Figure 9, whereas Figure 10 shows the specific
dimensions and values used in each layer of it.

For measuring the computational complexity of the pro-
posed model, the number of parameters (Params) and
floating-point operations (FLOPs) can be used, calculated as
follows:

FLOPs =

(
2∗C in ∗ K 2

− 1
)

∗ H ∗W ∗ Cout ; (5)

Params = Cout ∗

(
K 2

∗ Cin + 1
)

, (6)

whereCin denotes the number of input channels,Cout denotes
the number of output channels, K denotes the size of the
convolution kernel, H denotes the height of input features,
and W denotes the width of input features. The number of
FLOPs used by different G2-ResNeXt nodes is shown in
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TABLE 4. The number of floating-point operations (FLOPs) used by
G2-ResNeXt nodes (M – millions of FLOPs, K – thousands of FLOPs).

Table 4. The number of G2-ResNeXt parameters (Params)
equals 4.37 million.

The data are first convoluted once and then passed through
a BN layer for batch normalization, in order to solve the
problem of changing the data distribution in the middle layer
during training, prevent the gradient from disappearing or
exploding, and speed up the model training. The normal-
ized data are then fed into an activation layer that uses a
Mish activation function, which proved to have more sta-
ble performance and higher precision than ReLU [47], and,
in addition, can keep small negative values to stabilize the
network gradient current. The data are then grouped and
convoluted, which increases the accuracy without increas-
ing the complexity, while also reducing the number of
hyperparameters.

Unlike ResNeXt, the proposed G2-ResNeXtmodel utilizes
a novel two-group structure, consisting of Group-A (the red
box in Figure 9) and Group-B (the green box in Figure 9).
Group-A consists of eight branches (with identical topolo-
gies). In each branch, the data pass through a convolution
first and then through a Group-B and a parallel shortcut,
which is down sampled using a combination of convolu-
tional module and ReLU. Then, the output of the shortcut
is summed with the output of Group-B, before undergoing
normalization, activation, and another convolution at the end
of the branch. The outputs of all eight branches of Group-A
are fused at the end with features according to the following
concat operation:

Rconcat =

∑z

i=1
Xi ∗ Ki +

∑z

i=1
Yi ∗ Ki+z, (7)

where Xi and Yi denote the two input channels, Ki represents
parameters of the first set of input convolution kernels, and
Ki+z represents parameters of the second set of input convo-
lution kernels.

Given C0 input channels, C1 output channels, and a con-
volution kernel of size K , for conventional convolution, the
computational effort (measured in FLOPs) can be calculated
as:

FLOPs = K 2
∗ C0 ∗ C1. (8)

FIGURE 11. The modified CBAM used by the proposed G2-ResNeXt model.

For Group-A, the computational effort (measured in FLOPs)
is:

FLOPs = K 2
∗
C0

G
∗
C1

G
∗ G = K 2

∗
C0 ∗ C1

G
, (9)

where G denotes the number of branches in Group-A. From
(9), it is clear that the computational effort in Group-A is
reduced G times compared to the conventional convolution.
This allows to speed up the model training.

Group-B is a group convolution with four identical topolo-
gies, with only one convolution operation in each branch. The
outputs of all four branches are fused with the features.

During the model training, if there are too many param-
eters, the trained model will be easily overfitted. In order
to reduce the number of parameters in the grid along with
lowering the model training time, a dropout is added in the
convolutional layer.

To further improve the model performance, a modified
convolutional block attention module (CBAM) [48] is added
at the end. A typical CBAM combines a channel attention
module (CAM) and a spatial attention module (SAM). CAM
utilizes different feature information, whereby each channel
of the features represents a special detector. After adding the
features together, an activation function gets their weights and
figures out what features aremeaningful. SAM is splicedwith
the channel descriptions, obtained through average pooling
and maximum pooling, and processed by the convolutional
layer to obtain the weight coefficients. CBAM is mostly
applied to two-dimensional images, whereas the ECG data is
processed as a one-dimensional time-series signal. Therefore,
some modifications were made to the typical CBAM struc-
ture. More specifically, in CAM, both global mean pooling
(GAP) and global maximum pooling (GMP) are performed as
one-dimensional pooling. In SAM, the two-dimensional con-
volution kernel of size 7×7 is replaced by a one-dimensional
convolution kernel of size 7. The resultant modified CBAM
(shown in Figure 11) is used in the proposed G2-ResNeXt
model.

After the feature map is inputted into the modified CBAM,
a channel attention is firstly performed, based on the width
of the feature map for GAP and GMP. Then, the attention
weight of the channel is obtained through multi-layer percep-
tron (MLP), followed by obtaining the normalized attention
weight through a Sigmoid function. Finally, the channel atten-
tion is re-calibrated to the original features by multiplying the
channel-by-channel weighting to the original input feature
map and completing the channel attention to the original
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features as follows:

Mc (F) = Sigmoid(MLP (AvgPool (F))

+MLP (MaxPool (F)))

= Sigmoid
(
W1

(
W0

(
Fcavg

))
+W1

(
W0

(
Fcmax

)))
(10)

where Fcavg and Fcmax denote the average pooling feature
and the maximum pooling feature, respectively. In order to
obtain the attentional features in the spatial dimension, the
feature map output of the channel attention is also globally
max-pooled and globally averaged based on the width of the
feature map, followed by reducing the feature map dimension
after convolution with a convolution kernel of size 7 and
a ReLU activation function, then raising it to the original
dimension after a convolution, and finally merging the feature
map normalized by a Sigmoid activation function with the
feature map output of the channel attention. Finally, the Sig-
moid activation function normalized feature map is combined
with the channel attention output feature map to complete
the rescaling of the feature map in both spatial and channel
dimensions as follows:

Ms = Sigmoid
(
f 7 ([AvgPool (F) ;MaxPool (F)])

)
= Sigmoid

(
f 7

([
F savg;F

s
max

]))
. (11)

The proposedG2-ResNeXtmodel consists of fourmain parts,
namely a convolutional layer, an improved ResNet layer, a
G2-ResNeXt layer, and a fully-connected layer. The convo-
lutional layer is mainly used to extract the features of the input
data prepared for the next layer.

In the second layer, the improved ResNet, the data is
convoluted twice, whereby a Mish activation function and a
dropout are added between the two convolutions. In addition,
just before the convolution, the data are inputted into an
average-pool module, the samples are divided into feature
regions, and the mean value in the area is used as the region
representative, which simplifies the computation and reduces
the number of parameters. Finally, the data outputted from
the average pooling are added to the data (with the same
dimension) produced by theMish activation function, aiming
to inherit the optimization effect of the previous step, so that
the model could be further converged.

The next layer, G2-ResNeXt, is used to increase the speed
of the model convergence and maintain stability. After pass-
ing through the G2-ResNeXt structure six times, the data
are inputted to the fully-connected layer, where these are
mapped to a one-dimensional vector, regressed by a SoftMax
function [49]. Finally, all outputs are added together and
normalized in order to show the multi-classification results
in the form of probability.

The loss function used is the focal loss function, which
allows to handle various data imbalances present in the data

set [50], as per the following formula:

FL = −α1 ∗ (1 − p1)γ ∗ y1 ∗ log (p1)

− α2 ∗ (1 − p2)γ ∗ y2 ∗ log (p2) , . . . . . . ,

− αn ∗ (1 − pn)γ ∗ yn ∗ log (pn) , (12)

where γ is a parameter with a value within the range of
[5, 0] (when γ =0, FL is the same as the common cross
entropy loss function), α and y denote the input data and
labels, respectively, and pn represents the probability value
of the nth class of the SoftMax output. The (1 − pn)γ parts
reduce the loss contribution of the easy samples and increase
the loss proportion of the hard samples. Because the label is
in the form of One-Hot encoding, the value in the label of a
certain sample type is 1 in the corresponding position, and the
rest are 0. The optimized formula is shown below:

FL = −αc(1 − pc)γ log (pc) , (13)

where αc denotes the weight of the class-c sample and pc
denotes the probability value of the class-c output produced
by SoftMax.
In order to speed up the convergence and limit the overfit-

ting phenomenon, a L2 regularization is added to the convo-
lutional layer, as follows [51]:

Loss = ||W T x − p||
2
+ α||W ||

2, (14)

where α denotes the regular term coefficient, W denotes the
network weight, p denotes the predicted value of the heartbeat
category, x denotes the heartbeat feature, and T denotes the
number of weighted items.

VI. EXPERIMENTS AND RESULTS
A. EVALUATION METRICS
Typical evaluation metrics, used in multi-class classification
problems, were utilized for comparing the performance of
different models, namely sensitivity (Se), precision (P+), and
overall accuracy (Acc).
Sensitivity (also called recall) is used to measure the pro-

portion of the positive samples that are correctly identified as
such by a classification model to the total number of positive
samples in a dataset, as follows:

Se =
TP

TP+ FN
× 100%, (15)

where TP (true positive count) denotes the number of positive
samples that are correctly identified as positive, andFN (false
negative count) denotes the number of positive samples that
are incorrectly identified as negative. In our case, sensitivity
expresses the percentage of the actual heartbeats correctly
classified by a model, which reflects its ability to discover
heartbeats of the classes considered.
Precision is used to measure the proportion of the positive

samples that are correctly identified as such by a classifi-
cation model, to the total number of samples identified as
positive, as follows:

P+ =
TP

TP+ FP
× 100%, (16)
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TABLE 5. Comparison of G2-ResNeXt results achieved in five different training sessions.

TABLE 6. Performance comparison of optimizers used in the experiments.

TABLE 7. The multi-class confusion matrix of the proposed G2-ResNeXt
model (Training_1).

where FP (false positive count) denotes the number of nega-
tive samples that are incorrectly identified as positive. Gener-
ally, precision expresses the positive predictive value (PPV)
of a model. In our case, it is more important to improve (as
much as possible) sensitivity than precision of the classifica-
tion model, because diagnostics of a possible disease is more
important than not discovering it at all.

In addition to sensitivity and precision, another evalua-
tion metric, used in the conducted experiments, is the over-
all accuracy (Acc) which indicates the overall classification
accuracy of a model. It is calculated by dividing the number
of all correctly classified heartbeats to the total number of
heartbeats present, as follows:

Acc =
TP+ TN

TP+ TN + FP+ FN
× 100%, (17)

where TN (true negative count) denotes the number of nega-
tive samples that are correctly identified as negative.

B. EXPERIMENTS
In the experiments, the initial learning rate was set to 0.1 and
then dynamically adjusted during the training process. When
the loss has been no longer reduced, the learning rate was
reduced to half of the original, which allowed the network to
converge faster in the right direction. As for the batch size,
we first chose a larger batch size to fill up the memory, then
observed the convergence of the loss, and reduced the batch
size if it did not converge, or if the convergence was not good.
Finally we chose a batch size of 128.

The initialization of the weights is also a very important
parameter. Correct weight initialization can promote fast con-
vergence of the model. As the combination of ‘ReLU +

Conv’ is used in many places in the proposed G2-ResNeXt
model, the He initialization method was utilized as it works
well for ReLU [52].

Conducted experiments showed that the use of the
stochastic gradient descent (SGD) optimizer for tunning
the parameters of the G2-ResNeXt model produces the
best results compared to other optimizers used, i.e., Ada-
grad, Adam, Adadelta, and Adamax. This is reported in
Table 6.

In the experiments, the proposed G2-ResNeXt model was
trained according to Algorithm 1. After setting the learning
rate, number of epochs, and batch size, themodel is initialized
with the weights and then the epoch’s loop starts updating
the weights, based on the input signal data (signalsData) and
signal labels (signalsTags), calculating the loss value, and
updating the value of the learning rate when the next round’s
loss is greater than the previous round’s loss.
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TABLE 8. Performance comparison of the proposed G2-ResNeXt model (Training_1) to other state-of-the-art models, in terms of overall accuracy (Acc),
and sensitivity (Se) and precision (P+) in classifying AAMI heartbeats of class V or S.

Algorithm 1 G2-ResNeXt Training Process
Input: preprocessed ECG signals;
Output: classified heartbeats
1: Initialize the learning rate, α total number of max iteration
epoch, previous round error ep. Total Batch

2: Generate random weights θ of the G2-ResNeXt
3: Init G2-ResNeXt model (θ)
4: while iteration < epach do
5: if iteration > 1 then
6: ep = error
7: end if
8: Initialize error = 0
9: for batch = 1 to Tatal Batch do
10: θ = G2-ResNeXt model.train(signalsData.

signalsTags)
11: Update θ

12: error = error + J (θ )
13: end for
14: if ep < error then
15: α = α ∗ f
16: end if
17: iteration = iteration + 1
18: end while

In order to probe stability of the proposed model, it was
trained five different times, one after another, with 80 iter-
ations in each training session. The overall accuracy, and
sensitivity and precision, achieved by the proposed model
in each training session (Training_1–Training_5) for each
AAMI heartbeats class, are shown in Table 5. As can be
seen from the table, the overall accuracy fluctuates slightly
(within 1% only) between different training sessions, and the
mean square error (MSE) is equal to 0.2434. The model with
the most balanced performance (corresponding to the median
value of the overall accuracy achieved in the five training
sessions), named Training_1, was chosen for participation in
the performance comparison with the state-of-the-art models,
presented in the next subsection.

C. RESULTS
Table 7 shows the multi-class confusion matrix of the pro-
posed G2-ResNeXt model (Training_1) applied to the MIT-
BIH arrhythmia database.

Table 8 presents the results of the performance compar-
ison of the proposed model to the state-of-the-art models
considered,1 as regards the overall accuracy, and sensitiv-
ity and precision achieved in classifying AAMI heartbeats
(results for classes V and S are presented only, as these con-
tain most arrhythmias). The presented results clearly demon-
strate the superiority of the proposed G2-ResNeXt model,
according to all evaluation metrics used, except the GRNN
model which achieves better sensitivity and precision in clas-
sifying AAMI heartbeats of class S. More specifically, the
G2-ResNeXt superiority over the other models compared
ranges: from 0.02% to 1.69% based on overall accuracy,
from 2.34% to 9.73% and from 1.28% to 12.27% based on
sensitivity and precision, respectively achieved in classifying
AAMI heartbeats of class V, and from 2.04% to 60.59% and
from 6.96% to 82.10% according to sensitivity and preci-
sion, respectively achieved in classifying AAMI heartbeats
of class S.

VII. CONCLUSION
This paper has proposed a novel model, called G2-ResNeXt,
for the classification of inter-patient ECG signals with over-
all accuracy of 96.16%. A slice-and-stack method is used
to process the MIT-BIH data set by achieving an effective
data preprocessing. The presented experimental results have
clearly demonstrated that the proposed G2-ResNeXt model
could effectively identify arrhythmia, by achieving sensitivity
and precision values of 97.09% and 95.90% for the ventric-
ular ectopic heartbeats (VEB), and 80.59% and 82.26% for
the supraventricular ectopic heartbeats (SVEB), respectively,
thus surpassing all state-of-the-art models used for perfor-
mance comparison, based on all evaluation metrics used.

1The results of the state-of-theart models considered are taken from the
corresponding literature sources, as the code of these models is not open
source and therefore the results cannot be reproduced.
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Therefore, the proposed model has great clinical application
prospect.

Although the overall accuracy of the model is high, there
is still room for further improvements, aiming at improv-
ing the recognition rate of class-F heartbeats, and reduc-
ing the increased computational complexity and execution
time (due to the introduction of a modified CBAM mod-
ule) as to be competitive in that sense to the original
ResNeXt model.
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