University of Limerick
Browse
ACS_Applied_Polymer_Materials_proof_2020.pdf (919.51 kB)

Humidity-driven transparent holographic free-standing polyelectrolyte films

Download (919.51 kB)
journal contribution
posted on 2020-07-20, 08:45 authored by Konstantin G. Nikolaev, Sviatlana A. Ulasevich, Olga Luneva, Olga Yu. Orlova, Daria Vasileva, Semen G. Vasilev, Alexander S. Novikov, Ekaterina V. Skorb
In the present work, transparent holographic poly(diallyldimethylammonium chloride) (PDADMAC)/heparin and PDADMAC/poly(styrenesulfonate) (PSS) films were synthesized via polyelectrolyte coacervates. PDADMAC/heparin films were obtained without temperature treatment. Thin holographic free-standing films with a 1 μm grating period and uniform surface of a polyelectrolyte complex were readily and quickly made by pressing polyelectrolyte coacervate, the hydrated viscoelastic fluid-like form of polyelectrolyte complex precursor, between a flat surface and holographic mask. Heparin replaces PSS in film composition to prepare the sheer film. Thus, the PDADMAC/heparin holographic film demonstrates transparency and reversible response for humidity under diffraction detection. In addition to diffraction humidity signal measurements, the cobalt(II) chloride was impregnated in polyelectrolyte coacervate to make an additional colorimetric signal response. In this case, the free-standing film serves both as the substrate for the hygroscopic salt and as a diffraction humidity sensor. The PDADMAC/heparin/Co(II) chloride film demonstrates a linear humidity range from 50 to 90%. Additionally, due to hydrated inorganic salt ion size, cobalt chloride prevents film porosity, which initiates under film swelling. Based on the results and calculations obtained, the study proposes the mechanism of water incorporation, including the reptation model and polyelectrolyte complex behavior. Results of density functional theory calculations prove that binding of cobalt aqua complexes [Co(H2O)6]2+ with the dimeric associates heparin/PDADMAC via noncovalent interactions (hydrogen bonds) additionally is much more energetically favorable compared with the alternative association of heparin/PDADMAC with water molecules.

Funding

Soil ecosystem response mechanism for short-term studies of organic fertilizer

National Natural Science Foundation of China

Find out more...

History

Publication

ACS Applied Polymer Materials;2 (2), pp. 105-112

Publisher

American Chemical Society

Note

peer-reviewed

Other Funding information

RSF

Rights

© 2020 ACS This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Polymer Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsapm.9b01151

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC