University of Limerick
Browse

Larger countermovement increases the jump height of countermovement jump

Download (411.48 kB)
journal contribution
posted on 2018-11-22, 16:03 authored by Alberto Sánchez-Sixto, Andrew J. Harrison, Pablo Floría
Simulation studies show that jump performance can be improved by increasing the depth of countermovement. The purpose of this study was to determine how modifications to the depth of countermovement lead to changes in jump height and the biomechanical parameters related to center of mass displacement and force application. Twenty-nine competitive males participated in this investigation, performing nine countermovement jumps using a self-selected, a deep, and a shallow crouch position. Jump height and relative net vertical impulse were greater when using a deeper crouch position, compared to the self-selected position. Force application variables did not report differences, when the deeper countermovement was compared to the self-selected countermovement; although, the shallower countermovement showed higher values in force application parameters. The deeper countermovement jumps achieved higher velocities of the center of mass than the self-selected jumps, while shallower jumps produced lower velocities than the self-selected jumps. The results of this investigation were consistent with simulation studies, showing that deep countermovements increase net vertical impulse, leading to a higher jump height. In addition, the maximum downward velocity was higher, when the crouch position was deeper. Conversely, force-applied variables did not change when jump performance was increased.

History

Publication

Sports;6, 131

Publisher

MDPI

Note

peer-reviewed

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC