University of Limerick
Browse
Hudson_2010_injectable.pdf (2.63 MB)

Injectable in situ cross-linking hydrogels for local antifungal therapy

Download (2.63 MB)
journal contribution
posted on 2022-12-12, 11:19 authored by SARAH HUDSONSARAH HUDSON, Robert Langer, Gerald R. Fink, Daniel S. Kohane
Invasive fungal infections can be devastating, particularly in immunocompromised patients, and difficult to treat with systemic drugs. Furthermore, systemic administration of those medications can have severe side effects. We have developed an injectable local antifungal treatment for direct administration into existing or potential sites of fungal infection. Amphotericin B (AmB), a hydrophobic, potent, and broad-spectrum antifungal agent, was rendered water-soluble by conjugation to a dextran-aldehyde polymer. The dextranaldehyde-AmB conjugate retained antifungal efficacy against Candida albicans. Mixing carboxymethylcellulose-hydrazide with dextran-aldehyde formed a gel that cross-linked in situ by formation of hydrazone bonds. The gel provided in vitro release of antifungal activity for 11 days. and contact with the gel killed Candida for three weeks. There was no apparent tissue toxicity in the murine peritoneum and the gel caused no adhesions. Gels produced by entrapment of a suspension of AmB in CMC-dextran without conjugation of drug to polymers did not release fungicidal activity, but did kill on contact Injectable systems of these types, containing soluble or insoluble drug formulations, could be useful for treatment of local antifungal infections, with or without concurrent systemic therapy. (C) 2009 Elsevier Ltd. All rights reserved.

History

Publication

Biomaterials;31 (6), pp. 1444-1452

Publisher

Elsevier

Note

peer-reviewed

Rights

This is the author’s version of a work that was accepted for publication in Biomaterials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biomaterials, 31 (6), pp. 1444-1452, http://dx.doi.org/doi:10.1016/j.biomaterials.2009.11.016

Language

English

Also affiliated with

  • Bernal Institute

Department or School

  • Chemical Sciences

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC