University of Limerick
2011_Cloonan.pdf (1.42 MB)

Spherical indentation of free-standing acellular extracellular matrix membranes

Download (1.42 MB)
journal contribution
posted on 2012-03-27, 12:10 authored by Aidan J. Cloonan, Michael R. O'Donnell, William T. Lee, Michael T. Walsh, Eamonn De Barra, Timothy M. McGloughlin
Numerous scaffold materials have been developed for tissue engineering and regenerative medicine applications to replace or repair damaged tissues and organs. Naturally occurring scaffold materials derived from acellular xenogeneic and autologous extracellular matrix (ECM) are currently in clinical use. These biological scaffold materials possess inherent variations in mechanical properties. Spherical indentation or ball burst testing has commonly been used to evaluate ECM and harvested tissue due to its ease of use and simulation of physiological biaxial loading, but has been limited by complex material deformation profiles. An analytical methodology has been developed and applied to experimental load–deflection data of a model hyperelastic material and lyophilized ECM scaffolds. An optimum rehydration protocol was developed based on water absorption, hydration relaxation and dynamic mechanical analysis. The analytical methodology was compared with finite element simulations of the tests and excellent correlation was seen between the computed biaxial stress resultants and geometry deformations. A minimum rehydration period of 5 min at 37 °C was sufficient for the evaluated multilaminated ECM materials. The proposed approach may be implemented for convenient comparative analysis of ECM materials and source tissues, process optimization or during lot release testing.



MACSI (Mathematics Applications Consortium for Science and Industry)

Science Foundation Ireland

Find out more...



Acta Biomaterialia;2012 8(1), pp. 262-273


Elsevier Ltd.



Other Funding information



This is the author’s version of a work that was accepted for publication in Acta Biomater. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Acta Biomater,2012 8(1), pp 262-273.