University of Limerick
Browse

Bend-free design of ellipsoids of revolution using variable stiffness composites

Download (4.24 MB)
Shells are commonly used in many structural applications due to their high specific load carrying capabilities. One of the most interesting features of shell structures is that they can resist external transverse loads by developing membrane stresses in the small deformation regime yet, in general, also generate inefficient bending deformations and stresses. In this study, a composite ellipsoid shell of revolution, under internal pressure, is designed for zero bending and curvature change. To this end, the stiffness properties of elliptical composite shell structures are tailored by fibre steering. A new definition for a bend-free state, independent of internal pressure, is presented. Based on this definition, the internal pressure-induced bending state of an isotropic ellipsoidal shell of revolution is compared with its tailored composite counterpart. Results show that up to a specific level of ellipticity, a bend-free state is achievable by fibre steering in elliptical composite shells of revolution. Finally, a failure study is performed to assess the potential improvement of the maximum allowable internal pressure by bend-free design.

History

Publication

Composite Structures;233, 111630

Publisher

Elsevier

Note

peer-reviewed

Other Funding information

SFI

Rights

This is the author’s version of a work that was accepted for publication in Composite Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Composite Structures, 233, 111630, https://doi.org/10.1016/j.compstruct.2019.111630

Language

English

Also affiliated with

  • Bernal Institute

Department or School

  • School of Engineering

Usage metrics

    University of Limerick

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC