University of Limerick
Browse

Multi-objective optimisation of ultrasonically welded dissimilar joints through machine learning

Download (4.25 MB)
journal contribution
posted on 2023-01-06, 14:39 authored by Patrick G. Mongan, Vedant Modi, John W. McLaughlin, Eoin P. Hinchy, RONAN O'HIGGINSRONAN O'HIGGINS, Noel O'DowdNoel O'Dowd, Conor Mc CarthyConor Mc Carthy
The use of composite materials is increasing in industry sectors such as renewable energy generation and storage, transport (including automotive, aerospace and agri-machinery) and construction. This is a result of the various advantages of composite materials over their monolithic counterparts, such as high strength-to-weight ratio, corrosion resistance, and superior fatigue performance. However, there is a lack of detailed knowledge in relation to fusion joining techniques for composite materials. In this work, ultrasonic welding is carried out on a carbon fibre/PEKK composite material bonded to carbon fibre/epoxy composite to investigate the influence of weld process parameters on the joint’s lap shear strength (LSS), the process repeatability, and the process induced defects. A 33 parametric study is carried out and a robust machine learning model is developed using a hybrid genetic algorithm–artificial neural network (GA–ANN) trained on the experimental data. Bayesian optimisation is employed to determine the most suitable GA–ANN hyperparameters and the resulting GA–ANN surrogate model is exploited to optimise the welding process, where the process performance metrics are LSS, repeatability and joint visual quality. The prediction for the optimal LSS was subsequently validated through a further set of experiments, which resulted in a prediction error of just 3%.

History

Publication

Journal of Intelligent Manufacturing;

Publisher

Springer

Note

peer-reviewed

Language

English

Also affiliated with

  • Bernal Institute

Department or School

  • School of Engineering

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC