Developing sustainable and efficient thermoelectric materials is a challenge because the most common thermoelectric materials are based on rare elements such as bismuth and telluride. In this context, we have produced bio-based carbon nanofibres (CNFs) derived from mixtures of polyacrylonitrile and lignin using electrospinning. The addition of lignin (up to 70%) reduces the diameter of CNFs from 450 nm to 250 nm, increases sample flexibility, and promotes inter-fibre fusion. The crystalline structure of the CNFs was analysed by Raman spectroscopy. The electrical conductivity and the Seebeck coefficient were evaluated as function of the lignin content in the precursor and carbonised equivalents. Finally, a conversion of p-type to n-type semiconducting behaviour was achieved with a hydrazine vapour treatment. We observe a maximum p-type power factor of 9.27 μW cm-1 K-2 for CNFs carbonised at 900°C with 70% lignin which is a 34.5-fold increase to the CNFs with 0% lignin. For the hydrazine treated samples, we observe a maximum n-type power factor of 10.2 μW cm-1 K-2 for the CNFs produced in the same way which is an 11.0-fold increase to the hydrazine-treated CNFs with 0% lignin.
Funding
Using the Cloud to Streamline the Development of Mobile Phone Apps
International Journal of Biological Macromolecules;121, pp. 472-479
Publisher
Elsevier
Note
peer-reviewed
Other Funding information
IRC, ERC
Rights
This is the author’s version of a work that was accepted for publication inInternational Journal of Biological Macromolecules . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published inInternational Journal of Biological Macromolecules, 2018, 121, pp. 472-479,https://doi.org/10.1016/j.ijbiomac.2018.10.051