University of Limerick
Browse
- No file added yet -

Improving the post-operative prediction of BCR-free survival time with mRNA variables and machine learning

Download (838.04 kB)
journal contribution
posted on 2023-03-10, 15:13 authored by Autumn O’Donnell, Eric Wolsztynski, Michael Cronin, Shirin MoghaddamShirin Moghaddam

Predicting the risk of, and time to biochemical recurrence (BCR) in prostate cancer patients post-operatively is critical in patient treatment decision pathways following surgical intervention. This study aimed to investigate the predictive potential of mRNA information to improve upon reference nomograms and clinical-only models, using a dataset of 187 patients that includes over 20,000 features. Several machine learning methodologies were implemented for the analysis of censored patient follow-up information with such high-dimensional genomic data. Our findings demonstrated the potential of inclusion of mRNA information for BCR-free survival prediction. A random survival forest pipeline was found to achieve high predictive performance with respect to discrimination, calibration, and net benefit. Two mRNA variables, namely ESM1 and DHAH8, were identified as consistently strong predictors with this dataset.


Funding

INSIGHT Phase 2

Science Foundation Ireland

Find out more...

History

Publication

Cancers; 15(4):1276

Publisher

MDPI

Also affiliated with

  • MACSI - Mathematics Application Consortium for Science & Industry

Department or School

  • Mathematics & Statistics

Usage metrics

    University of Limerick

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC