University of Limerick
Browse
Hans_2024_Polar.pdf (3.49 MB)

Polar lipids modify Alzheimer’s disease pathology by reducing astrocyte pro-inflammatory signaling through platelet-activating factor receptor (PTAFR) modulation

Download (3.49 MB)

Background Pro-inflammatory processes triggered by the accumulation of extracellular amyloid beta (Aβ) peptides are a well-described pathology in Alzheimer’s disease (AD). Activated astrocytes surrounding Aβ plaques contribute to inflammation by secreting pro-inflammatory factors. While astrocytes may phagocytize Aβ and contribute to Aβ clearance, reactive astrocytes may also increase Aβ production. Therefore, identifying factors that can attenuate astrocyte activation and neuro-inflammation and how these factors influence pro-inflammatory pathways is important for developing therapeutic and preventive strategies in AD. Here, we identify the platelet-activating factor receptor (PTAFR) pathway as a key mediator of astrocyte activation. Intriguingly, several polar lipids (PLs) have exhibited anti-inflammatory protective properties outside the central nervous system through their inhibitory effect on the PTAFR pathway. Thus, we additionally investigated whether different PLs also exert inhibitory effects on the PAF pathway in astrocytes and whether their presence influences astrocytic pro-inflammatory signaling and known AD pathologies in vitro.

History

Publication

Lipids in Health and Disease 23, 113

Publisher

Springer nature

Also affiliated with

  • Health Research Institute (HRI)
  • Bernal Institute

Sustainable development goals

  • (3) Good Health and Well-being

Department or School

  • Biological Sciences

Usage metrics

    University of Limerick

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC