University of Limerick
Browse
- No file added yet -

Preparation, stabilisation, isolation and tableting of valsartan nanoparticles using a semi-continuous carrier particle mediated process

Download (6.47 MB)
journal contribution
posted on 2021-02-15, 11:05 authored by Ajay KumarAjay Kumar, Kiran A. Ramisetty, Simone Bordignon, Benjamin K. Hodnett, PETER DAVERNPETER DAVERN, Sarah P. Hudson
This work investigated the technical feasibility of preparing, stabilizing and isolating poorly water-soluble drug nanoparticles via a small-scale antisolvent precipitation process operating in semi-continuous mode. Specifically, a novel semi-continuous process was demonstrated for the carrier particle mediated production, stabilization and isolation of valsartan nanoparticles into a solid form using montmorillonite clay particles as the carrier. The semi continuous process operated robustly for the full duration of the experiment (~16 min) and steady-state conditions were reached after ~5 min. Nanoparticles of valsartan (51 ± 1 nm) were successfully prepared, stabilized and isolated with the help of montmorillonite (MMT) or protamine functionalized montmorillonite (PA-MMT) into the dried form by this semi-continuous route. The dissolution profile of the isolated valsartan nanocomposite solids was similar to that of valsartan nanocomposite solids produced via the corresponding laboratory scale batch mode process, indicating that the product quality (principally the nanoscale particle size and solid-state form) is retained during the semi-continuous processing of the nanoparticles. Furthermore, tablets produced via direct compression of the isolated valsartan nanocomposite solids displayed a dissolution profile comparable with that of the powdered nanocomposite material. PXRD, DSC, SSNMR and dissolution studies indicate that the valsartan nanoparticles produced via this semi-continuous process were amorphous and exhibited shelf-life stability equivalent to > 10 months.

History

Publication

International Journal of Pharmaceutics;597, 120199

Publisher

Elsevier

Note

peer-reviewed

Other Funding information

SFI

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC