University of Limerick
Browse

A citation-based approach to automatic topical indexing of scientific literature

Download (440.51 kB)
journal contribution
posted on 2014-10-22, 11:35 authored by Abdulhussain E. Mahdi, Arash Joorabchi
Topical indexing of documents with keyphrases is a common method used for revealing the subject of scientific and research documents to both human readers and information retrieval tools, such as search engines. However, scientific documents that are manually indexed with keyphrases are still in the minority. This article describes a new unsupervised method for automatic keyphrase extraction from scientific documents which yields a performance on a par with human indexers. The method is based on identifying references cited in the document to be indexed and, using the keyphrases assigned to those references, for generating a set of high-likelihood keyphrases for the document. We have evaluated the performance of the proposed method by using it to automatically index a third-party testset of research documents. Reported experimental results show that the performance of our method, measured in terms of consistency with human indexers, is competitive with that achieved by state-of-the-art supervised methods.

History

Publication

Journal of Information Science;36, (6), pp. 798-811

Publisher

Sage Publications

Note

peer-reviewed

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC