University of Limerick
Browse
Stokes_2020_2D.pdf (2.17 MB)

Two-dimensional SnSe nanonetworks: growth and evaluation for Li-Ion battery applications

Download (2.17 MB)
journal contribution
posted on 2020-08-11, 10:39 authored by Fionán Davitt, Killian Stokes, Timothy W. Collins, Manuel Roldan-Gutierrez, Fred Robinson, HUGH GEANEYHUGH GEANEY, Subhajit Biswas, Shery L.Y. Chang, Kevin M. RyanKevin M. Ryan, Gillian Reid, Justin D. Holmes
Engineered two-dimensional (2D) layered materials possess unique physical properties with the potential to improve the performance and endurance of future electronic and energy devices. Here, we report the growth of complex 2D nanonetworks of crystalline tin selenide (SnSe) via liquid injection chemical vapor deposition using a single-source diselenoether precursor. Potential applications of SnSe span a wide range of technological areas, particularly in energy devices. The synthesized SnSe networks were composed of high surface area interconnected junctions of one-dimensional (1D) nanowires in a 2D plane; such complex SnSe nanonetwork structures have not previously been reported. The SnSe networks possessed an orthorhombic Pnma 62 crystal structure throughout, with the individual network branches uniformly orientated along the <011> and <01–1> directions. The width of the individual interconnected nanowire branches ranged from 120 to 250 nm with lengths ranging from 1 to 4 μm. The networks of 1D nanowires had a layer thickness of 88 ± 10 nm. A growth mechanism for the formation of these networks is proposed based on the minimization of high surface energy planes. We also highlight the potential of SnSe nanonetworks as an anode material for Li-ion batteries with galvanostatic testing showing an initial discharge capacity in excess of 1000 mAh g–1 with a 92% capacity retention after 50 cycles at a specific current of 100 mA g–1.

Funding

Using the Cloud to Streamline the Development of Mobile Phone Apps

Innovate UK

Find out more...

History

Publication

ACS Applied Energy Materials;3 (2), pp. 6602-6610

Publisher

American Chemical Society

Note

peer-reviewed

Other Funding information

SFI, IRC, EI

Rights

© 2020 ACS This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Energy Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsaem.0c00776

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC