University of Limerick
Browse

Embedded port infrastructure inspection using artificial intelligence

Download (521.43 kB)
conference contribution
posted on 2024-09-17, 14:52 authored by Nicolas Vigne, Rémi Barrère, Benjamin Blanck, Florian Steffens, Ching Nok Au, James Riordan, Gerard DoolyGerard Dooly

This paper is related to the H2020 RAPID project, focusing on the AI automated monitoring of critical port infrastructure such as concrete structure. An important objective in RAPID was to translate a technical expertise of labelling cracks into a UAV real-time embedded solution based on deep neural networks. The efficiency of a deep learning algorithm is highly dependent on the data used for training, and this paper illustrates the fact that the use of open-source data is not sufficient. An intensive collaboration between neural network and industry experts made it possible to obtain a relevant data set of sufficient size to carry out quality training. This collaborative work also allowed the definition of ground truths, necessary for the validation of the detection system. In this paper, we provide a definition of the useful metrics and objectives for the algorithms in accordance with the complexity of the cracks and their environment, used to identify the best neural network in terms of efficiency, and performance to embed it on a UAV. Our research then focused on the hardware platform that could be used as an onboard computer for the drone, considering Size, Weight and Power (SWaP) constraints. We applied optimization methods to reduce the latency of our models while maintaining high accuracy. These techniques allowed us achieve a state-of-the-art detection rate while complying with the real-time requirements of the overall system, and the need to increase productivity of mission inspections in a port environment through high-speed inferences.

History

Publication

OCEANS 2023

Publisher

IEEE Computer Society

Rights

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

Sustainable development goals

  • (3) Good Health and Well-being

Department or School

  • Electronic & Computer Engineering

Usage metrics

    University of Limerick

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC