University of Limerick
Browse

Advances in covariance modelling

Download (106.65 kB)
conference contribution
posted on 2013-01-04, 16:15 authored by Gilbert MackenzieGilbert Mackenzie
Conventionally, in longitudinal studies, the mean structure has been thought to be more important than the covariance structure between the repeated measures on the same individual. Often, it has been argued that, with re- spect to the mean, the covariance was merely a `nuisance parameter' and, consequently, was not of `scientific interest'. Today, however, one can see that from a formal statistical standpoint, the inferential problem is entirely symmetric in both parameters. In recent years there has been a steady stream of new results and we pause to review some key advances in the expanding field of covariance modelling, In particular, developments since the seminal work by Pourahmadi (1999, 2000) are traced. While the main focus is on longitudinal data with continuous responses, emerging approaches to joint mean-covariance modelling in the GEE, and GLMM arenas are also considered briefly.

History

Publication

Proceedings of the 19th International Workshop on Statistical Modelling;

Publisher

IWSM

Note

peer-reviewed

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC