University of Limerick
Browse
- No file added yet -

Adsorption of malachite green and alizarin red S dyes using Fe-BTC metal organic framework as adsorbent

Download (2.87 MB)
journal contribution
posted on 2023-02-22, 08:46 authored by Giulia Rossella Delpiano, Davide Tocco, Luca Medda, Edmond MagnerEdmond Magner, Andrea Salis
Synthetic organic dyes are widely used in various industrial sectors but are also among the most harmful water pollutants. In the last decade, significant efforts have been made to develop improved materials for the removal of dyes from water, in particular, on nanostructured adsorbent materials. Metal organic frameworks (MOFs) are an attractive class of hybrid nanostructured materials with an extremely wide range of applications including adsorption. In the present work, an iron-based Fe-BTC MOF, prepared according to a rapid, aqueous-based procedure, was used as an adsorbent for the removal of alizarin red S (ARS) and malachite green (MG) dyes from water. The synthesized material was characterized in detail, while the adsorption of the dyes was monitored by UV-Vis spectroscopy. An optimal adsorption pH of 4, likely due to the establishment of favorable interactions between dyes and Fe-BTC, was found. At this pH and at a temperature of 298 K, adsorption equilibrium was reached in less than 30 min following a pseudo-second order kinetics, with k” of 4.29 × 10−3 and 3.98 × 10−2 g·mg−1 min−1 for ARS and MG, respectively. The adsorption isotherm followed the Langmuir model with maximal adsorption capacities of 80 mg·g−1(ARS) and 177 mg·g −1 (MG), and KL of 9.30·103 L·mg−1 (ARS) and 51.56·103 L·mg−1 (MG).

Funding

MIUR

DOT1304455

History

Publication

International Journal of Molecular Sciences;22, 788

Publisher

MDPI

Note

peer-reviewed

Other Funding information

MIUR

Language

English

Also affiliated with

  • Bernal Institute

Department or School

  • Chemical Sciences

Usage metrics

    University of Limerick

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC