University of Limerick
Browse
- No file added yet -

Binary-state dynamics on complex networks: pair approximation and beyond

Download (1015.83 kB)
journal contribution
posted on 2022-12-08, 15:35 authored by James P. Gleeson
A wide class of binary-state dynamics on networks-including, for example, the voter model, the Bass diffusion model, and threshold models-can be described in terms of transition rates (spin-flip probabilities) that depend on the number of nearest neighbors in each of the two possible states. High-accuracy approximations for the emergent dynamics of such models on uncorrelated, infinite networks are given by recently developed compartmental models or approximate master equations (AMEs). Pair approximations (PAs) and mean-field theories can be systematically derived from the AME. We show that PA and AME solutions can coincide under certain circumstances, and numerical simulations confirm that PA is highly accurate in these cases. For monotone dynamics (where transitions out of one nodal state are impossible, e.g., susceptible-infected disease spread or Bass diffusion), PA and the AME give identical results for the fraction of nodes in the infected (active) state for all time, provided that the rate of infection depends linearly on the number of infected neighbors. In the more general nonmonotone case, we derive a condition-that proves to be equivalent to a detailed balance condition on the dynamics-for PA and AME solutions to coincide in the limit t -> infinity. This equivalence permits bifurcation analysis, yielding explicit expressions for the critical (ferromagnetic or paramagnetic transition) point of such dynamics, that is closely analogous to the critical temperature of the Ising spin model. Finally, the AME for threshold models of propagation is shown to reduce to just two differential equations and to give excellent agreement with numerical simulations. As part of this work, the Octave or Matlab code for implementing and solving the differential-equation systems is made available for download.

Funding

PI: MARK LEISING/CLEMSON UNIVERSITY U.S. INTEGRAL USERS GROUP CHAIR SUMMARY: TO SUPPORT MY WORK AND TRAVEL AS CHAIR OF THE U.S. INTEGRAL USERS GROUP (US-IUG). ORGANIZE AND ATTEND 2 US-LUG MEETINGS AT GODDARD SPACE FLIGHT CENTER WORK WITH THE PROJECT TO EN

National Aeronautics and Space Administration

Find out more...

Study on Aerodynamic Characteristics Control of Slender Body Using Active Flow Control Technique

Japan Society for the Promotion of Science

Find out more...

History

Publication

Physical Review X;3, 021004

Publisher

American Physical Society

Note

peer-reviewed

Other Funding information

SFI, ERC

Language

English

Also affiliated with

  • MACSI - Mathematics Application Consortium for Science & Industry

Department or School

  • Mathematics & Statistics

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC