University of Limerick
Browse

A complex networks approach to ranking professional snooker players

Download (638.34 kB)
journal contribution
posted on 2022-11-29, 12:34 authored by Joseph D. O'Brien, James GleesonJames Gleeson
A detailed analysis of matches played in the sport of Snooker during the period 1968–2020 is used to calculate a directed and weighted dominance network based upon the corresponding results. We consider a ranking procedure based upon the well-studied PageRank algorithm that incorporates details of not only the number of wins a player has had over their career but also the quality of opponent faced in these wins. Through this study, we find that John Higgins is the highest performing Snooker player of all time with Ronnie O’Sullivan appearing in second place. We demonstrate how this approach can be applied across a variety of temporal periods in each of which we may identify the strongest player in the corresponding era. This procedure is then compared with more classical ranking schemes. Furthermore, a visualization tool known as the rank-clock is introduced to the sport which allows for immediate analysis of the career trajectory of individual competitors. These results further demonstrate the use of network science in the quantification of success within the field of sport.

Funding

Dynamics of the metabolic state in the context of a systematic approach to the study of the processes of growth and development of higher plants and fungi

Russian Foundation for Basic Research

Find out more...

Development of theoretical and experimental criteria for predicting the wear resistance of austenitic steels and nanostructured coatings based on a hard alloy under conditions of erosion-corrosion wear

Russian Foundation for Basic Research

Find out more...

History

Publication

Journal of Complex Networks;00, pp.1–16

Publisher

Oxford University Press

Note

peer-reviewed

Other Funding information

SFI

Language

English

Also affiliated with

  • MACSI - Mathematics Application Consortium for Science & Industry

Department or School

  • Mathematics & Statistics

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC