University of Limerick
Browse

Equivalence between non-Markovian and Markovian dynamics in epidemic spreading processes

Download (834.45 kB)
journal contribution
posted on 2023-03-03, 10:21 authored by Michele Starnini, James GleesonJames Gleeson, Marián Boguna
A general formalism is introduced to allow the steady state of non-Markovian processes on networks to be reduced to equivalent Markovian processes on the same substrates. The example of an epidemic spreading process is considered in detail, where all the non-Markovian aspects are shown to be captured within a single parameter, the effective infection rate. Remarkably, this result is independent of the topology of the underlying network, as demonstrated by numerical simulations on two-dimensional lattices and various types of random networks. Furthermore, an analytic approximation for the effective infection rate is introduced, which enables the calculation of the critical point and of the critical exponents for the non-Markovian dynamics.

Funding

PI: MARK LEISING/CLEMSON UNIVERSITY U.S. INTEGRAL USERS GROUP CHAIR SUMMARY: TO SUPPORT MY WORK AND TRAVEL AS CHAIR OF THE U.S. INTEGRAL USERS GROUP (US-IUG). ORGANIZE AND ATTEND 2 US-LUG MEETINGS AT GODDARD SPACE FLIGHT CENTER WORK WITH THE PROJECT TO EN

National Aeronautics and Space Administration

Find out more...

History

Publication

Physical Review Letters;118,128301

Publisher

American Physical Society

Note

peer-reviewed

Other Funding information

Generalitat de Catalunya, SFI, SFI

Language

English

Also affiliated with

  • MACSI - Mathematics Application Consortium for Science & Industry

Department or School

  • Mathematics & Statistics

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC