University of Limerick
Browse
Ryan_2017_insight.pdf (5.95 MB)

An insight into the role of additives in controlling polymorphic outcome: a CO2-antisolvent crystallization process of carbamazepine

Download (5.95 MB)
journal contribution
posted on 2017-12-15, 12:14 authored by Luis PadrelaLuis Padrela, Jacek Zeglinski, Kevin M. RyanKevin M. Ryan
Controlling pharmaceutical polymorphism in crystallization processes represents a major challenge in pharmaceutical science and engineering. For instance, CO2-antisolvent crystallization typically favors the formation of metastable forms of carbamazepine (CBZ), a highly polymorphic drug, with impurities of other forms. This work demonstrates for the first time that a supercritical CO2- antisolvent crystallization process in combination with certain molecular additives allows control of the polymorphic outcome of carbamazepine. We show herein that in the presence of sodium stearate and Eudragit L-100, needle-shaped crystals of CBZ form II are obtained, while blocky-shaped crystals of CBZ form III are obtained in the presence of Kollidon VA64, sodium dodecyl sulfate, ethyl cellulose and maltitol. This selectivity for pure forms in this supercritical set up contrasts to the results when the same set of additives where used in a solvent evaporation method that yielded mixtures of form I, II and III. The type of additive used in the CO2-antisolvent crystallization process impacted both the product crystals polymorphic form and size. A detailed molecular-level analysis along with DFT calculations allowed us to give a mechanistic insight into the role of sodium stearate and Eudragit L-100 in facilitating nucleation of the metastable form II.

History

Publication

Crystal Growth and Design;17 (9), pp. 4544-4553

Publisher

American Chemical Society

Note

peer-reviewed

Other Funding information

SFI, Irish Centre for High-End Computing (ICHEC)

Rights

© 2017 ACS This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal Title, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.cgd.7b00163

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC