University of Limerick
Browse
Connelly_comprehensive.pdf (792.83 kB)

Comprehensive finite-difference time-dependent beam propagation model of counterpropagating picosecond pulses in a semiconductor optical amplifier

Download (792.83 kB)
journal contribution
posted on 2011-07-19, 10:52 authored by Mohammad Razaghi, Vahid Ahmadi, Michael J. Connelly
In this paper, we present a numerical model to study counter pulse propagation in semiconductor optical amplifiers. An improved finite-difference beam propagation method for solving the modified nonlinear Schrödinger equation is applied for the first time in the counterpropagation regime. In our model, group velocity dispersion, two-photon absorption, ultrafast nonlinear refraction, and the change in the gain peak wavelength with carrier density are included, which have not been considered simultaneously in previous counterpropagation models. The model is applied to demonstrate how a subpicosecond and picosecond probe pulse shape and spectrum can be modified by a counterpropagating pump pulse. Based on the results obtained by this model, while subpicosecond probe pulses can be compressed by in this scheme, their time-bandwidth product are also improved significantly. Furthermore, the effects of several parameters are analyzed to obtain the proper probe spectral peak shift using counterpropagating probe pulses. The accuracy and computational efficiency of the new scheme are assessed through numerical examples and are shown to be superior to previously published approaches.

History

Publication

Journal of Lightwave Technology;27/ 15/ pp.3162-3174

Publisher

IEEE Computer Society

Note

peer-reviewed

Other Funding information

ITRC

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC