University of Limerick
Browse
- No file added yet -

Imaging from multiply scattered waves

Download (200.53 kB)
conference contribution
posted on 2013-08-13, 13:26 authored by ROMINA GABURROROMINA GABURRO, Clifford J. Nolan, Thomas Dowling, Margaret Cheney
We consider the problem of imaging in a region where ultrasonic waves are multiply scattered. A transducer emits ultrasonic pulses in tissue where they scatter from a heterogeneity (e.g. a tumor) in the region of interest (ROI). The reflected signals are recorded and used to produce an image of tissue. Many of the conventional imaging methods assume the wave has scattered just once (Born-approximation) from the heterogeneity before returning to the sensor to be recorded. In reality, waves can scatter several times before returning to the detector. The purpose of this paper is to show how this restriction (the Born approximation or weak, single-scattering approximation) can be partially removed by incorporating a-priori known environmental scatterers, such as a cavity wall or bones into the background velocity model in the context of acoustic medical imaging. We also show how the partial removal of the Born approximation assumption leads to an enhanced angular resolution of heterogeneities that are present. We will illustrate our method using a locally planar scatterer, which is one of the simplest possible environments for the scatterer.

History

Publication

SPIE Conference on Medical Imaging;6513, article id 651304

Publisher

Society of Photo-Optical Instrumentation Engineers

Note

peer-reviewed

Rights

Copyright © 2007 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC