University of Limerick
Browse

Wood-derived hydrogels as a platform for drug-release systems

Download (854.81 kB)
journal contribution
posted on 2021-04-30, 10:37 authored by Mario Culebras, Anthony Barrett, Mahboubeh Pishnamazi, Gavin M. Walker, Maurice N. Collins
Wood (cellulose and lignin)-based hydrogels were successfully produced as platforms for drug-release systems. Viscoelastic and cross-linking behaviors of precursor solutions were tuned to produce highly porous hydrogel architectures via freeze-drying. Pore sizes in the range of 100–160 μm were obtained. Varying lignin molecular structure played a key role in tailoring swelling and mechanical performance of these gels with organosolv-type lignin showing optimum properties due to its propensity for intermolecular cross-linking, achieving a compressive modulus around 11 kPa. Paracetamol was selected as a standard drug for release tests and its release rate was improved with the presence of lignin (50% more compared to pure cellulose hydrogels). This was attributed to a reduction in molecular interactions between paracetamol and cellulose. These results highlight the potential for the valorization of lignin as a platform for drug-release systems.

History

Publication

ACS Sustainable Chemistry & Engineering;9 (6), pp. 2515-2522

Publisher

American Chemical Society

Note

peer-reviewed

Other Funding information

Horizon 2020, European Union (EU)

Rights

© 2021 ACS This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry & Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssuschemeng.0c08022

Language

English

Usage metrics

    University of Limerick

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC